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The concept of a closed quantized flux loop ("elementary loop" ) which avoids the implication of magnetic
monopoles is investigated, leading to a theory of a charged-lepton (muon or electron). In order to reconstruct
a continuous magnetic dipole field of a source lepton, it is assumed that the Aux loop adopts a statistical
distribution of alternative forms characterized by a complex probability amplitude superposition, in a
manner somewhat analogous to the superposition of path histories in Feynman s space-time approach to
quantum mechanics. Flux quantization results from the equivalence of a line discontinuity of the phase
factor of a P function of a held lepton (due to its phase multivaluedness by &2m.) to the presence of a line
of quantized Aux. On the same basis as quantized flux arises from such a singularity of that phase factor,
so also an electric field arises when this singularity line is moving. In particular, the source s Coulomb field
results from a spinning of the quantized Aux loop (about the center of the source) with an angular velocity
equal to the Zitterbexegung frequency 2mc'/A, if the statistical distribution of Aux loopforms properly
represents the magnetic dipole 6eld of a muon or of an electron. The reconstruction of the magnetic and
electric fields of a charged lepton and the comparison of them with the quantized Aux hc/e gives a numerical
estimate of the electromagnetic interaction constant e'/Ac, i.e., an understanding of the relationship be-
tween e and A. The energy mc' and angular momentum A/2 may be interpreted as electromagnetic. The
theory should work for both muon and electron and is expected to give some insight into the ratio of the
masses of these two leptons. A representation of quarks in terms of linked quantized Qux loops is suggested
to describe a low-lying meson as a linkage of an elementary loop with an antiloop, and a low-lying baryon
as three interlinked elementary loops. We are here developing a model approach to problems of structure
and conservation laws in particle physics. A more abstract version of a quantized Aux theory of particles
should be preceded by such an heuristic model.

I. INTRODUCTION

~ NE of the puzzles of modern physics is the occur-
rence of two quantum constants: A, indicating the

quantization of action, and e, the quantization of
electric charge. They are numerically interrelated in the
electromagnetic coupling constant, the "6ne-structure
constant" e'/Ac. This relationship has to be considered
solely as a relationship between e and 0:With the advent
of special-relativity theory, one eliminates the constant
c in e'/Ac by measuring time in units of centimeters. (We
shall use, however, the ordinary cgs notation, retaining
all the constants so as to bring the discussion of the
relationship between the fundamental constants e and
A into a familiar language. )

One may ask why, apart from purely historical
reasons, one should start with a separate discussion of
the issue of the electromagnetic coupling constant here,
instead of discussing this issue in relation to all the other
coupling constants. There are two reasons for starting
the discussion of e'/Ac on its own. (1) Quantum electro-
dynamics is an exceedingly successful theory: More is
known about electrodynamic interactions than about
any of the other interactions. This means that a new

approach to electromagnetic theory has so many known

facts to comply with that any basically wrong new

attempt to understand e'/Ac will show its inconsistencies

immediately. These constraints permit no important
ambiguities in the choice of assumptions for the present
approach; once one tries to carry through a theory like

this one, based on Aux quantization, the assumptions

for such a theory are almost uniquely determined with

little choice for alternatives.

3

(2) In studying the theory of the electron and of the
muon, we may hopefully tackle their basic properties
by electromagnetism alone (and there are good reasons
to expect that the weak and the strong interactions
might be understood in terms of the same concepts
which we are employing in this electromagnetic theory
of the electron and of the muon). A theory of the
electron has not much hope of being relevant if it
cannot give at least a plausible interpretation of the
dual existence of the two similar particles, the electron
and the muon, and of their essential differences in mass.
It is for this reason that from the outset we paid atten-
tion to only such formulation of a theory of the lepton
which might make it possible to understand this duality.
When we develop the theory it will be seen to be more
convenient to discuss it 6rst in terms of the muon and
then look for the specialization which the electron

implies; we have so far, however, only given a crude
qualitative discussion of this electron-muon issue.

