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SU(2) the set would beA"&, V"9 V" V"&, T "~ T"&3,

where A. "& is a linear combination of all the other vec-
tors including 7("&, as in Eq. (21).

7Here we are speaking only of the models with nonzero
spin-orbit forces.

PHYSICAL REVIEW D VOLUME 3, NU MBKR 12 15 JUNE 1971

Asymptotic Behavior and the Possibility of Duality without Ghosts

in Feynman-Diagram Modelse

D. D. Coon
School of Physics and Astronomy, University of Minnesota, MinneaPolis, Minnesota 55455

(Received 15 January 1S71)

Elastic scattering of two spinless particles with equal or unequal masses is considered in
Feynman-diagram models of the Van Hove type with the usual couplings and with arbitrary
spectra of masses, spins, and coupling constants, including infinitely large masses and spins.
It is shown that if the amplitude defined by analytic continuation of the sum of all lowest-order
diagrams with s-channel poles has no unphysical or u-channel singularities, then for fixed t
this amplitude is uot bounded by any power of s as

~
s~ ~ in any infinitely multiply connected

domain which excludes only neighborhoods of the poles. Since a dual Born term with no u-
channel poles can be represented entirely by the sum of s-channel pole diagrams (or by the
sum of t-channel pole diagrams), this bad asymptotic behavior cannot be canceled in the Born
approximation in a dual multiparticle theory. Regge asymptotic behavior is also supposed to
be associated with duality, and consequently one sees that Feynman-diagram models of the
Van Hove type cannot exhibit duality. The result is independent of the order of summation of
diagrams. It depends crucially on the requirement that coupling constants be real.

I. INTRODVCTION

It is well known that it is possible to cc)nstruct
Feynman-diagram models' with simple couplings
which exhibit Regge asymptotic behavior in one
channel. At first, one might hope that b~ intro-
ducing infinitely many particles and adju. sting all
the masses and- coupling constants, a mcdel of the
Van Hove type' ' possessing Regge beha~rior in two
channels could be found. The existence (if dual-
resonance models" would tend to support this hope
if implicit poles in t were allowed in the sum of s-
channel pole diagrams. One might even hope that
some model of the Van Hove type could fully incor-
porate duality, in which case the infinite sum of
s-channel pole diagrams would be equal to a sim-
ilar sum of t-channel pole diagrams. However,
we mill prove that the asymptotic behavior of any
such generalized Van Hove model (with the usual
couplings') is unacceptable from the point of view
of duality. The factors mhich are primarily re-
sponsible for this negative result are (1) the ab-
sence of ghosts and (2) the simple couplings of the

arbitrarily high-spin particles sehich are present
in Ne mode/. We prove that if the sum of all low-
est-order diagrams with s-channel poles has no
implicit unphysical or u-channel singularities,
then for fixed t, the amplitude defined by this sum

is not bounded by any power of s as ~s ~- ~ in any
infinitely multiply connected domain which excludes
only neighborhoods of the poles. No assumption is
made about the domain of convergence of the sum
of diagrams other than its existence.

From the point of view of applications of the Van
Hove model, the result indicates that outside the
usually accepted region of applicability the model
is quite badly behaved.

From the point of view of duality the result is
mildly unfortunate because of its generality. It
implies that no dual multiparticle theory with tra-
jectories and daughters of any shape or spacing
can correspond to a ghost-free theory with the
simple and conventional couplings' of the model.
Of course, the results of this paper do not imply
that all dual multiparticle theories must have
ghosts. Thus, there is no contradiction between
the present conclusions and the general belief that
the Veneziano model with unit intercept is free of
ghosts.

Although duality and positivity do come into con-
flict within the fairly general framework treated
here, the results which are obtained do not rule
out the possibility of a ghost-free dual Feynman-
diagram model associated with a somewhat more
complicated theory such as a theory with nonmini-
mum derivative couplings. Abarbanel has con-
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sidered the possibility that duality can be exhibited
by a rather general Born term (which includes an
infinite number of arbitrary functions of s) in a
strictly localizable field theory. He shows by ex-
ample that at least one dual-resonance model, the
Veneziano model, is contained in his Born term as
a special case. In this example, the coupling con-
stants are not explicitly required to be real. If all
the coupling constants are indeed real, then accord-
ing to the results of this paper, the acceptability of
this example must be due to the fact that the field
theory of the Abarbanel model differs from that of
the Van Hove model. ' ' Since the Born term con-
sidered by Abarbanel is different from the one
treated in this paper, there is no contradiction be-
tween Abarbanel's example and the conclusions
reached here. Thus, although the Veneziano model
cannot be obtained from a Feynman-diagram mod-
el' ' of the Van Hove type, Abarbanel's construc-
tion, as well as much of the work on the general-
ized Veneziano model, ' indicates that there may
be an acceptable ghost-free theory in which a Ve-
neziano amplitude does appear as the first Born
term.