The problem of e' versus A received attention with
Sommerfeld's 1916paper, which marked the 6rst success
of linking relativity with quantum theory. In 1925, at
the start of quantum mechanics, and then again with
Dirac's relativistic theory of the electron, there were

expectations that this puzzle of e'/Ac might be solved.
In the 1930 s, with the inquiry into the basic topics of
quantum electrodynamics, there was, in Niels Bohr's

words, another hope, but even quantum electrody-
namics had failed to shed light on this issue. Heisenberg,

during the past few years, has made another attempt
towards the resolution of this issue. His starting point
is that a coupling of the Maxwell-I. orentz field equations
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with the Schrodinger-Klein-Gordon or Dirac equation,
in a fashion somewhat resembling Hartree's self-consist-
ent field, implies a nonlinear equation because the four-
potentials are dependent on P*P. This interesting start-
ing point of Heisenberg's is similar to what Bohm,
Ruderman, Finkelstein (and a little bit myself) and
many others tried to follow up in the late 1940's, but
only a few results seemed to have been forthcoming in
such approaches.

The approach taken to the problem here is heuristic.
When we use a quantized magnetic flux loop (an
elementary loop) in this theory, we use a space-time
description of the forms which this loop may adopt.
Such a picture is, for loop motions, on the level of the
Bohr theory for electron orbits. We then attach prob-
ability amplitudes' to the alternative forms of such a
loop and superpose these loopforms to represent the
structure of a "particle. "

We consider an elementary loop, i.e., a quantized Aux

loop, as the basic unit of particle physics. Whereas a
single loop represents an electron or muon, three inter-
linked loops represent a low-lying baryon, and a loop
and an antiloop interlinking represent a low-lying meson.
It is impressive to realize how many puzzles of the quark
picture get resolved with such an interpretation.

Enormous success has been achieved by abstract
approaches to particles physics. Just as a century ago
when it was recognized that it is the group which deter-
mines the geometry, so later and now we experience the
benefit of that recognition in the field of physics, too.
That does not absolve us, however, from the need to
identify physically the operators and the states entering
in the group-theoretical description. It is in that con-

' The footnotes are grouped together under a few general topics.
They cover a broad spectrum of references most of which have
only an indirect bearing on the present paper. It has been found
useful to have the quotations at hand. Papers relating to ampli-
tude superposition: R. P. Feynman, Rev. Mod. Phys. 20, 367
(1948); Phys. Rev. 76, 749 (1949);76, 769 (1949);80, 440 (1950);
84, 108 (1951); Science 153, 699 (1966); in Proceedings of the
Twelfth Solvay Institute of Physics Conference (Interscience, New
York, 1961), p. 61; R. P. Feynman and A, R. Hibbs, Quantum
Mechanics and Path Integrals (McGraw-Hill, New York, 1965);
J. R. Klauder, Ann Phys. (N. Y.) 11, 123 (1960); Lectures, Uni-
versity of Bern, 1962 (unpublished); thesis, Princeton University,
1959 (unpublished); C. Morette-de Witt, Phys. Rev. 81, 848
(1951); C. W. Misner, Rev. Mod. Phys. 29, 497 (1953); W. E.
Brittin and W. R. Chappell, ibid. 34, 620 (1962); R. P. Feynman,
Quantum E~lectrodynarnics (Benjamin, New York, 1961); Theory
of Fundanzental Processes (Benjamin, New York, 1961); R. P.
Feynman, R. B. Leighton, and M. Sands, Feynman Lectures in
Physics (Addison-Wesley, Reading, Mass. , 1965); F. J. Dyson,
Phys. Rev. 75, 486 (1949); Advanced Quantum Mechanics,
lecture notes, Cornell, 1951 and 1954 (unpublished); M. Kac,
Probability and Related Topics in Physical Science (Interscience,
New York, 1959); I. Gel'fand and A. Yaglom, Fortschr. Physik
5, 517 (1957); S. S. Schweber, J. Math. Phys. 3, 831 (1962);
I. Gel'fand and A, Yaglom, ibid. 1, 48 (1960); L. Streit, Acta
Phys. Austriaca Suppl. II, 2 (1966); D. ter Haar, Path Integral
Methods in Statistical Mechanics (to be published); E. R. Speer,
Generalized Feynnzan A nzplitudes (Princeton U.P., Princeton,
1962); D. Peak and A. Inomata, J. Math Phys. 10, 1422 (1969);
A. M. Arthurs, Feynnsan Integrals for Classical Waves (Wisconsin
U.P., Madison, Wise. ); Proc, cambridge Phil, Soc, 62, 463
(1966).

nection and in providing heuristic tools that models are

an important counterpart to an abstract theory.
When, as in the present theory, the question is raised

as to a structure underlying an electron or a muon

(a structure in terms of a probability amplitude distribu-
tion of the forms which a quantized Aux loop may
adopt), that question implies a quest for a spin model of
the electron and the muon. The possibility of a spin
model of a lepton has sometimes been considered non-

existent. Bopp and Haag have, however, shown that
indeed such a model exists and has its representation in

the spin-~ eigenfunctions

T „'=exp(imu)P „'(cos8)exp(ieP)

of the symmetric top (cf. the discussion in Sec. VIII B
of the present paper). The authors point out that a
molecule in fact does not have such half-integer spin
eigenfunctions because its atoms are not rigidly inter-
locked. The half-integer spin eigenfunctions may,
however, directly apply to the probability amplitude
distribution of loopforms.

II. OUTLINE

It is not unreasonable, in an attempt to understand
quantization of electric charge, to start with the concept
of Aux quantization. Flux quantization has its basis in
the recognition that the phase 8 of a field lepton's f
function may be multivalued (changing by &2m in

going around a quantized flux line) without the function
itself being multivalued. ' This condition of single
valuedness of f which permits phase multivaluedness

by only positive- or negative-integer multiples of 2m is
a very familiar quantization condition.

Multivaluedness of the phase 8 may occur along lines
in ordinary three-space and, correspondingly, quantized
Aux occurs along these lines. Avoiding the unnecessarily
complicating concept of magnetic monopoles, we assume
that the multivaluedness of 8 and thus also quantized
Qux occurs only along lines of the form of closed loops.
A quantized Aux loop, on the one hand, represents a
singularity of the phase factor e'e of any retd lepton's
wave function; on the other hand, it is assumed that the
form and location of that loop is as if it were one of the
magnetic dipole 6eld lines of a source lepton. In order to
construct a meaningful Geld theory, we assume that one
such loop represents only one of a continuous manifold
of "loopforms, " this manifold somewhat resembling the
manifold of magnetic field lines of a source lepton.
Accordingly, we propose to formulate the magnetic
field of a muon or of an electron entirely in terms of
quantized magnetic flux (see Fig. 1).

' The present 8 is identical with —,8, which we used in our spinor
review papers; the choice of the notation 8 arises from Infeld and
van der Waerden's convention of designating 8 as the phase of the
metric spinor; cf. W. L. Bade and H. Jehle, Rev. Mod. Phys. 25,
714 (1953); W. C. Parke and H. Jehle, in Boulder Lectures in
Tlzeoretical Physics, 1964, edited by W. E. Britten et al. (Colorado
U. P. , Boulder, Colo. , 1965), Vol. VII A.
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D

(g»
FzG. 1. Superposition of loopforms to result in a magnetic

dipole field, (D) pointing in the +s direction, corresponding to a
pure quantum state

~
p,+). (A) Three generators of loopforms (a

one-parameter manifold of different sizes a.), all sharing the same
direction of flux orientation ( and azimuth n. (8) A sheaf of
loopforms corresponding to these generators (A); a sheaf is a
two parameter manifold (o.,n) of loopforms all belonging again
to the same flux orientation (. Differences in thickness of the
lines indicate closeness to the reader, to facilitate three-dimen-
sional perception. (C) Generators of type (A), in (C), however,
for a one-parameter manifold (f,) of flux orientations g and for a
manifold of sizes 0. That is a two-parameter manifold (|„0)
although in the picture only four different flux orientations (,
corresponding to four different values of the single parameter t „

are shown. Differences in thickness here represent differences in
the magnitudes of the complex probability amplitudes correspond-
ing to the different flux orientations g„and have nothing to do
with the facilitating three-dimensional perception; all these four
generators are in the same plane. If the full two-parameter mani-
fold of sheaves of all flux orientations ( Loot only the generators
(C)j and the full manifold of azimuths o. is used to construct a
field by superposition with the probability amplitudes indicated in
(C), the resultant dipole field (D) results. The thicknesses of the
lines is here again employed only as a help to three-dimensional
visualization.