The general idea of the proof presented here is
that power boundedness implies the existence of a,

convergent series (partial-fraction expansion) and

that the infinite sum of Feynman diagrams can be
conveniently and rigorously studied by comparison
with this convergent series. If all the coupling
constants are real, then the comparison leads to
an inconsistency which involves the couplings of the
arbitrarily high-spin particles. Roughly speaking,
the difficulty, which is quite severe, comes from
the numerator s dependence of the Feynman dia-
grams together with the fact that positivity pre-
vents cancellation of this s dependence when dia-
grams are summed. This description of the origin
of the difficulty is considerably oversimplified in
that it makes no reference to the crucial questions
of convergence which are analyzed in detail in
Sec. III. To put the situation in perspective, we

include two further observations. The first con-
cerns pole models which are obtained by replac-
ing numerator factors of s with the appropriate
masses squared. The methods used in this paper
will reveal no problems in connection with such
models. Our second observation is that the diffi-
culty might also disappear if we inject more s
dependence through the introduction of form fac-
tors.

II. DUALITY CONDITIONS AND THE MODEL

We consider the elastic scattering of two spin-
less particles with masses m, and ~, which
couple' to an infinite set of particles. As in the

Van Hove model, we examine the sum of lowest-
order diagrams with poles in one channel. The
explicit expression for this sum is' 4

M(s, t) =Q ' '
(q,.') 'P~, (z, ), .

" (2Z,. +1)g,.'

where
s=(p, +p,)', s, =M, ', t=(p, —p,)',

24q =s —a, ,

(m, ' —m, ')'
g = 2fPl + 2fPS~1 2

S~

2t
z; =1+——

s -g.

(2)

(4)

and the g; are coupling constants. In Eq. (1), the

P, are Legendre polynomials which can be ex-
pressed in terms of Gauss's hypergeometric se-
ries' as follows'0'

P, (z) =E( l, l+ 1;-1; —,'(1 —z)).
Substituting Eqs. (2)-(5) in Eq. (1), we find that

(5)

M(s, t) =g (s, —s) 'g C(J;, n)t"(s —a, )
' ", (6)

where

(2J, + 1)g,' (J; + n)!

C(Z, , n) &O. (6)

We wish to examine the consequences of impos-
ing five conditions which are a subset of the neces-
sary conditions one would associate with a dual

multiparticle theory, The first four are conditions
which one might associate with the Van Hove model
alone.

(i) It is required that the infinite sum in Eq. (6)
be uniformly convergent in some unspecified do-
main of s and t, and that the Born term M(s, t) can
be defined elsewhere by analytic continuation.

(Note that the order in which diagrams are
summed has been left arbitrary by not having spec-
ified the dependence of s; and J, on i. Here we

continue to allow for the possibility that the order
of summation is important by not demanding abso-
lute convergence. )

(ii) It is required tha. t J, be unbounded. [If 8,
were bounded then M(s, t) would be a polynomial in
t This would corres.pond to behavior as ~t ~- ~ for
fixed s which is uninteresting from the point of
view of either the Uan Hove model or dua1ity. ]

(iii) Particles with finite mass are required to

We observe that reality of the coupling constants

g; and the positivity of the factors which come from
the expansion of P, as a, power series (5) in t are
responsible for the fact that
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have finite spine and finite degeneracy. (This con-
dition is satisfied"'" by dual multiparticle theo-
ries. Except for this requirement, the spin con-
tent and degeneracy are completely arbitrary. )

(iv) For any fixed t with the possible exception
of a set of isolated points, M(s, t) is required to be
a meromorphic function of s whose poles and res-
idues are just poles and residues of terms in the
infinite sum in Eq. (6).

[There is no restriction on possible implicit
singularities in t at isolated points because it is
an essential requirement of duality that we allow
for the possibility of implicit poles in t or u. Hav-
ing allowed for the possibility of singularities in t,
it is convenient to exclude u-channel singularities
by considering only processes in which there are
no I-channel contributions to the Born term. This
eliminates one source of implicit singularities in
the variable s when t is held fixed. We also ex-
clude as "unphysical" any non-u singularities
whose position in s is t-dependent. Such singular-
ities have no interpretation as particle contribu-
tions to our Born term and should not be present
in any dual model. Finally, we note that no s-chan-
nel singularities are supposed to be "dual" to other
s-channel singularities. Therefore, in condition
(iv) we forbid implicit singularities in s while im-
posing no restrictions on the explicit "physical"
s-channel poles of Eq. (6).j

(v) It is tentatively required that for any fixed t,
with the possible exception of isolated points,
M(s, t) is bounded by some power of s as ~s~-~ in
a multiply connected domain, excluding only neigh-
borhoods of the poles but including infinitely many
segments of the positive real s axis.

(Note that neighborhoods of all poles must be ex-
cluded. On the other hand, segments of the posi-
tive real s axis out to infinity are included because
dual theories are supposed to have some relevance
in the asymptotic part of the physical region. The
resulting infinitely multiply connected domain need
not include segments of the s axis between every
pair of adjacent poles. )

III. INCOMPATIBILITY OF THE DUALITY
CONDITIONS AND THE MODEL

For subsequent purposes we define a function
M(s, t) which differs from the amplitude M(s, t)
only through the omission of those diagrams whose
poles are below threshold. Thus, we write

M(s, t) =g 8(s; —so)(s; —s) 'g C(J;, n)t"(s —a, ) ' ",
n=O (9)

where

s, =(m, +m, )',

g(&)=1 for x~0,

g(g)=0 for x&0.

The requirements of meromorphy and finite degen-
eracy imply that only a finite number of diagrams
have poles below threshold. Thus, the domain of
convergence of the infinite series in Eq. (9) com-
pletely overlaps the domain of convergence of the
infinite series in Eq. (6). If we denote the maxi-
mum value of spin for the particles below threshold
by J, then we see that the function (M -M)- s~ ' as
~s~-~ with t held fixed .Thus, M(s, t) is bounded

along with M(s, t) by some power of s in the domain
described in condition (v).

The ordered sequence of points at which the s-
channel poles of M(s, t) a.re located will be denoted

by o~, P = 1, 2, 3, . . . , where o~ & v~„. Since essen-
tial singularities are not allowed, we must have
0~- as P- ~. In general, any given pole will
appear in more than one diagram. The set of val-
ues of i for which s; =a~ will be denoted by I(P) and
for these values of i we write a; =b~.

We next consider the contour integral

taken along a circle C which has its center at the
origin and which encloses the first m pole posi-
tions &x„. . . , v . Here k is an integer, k~K=K(t)
and K(t) is the least integer for which M(s, t)/s —0
a.s ~s~- in the domain described in condition (v).
Condition (v) guarantees that we can find an infi-
nite sequence of circles" C on which ~I (s, I) ~-0
as m-~ for any finite s away from the poles. This
in turn implies that we can obtain a uniformly con-
vergent series" by evaluating the residues of poles
of the integrand in Eq. (10) and considering the
limit m-~. In this way we obtain

xg QC(Z;, n)t"(o —b,)
' ", (ll)

iCI(P) tl=g

where the kth derivative of M with respect to s is
denoted by M~ ~. In arriving at Eq. (11), we have
invoked condition (iv).

We next make use of the convergence of the P
sum in Eq. (11) at s = o and t =7, where o and v are
positive real numbers, k~ K(r) and o4 o~, P =1,
2, . . . . In this case all terms in the infinite series
with p&PO are positive, P, being the least integer
for which o~~ 0. Note that because poles below
threshold do not appear in M(s, t), we have cr~

~ (m, +m, )', and consequently
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&m '-m '~'
2m 2+2m 2 % 2

0'p
(12) M'"!(s, i) =Q e(s,. —s,)QC(J„n)

i=1 n=o

or, in terms of the quantities which appear in Eq.
(11),

(o, —b, ) o 0 . (13)

Thus, the infinite series in Eq. (11) with s =o and
t =7 converges absolutely. Absolute convergence
for other values of s and t can be inferred from

((o, —s) ' ' Q Q C(Z;, n) i"(o, —b, ) ' "
~

& 1(p) n=o

Jg
& )a, —s [

' ' g g C(Z; n) li I"(a~ —b~)
' "

geJ(p) n=o

J]
&(a, —cr)