In such attempts to reconstruct the magnetic field of
a muon or an electron from a superposition of alterna-
tive loopforms we shall make several assumptions, some

of them only to simplify the calculations in a drastic
way. We assume that the quantized Aux loop, whatever
form it adopts, is going through the position of the
source lepton. Whereas in an ordinary Maxwell-Lorentz
description of the source this is seen to be due to the
circumstance that currents and charges are assumed to
be confined to the source region, we simply assume here
that the flux loop takes on "loopforms" which resemble

the classical magnetic field lines of a dipole source. We
may leave to a later time the question whether that
assumption might be reduced to other more basic as-

sumptions, e.g. , in terms of a Lagrangian for loopform
amplitudes.

The concept of a manifold of forms ("alternative flux

loopforms") which one single elementary loop may
adopt, as a representation of the magnetic 6eld of a
source lepton, is similar to the concept of a manifold of

alternative path histories' which is taken to represent a
quantum-mechanical path of a particle.

To these alternative loopforms we attach complex
probability amplitudes. The difference of the present
procedure from Feynman's assignment of probability
amplitudes for the path histories is this: For the space-
time motion of a particle, Feynman takes the action
integral to determine the phase of the contributing
amplitudes; for the stationary distribution of alterna-
tive loopforms in the present theory, we choose the
phases of the amplitudes of a muon as random phased
in some specified way and we choose the magnitudes of
the complex amplitudes proportional to the square root
of the corresponding share of magnetic flux they are to
represent on the basis of a magnetic dipole in Maxwell-
Lorentz's theory. We should take care not to confuse
the phases of the amplitudes with the multivalued
phase tl (of a field lepton's wave function) which intro-
duces the quantized flux.

Our assumption that all magnetic flux is quantized
lux means that the gauge-invariant four-potential Q,l„
Eq. (3.4), is set equal to zero. This means that, with the
flux-defining singular vector potential A, an electric
potential V also arises if quantized flux lines are in

motion and if it is assumed that they carry the phase
Geld (i.e., the multivalued t) field) in the mean along
with them in their motion (for topological reasons this
is an obviously necessary assumption). In particular, if

the flux loopforms representing a source lepton of mag-
netic moment eA/2ttsc all spin around their axes (cf.
Figs. 1 and 2) with the angular velocity 2mc'/A of the
Zitterbemegleg, and carry the field along with the
loopforms in their rotational motion, the Coulomb field

results without the explicit introduction of an electric
charge as a source. This result, so particularly important
because it holds for muon and electron alike, is not too
astonishing, however. The Dirac electron theory starts
with the charge e of the electron and yields a magnetic
moment eA/2mc; in the present theory the reverse
situation applies: Starting with the concept of flux

loopforms, provided they reconstruct the magnetic
moment ek/2ttsc, we get the Coulomb field equivalent
to an electric charge &e. This charge is +e or —e

depending on whether the magnetic moment vector
and the spin angular velocity vector of the loopforms
are parallel or antiparallel to each other, as indeed it
should be. (Charge and current follow from the Gelds

by Maxwell-Lorentz equations. )
In this connection it is to be noted that already

several decades ago Dirac remarked that t,' should be
expressed in terms of A, not vice versa, because a theory
which explains the charge in terms of the square root of
Planck's constant yields both signs, +e and —e.

If it is attempted to parcel out the quantized Aux

C, =bc/e, Eq. (3.6), to the alternative loopforms of a
point dipole source, one will get zero magnetic moment,
and infinite magnetic field intensity at the location of
that point dipole. The question therefore arises how to
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avoid these obvious difhculties without relinquishing the
basically local character of quantum electrodynamics.

Although this is a formidable problem, it does seem
to have an obvious solution. When we use a description
of a source lepton in terms of a space-time distribution
of loopforms, we necessarily have to attach those loop-
forms to the meum position of the lepton described as a
single particle. The Pryce-Foldy-Wouthuysen trans-
formation of the Dirac electron to a single-particle
representation makes the particle's mean position an
operator which is nonlocal of extent A/mc in ordinary
position space.

We thereby assume structure for the lepton. A system
of loopforms of the form of magnetic field lines of a
point dipole source do not yet define a characteristic
length. It is the length A/mc, which characterizes the
quasi-nonlocality of the source, which defines the
structure of the source lepton.

There are several ways in which this "quasi-non-
locality" might be accounted for in a quantized loop-
form theory of a lepton. The simplest, and perhaps
crudest, heuristic way is to handle the issue as if the
source lepton was an extended source of extension
=A/mc in ordinary position space. This is the approach
taken in the present paper.

We may then raise the question: What distribution of
the complex probability amplitudes over the space-time
configurations of loopforms of quantized Aux. 4, leads
to a correct reconstruction of the magnetic, and thereby
also electric, field of the source lepton (the title "rela-
tionship of Aux quantization to charge quantization"
refers to that), a 6eld whose electromagnetic energy is
mc' and electromagnetic angular momentum is A/2P
This energy then may determine the frequency of the
probability amplitude wave.

It is seen in Sec. X that such reconstruction is possible
provided e /Ac is of the right order of magnitude, i.e.,

=1/137. No accurate figures of e'/Ac can yet be calcu-
lated because the dehnition of manifold of loopforms
(bundled together into a discreet set of bundles) is only
approximately possible with the crude assumptions
about quasi-nonlocality used in the present paper.

It should be said that it is one part of the story that
an electric Coulomb field appears simply as a conse-
quence of a Bohr (or muon) magneton field and the
electron (or muon) spinning frequency. It is then a
second part that the reconstruction of these 6elds and
of mc' and A/2 from quantized flux C, =eh/c leads to a
numerical estimate of the electromagnetic coupling
constant.

The relation of muon to electron may be interpreted
as random phasedness to phase correlatedness (co-
herence) of the space-time distribution of loopform
amplitudes, corresponding to a spinning of muon loop-
forms with high angular phase velocity versus a spinning
of electron loopforms with slow angular velocity corre-
sponding to a group velocity of muon waves. At a
particular region in space, these motions are represented

by a high fundamental frequency of muons and a low

frequency of electrons corresponding to a beat frequency
of muon waves.

We are trying to illustrate this theory in terms of
simple manifolds of space-time forms of quantized Aux

loops. These picturesque aspects have as their purpose
only the formulation of a theory in the simplest possible
terms. A sophisticated theory of space-time manifolds
of "Aux loopforms" may involve deeper and more
dificult mathematical tools than those used here. We
shall also leave it to a later investigation to find out
what general equations may govern the (statistical)
distribution of the manifold of loopforms over space
and time.

In Appendix II we propose an interpretation of
mesons and baryons in terms of linked quantized Aux

loops. According to that view', a quark exhibits its
properties only if interlinked with an other quark. The
quantum numbers of particle physics seem to relate
directly to topological and other properties of linked

loops and their probability amplitude distributions.
Strong and weak interactions might be qualitatively
understood in terms of interactions of quantized Aux

loops.
It may be appropriate to enumerate the fields we

deal with. We started with a wave-mechanical iP 6eld

(I) (of a field lepton or 6eld particle) whose phase 8,
because of its being single valued only modulo 2m,

defines quantized flux loops (cf. Sec. III). This f field. is
considered a semiclassical field which may possess these
Aux singularities with loopforms; these "alternatives" of
fields and loop forms, like the alternatives of Feynman
path histories, are then superimposed with complex
probability amplitudes to build up a quantum state of
the source lepton. All magnetic and electric fields (II)
are built up from alternative (spinning) loopforms of
these singularities of (I), and all physical quantities
should be expressible in terms of that electromagnetic
field (II). To define that electromagnetic 6eld, prob-
ability amplitude distributions (III) are de6ned so
as to imply electromagnetic fields which satisfy the
Maxwell-I orentz equation. The probability amplitude
field (III) may be considered as "carrying" the electro-
magnetic field (II). As the lepton has spin ~„weassume
the carrier probability amplitude field (III) to corre-
spond to spin s=—', eigenfunctions, of type Eq. (1.1).

We refer for further clari6cation to the end of Sec.
VI. The complex probability amplitude distribution of
the loopforms characterizes the internal con6guration
of the lepton; the fluctuations (Zitterbewegung) of
this distribution have a structure which is represented
by the discrete bundles of spinning loopforms.

This theory tries to give a single-Geld account of
leptons, mesons, and baryons. It therefore does not lend
itself to ambiguous assumptions (and it is much more
conservative than monopole theories). It is to be com-
patible with the Maxwell-Lorentz and Dirac theories.
It (1) derives the electric Coulomb field from quantized
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flux. It brings in new features (2) by defining structure
and consequently the numbers 207 and 1/137 in the
analysis of charged leptons, and (3) by defining the
consequences of linkage of two or three loops in low-

lying mesons or baryons, for an understanding of the
classification of particles and of their interactions.

III. MAGNETIC FIELD FROM QUANTIZED FLUX

Quantization of flux is a concept implicit in a gauge-
invariant formulation of electromagnetism. As it is, the
expression

This means that V8, considered as a function of ordinary
three-space, has singularity lines around which
changes by a positive- or negative-integer multiple of
2~. Blatt called (3.3) appropriately a "pseudo-gauge
transformation"; in this paper we also prefer not to
call (3.3), with multivalued 8, a gauge transformation.
Starting with a field lepton's wave function P' which

is "singularity free" (i.e., whose 0' field=0) and
which moves in a zero Aq' field, the gauge-invariant
combination

Ai, (A—c/e) Bi@=Si, Ai.' ——(Ac/—e)8i,6' (3.4)

I Bi, i(e/—kc)Ai, jP, A~ ——(V, —A),
+4.8&&10 'o cgs,

(3 1)
is equal to zero all along, i.e.,

SA ——0, (3.5)

which enters a wave equation of a lepton, a gauge
transformation

P=P'e+'", Ai, =Ai, '+(Ac/e)Bi, q, k=0, 1, 2, 3 (3.2)

with a gauge variable y which is a continuous function
of time and space, results in a gauge-covariant descrip-
tion of the motion of a lepton. The gauge function q,
apart from being assumed to be continuous, is assumed
to be a single-valued function of time and space. With-
out dispensing with the assumption of single valuedness
of the P function, we may, instead of the single-valued
phase p, consider a phase 8 which is single-valued
modulo 2x only, '

(3.3)

' Papers relating to gauge invariance and definition of potentials:
F. Rohrlich and F. Strocchi, Phys. Rev. 139, B476 (1965);
S. Mandelstam, Ann. Phys. (N. Y.) 19, 1 {1962);B. S. de Witt,
Phys. Rev. 125, 2189 (1962); P. G. Bergmann, Nuovo Cimento
3, 1177 (1956); F. J. Belinfante, Phys. Rev. 128, 2832 (1962);
R. J. Finkelstein, Rev. Mod. Phys. 36, 632 {1964);F. Rohrlich,
Phys. Rev. 150, 1104 (1966); L. Motz, ibid. 119, 1102 (1960);
J. M. Blatt, Phys. Rev. Letters 7, 82 (1961); M. Suffczynski,
Acta Phys. Polon. 12, 83 (1953);L. Infeld and J. Plebanski, Bull.
Acad. Polon. Sci, 3, 95 (1955); Proc. Roy. Soc. (London) A222,
224 (1954). One might add here also a very incomplete list of
spinor reviews: I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro,
Representation of the Rotation and Lorents Groups and their A ppli-
cation (Pergamon, New York, 1963);H. Feshbach and F. Villars,
Rev. Mod. Phys. 30, 24 (1958); N. Kemmer, J. C. Polkinghorne,
and D. L. Pursey, Rept. Progr. Phys. 22, 368 (1959); L. Infeld
and B. L. van der Waerden, Preuss. Akad. Wiss. 380 (1933);
O. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380 (1931);
37, 1552 (1931);P. Roman, Theory of Elementary Particles (North-
Holland, Amsterdam, 1960); E. M. Corson, Tensors, Spinors, and
Relativistic 5'ave Equations (Hafner, New York, 1953); W. L.
Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953);W. C. Parke
and H. Jehle, in Boulder Lectures in Theoretical Physics, 1964,
edited by Wesley E. Brittin, B. W. Downs, and Joanne Downs
(Colorado U.P., Boulder, Colo. , 1965), Vol. VII A, p. 297; J. H.
Helgewoerd and S. A. Wouthuysen, Nucl. Phys. 40, 1 (1963);
E. Cartan, Theory of Spinors, edited by R. Streater (Hermann,
Paris, 1937; MIT Press, Cambridge, Mass. , 1966); J. Serpe,
Physica 18, 295 (1962);R. H. Good, Jr. , Rev. Mod. Phys. 2/, 187
(1955);V. Bargmann, Helv. Phys. Acta 7, 57 (1934);Ber. Preuss-.
Akad. 346 (1932); Rev. Mod. Phys. 34, 829 (1962); M. Fierz,
Helv. Phys. Acta 12, 3 (1938); J. von Neumann and O. Veblen,
Geometry of Co»zplex Domains (Institute for Advanced Study,
Princeton, 1955); J. Serpe, Les Lois de Conservations en Physique
des Particules Elementaries (Institute Inter Universitaire, Brux-
elles, 1959); R. Brauer and H. Weyl, Am. J. Math. 57, 425
{1935};J. Rzewuski, I'ield Theory (Polska Akademia Nauk, 1958).

which implies the fields AI, explicitly written out in

(4.2) and (4.3). In other words, from a solution of the
wave equation for a 6eld lepton with "nonsingular
derivative" of P', in a zero field Ai' ——0, we obtain
another solution of the wave equation corresponding to
a P field with a singularity line and a corresponding A&

field of a quantized Aux line. 4

4 Papers relating to flux quantization: F. London, Nature 140,
793 (1937); 140, 834 (1937); Superfluids I (Wiley, New York,
1950); P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931);
Phys. Rev. 74, 817 (1948); M. N. Saba, Ind. J. Phys. 10, 141
(1936); 75, 1968 (1949); J. Schwinger, Phys. Rev. 144, 1087
(1966); N. Cabbibo and E. Ferrari, Nuovo Cimento 23, 1147
(1962); Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959);
W. H. Furry and N. F. Ramsey, ibid. 118, 623 (1960); V. F.
Weisskopf, in Boulder Lectures in Theoretical Physics, edited by
W. E. Britten et al. (Interscience, New York, 1961), Vol. III,
p. 54; G. Wentzel, Progr. Theoret. Phys. (Kyoto) Suppl. 3'7—38,
163 (1966); D. Zwanziger, Phys. Rev. 137, B647 (1965); L. I.
Schiff, ibid. 160, 1257 (1967); Phys. Rev. Letters 17, 714 (1966);
Michael Buckingham (private communication); D. F,. Zwanziger
and M. Ruderman, Phys. Rev. Letters 22, 146 (1969);F.Rohrlich,
Phys. Rev. 150, 1104 (1966); A. Goldhaber, ibid. 140, B1407
(1965); L. C. Biedenharn (private communication); G. Wentzel,
Progr. Theoret. Phys. (Kyoto) Suppl. 37—38, 163 (1966); J. M.
Blatt, Theory of Superconductivity (Academic, New York, 1964);
B. S. Deaver and W. N. Fairbank, Phys. Rev, Letters 7, 43
(1961);N. Syers and C. N. Yang, ibid. '7, 46 (1961};L. Onsager,
ibid. /, 50 (1961);in Proceedings of the International Conference on
Theoretical Physics, Eyoto and Tokyo, September, . 1953 (Science
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The value of the unit of quantized flux is given by

curiA dS = —(e/kc)4„

4', =bc/e=4. 1356&&10 ' G cm'. (3.6)

F. London, 4 in