' 'Q QC(Z„n)T"(o, —b, ) ' "

ieJ9) n=O

for P) p„Re s &o, and Itl &v. Through the
Weierstrass M test, "this inequality shows that
the series in Eq. (11) converges uniformly and
absolutely for ~t~ &~, k) K(r), Res & v, and s& o~,
P = 1, 2, . . . . Note that for ~t ~& r we might have had
K(t) &K(v). By taking o to be arbitrarily large, we
see that we have established uniform and absolute
convergence in the finite part of the s plane ex-
cluding neighborhoods of the poles. In contrast,
the domain of convergence in t is correlated with
the index k and thus may be different for the series
which represent the various functions M "'(s, i).
However, we can take ~ to be as large as we wish
and still find some series tthose with k) K(v) j
which converge uniformly and absolutely inside a
circle of radius T.

We can now do some rearrangement of the series
in Eq. (11). Absolute convergence of the repeated
series +~g;,, i~! taken in that order implies the
absolute convergence of the corresponding double
series" whose terms can therefore be summed in

any order" as a single series without changing the

value of the sum. We choose the new order of
summation to be the same as the order of sum-
mation of diagrams in Eq. (9). Thus, the series
representation

(16)

(18)

jI s; —a;j=o

r ~ » k+ I. For l ~ k, II = 0.
We next show that the domain of convergence of

Eq. (17) actually extends over the full domain of
convergence of the series in Eq. (15). This is
accomplished by comparing moduli of terms in
Eqs. (15) and (17).

For sufficiently large s, , i.e. , s;&8, we have

's —a; 1

,

s; —a, k+1 (2o)

This condition also holds for sufficiently large i
since we can choose i) i, where i is the largest
index of any s, with s; «H. From Eq. (19) we see
that

which for arbitrary k converges" in the same un-
specified domain of convergence as Eqs. (6) and

(9).
Now let us focus on an arbitrary point so to in

the unspecified domain of convergence of Eq. (16).
If we simply choose 7 sufficiently large so that
r) ~t, ~

then s„t, will also be a point in the domain
of convergence of a, series of the form (15) with
k) K(7). Thus, we can find a. common domain of
convergence of two series (15) and (16) which rep-
resent the same function M!"'(s, t) provided that
we have k) K(r). If in this domain we subtract
Eq. (16) from Eq. (15), we obtain a nontrivial rep-
resentation of zero, "

OO J~

0 =g 6(s; —s,)g C(J;, n) i "H(J; —n, i, k, s),
n=o

(17)

where

Mt" (s, i) = k!Q 8(s, —s,)(s, —s) ' '
i =1

(H(l, i, k, s)~&(s, -a,.)' ' ' Q, ,
'e'

j=o
(21)

x+C(Z, , n)t"(s, —a, )
'

n=o
(15)

converges absolutely and uniformly for ~t
~

&7,
k-K(7), ~s~&, and sx s;, i =1, 2, . . . .

By differentiating Eq. (9) k times with respect to
s, we obtain the series representation

for i) i.
If we call the jth term in this last sum C&, then

we observe that C~„&(k+1)cC, and consequently

(lH, i, sk)(&(s, —a,.)' ' '
(

'

)

(22)
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Furthermore, it is easy to show that

(s; —a,)' k1
lH(I I k s)l

l

p~g (1 + ) 1 (k 1)

(28)

or
s; —a;'

IH(f, f, k, s) l«onst k!
S —S'I

(24)

IV. DISCUSSION

Since most of the proof involved comparison with

for sufficiently large i. The important feature of
this last inequality is that the constant does not
depend on i, l, or s. The inequality (24) involves
the s-dependent factors which appear in Eqs. (15)
and (17). We now reidentify l with J; —n and use
our last result (24) to establish that the modulus
of the i th term in Eq. (17) with lt l

& 7 is less than
some constant times the modulus of the ith term
in Eq. (15) with t =7 for all i&i. Thus, the series
in Eq. (17) is found to converge absolutely and uni-
formly in the same domain as Eq. (15).

We note that within our "enlarged" domain of con-
vergence of Eq. (17), s and t can simultaneously
take on positive real values and the only restriction
on s is that s4 s, , i =1, 2, . . . . For real s& 2m, '
+2m, , we have s-a, &0 and we observe from Eq.
(19) that H(l, i, k, s) ~ 0 for all / andi It sh.ould be
recalled that the constants C(J;, n) are also posi-
tive. The net result is that for real t& 0 and real
s& 2m, '+2m, ', each nonvanishing contribution to
Eq. (17) is positive. At the same time the series
in Eq. (17) ha, s been shown to be convergent and its
sum must be zero. Thus, we have arrived at a
contradiction.

a series whose convergence relies on the poly-
nomial boundedness condition (v), we have shown

that any model which satisfies the other conditions
cannot also be polynomially bounded in the infinite-
ly multiply connected domain described in condi-
tion (v).

A physically acceptable way of avoiding the con-
tradiction found in Sec. III would be to replace the
coupling constants with form factors. It would then
be interesting to see what properties the form fac-
tors must have in order to generate acceptable be-
havior as lsl- for fixed t.

It should be noted that the contradiction might
disappear in a theory with ghosts, in which case
the C(J„n) would not all be positive. Since there
can be no problem with polynomial boundedness in
s if we restrict ourselves to finite spins, it is
worthwhile to point out what happens to Eq. (17)
when only finite spins are present. In this case,
we can easily find a finite value of k, e.g. , any val-
ue greater than the maximum spin, such that Eq.
(17) is satisfied simply because all the
H(J; —n, i, k, s) =0 for k ~ J, [see Eq. (18)]. This
last observation also shows that the lack of poly-
nomial boundedness is not due to the finite-spin
particles and could not be remedied by introducing
ghosts with only finite spin.

Since the conditions which were imposed in Sec.
II are well accepted features of dual multiparticle
theories, we see that Feynman-diagram models of
the Van Hove type cannot exhibit duality.
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The consequences of assuming that there is no isospin T =2 part in the commutator [g&, Q~5J

of time derivatives of the axial charges Q& and Q~& have been investigated. The supercon-
vergence condition derived from this assumption provides constraints on Weinberg's mass
matrix. The mixing angles introduced by Weinberg for the 7f-A&-p-cr system of mesons and
for the nucleon resonances belonging to the (1,2) and (2, 0) representations of the chiral group
are now determined. When only p-wave pion interactions are considered, it is shown that the
new constraints on the mass matrix lead to mass degeneracy for the symmetric representa-
tions of SU(2)@SU(4). The constraints on the spin spectrum derivable from the superconver-
gence conditions are briefly mentioned.

%einberg' evaluated the pion scattering ampli-
tudes using a chiral Lagrangian, and by demanding
that they have good high-energy behavior, he de-
rived the following restrictions on the axial-vector
coupling matrix X(A), the isospin matrix T, and the
mass-squared matrix m':

[x,(x),x,(x)]=ze„.T, ,

[x,(x), [x,(x), m']] ~ 5„, (2)

where A. is the helicity.
Fubini and Furlan' have shown that Eqs. (1) and

(2) can be derived by saturating the following com-
mutation relations between the axial charges Q;(f):

are examined in this paper.
Weinber g' investigated possible saturation

schemes for Eqs. (1) and (2) by assigning particles
to reducible representations of the chiral SU(2)
x SU(2) group and showed that one obtains good re-
sults for coupling constants and particle masses
for both mesons and baryons provided the angles
specifying mixing between states of various repre-

with single-particle states in the infinite-momen-
tum frame. Here Q' is the vector charge and Q'
=—T, . The consequences of saturating a further
commutator

(5)

sentations of the chiral group were chosen to be
45'. Cronstrom and Noga' studied the algebraic
realizations of chiral symmetry for p-wave cou-
pling matrices D„, and showed that they generate
the algebra, of SU(2)I81SU(4). The mass-squared
matrix which they obtained for the symmetric rep-
resentations of SU(4) is

yn'(T, J) =mo + c[J(J+1) —T(T+ 1)] . (6)

The mass spectrum represented by Eq. (6) does not
correspond to the experimentally observed spec-
trum.

If the commutation relation (5) is saturated in the
infinite-momentum frame with single-Pa~ti cle
states, it leads to the predictions that %'einberg's
mixing angle should indeed be 45' and that a totally
degenerate mass matrix is the only solution for the
P-wave algebraic realizations of chiral symmetry
as viewed by Cronstrom and Noga. '

The commutator (5) can be rewritten as follows:

[[x (A.), m'], [[x'(A.), m'], m']], = o. (8)

Using the techniques explained by Fubini and Fur-
lan, ' the matrix elements of the above commutator
('7) are evaluated by sandwiching it between the sin-
gle-particle states ~a, p, , A) and ~b, p, , A. ') and sat-
urating it in the infinite-momentum frame with
single-Parti cle states. This gives the following
extra condition on the mass matrix and the axial-
vector coupling matrix:


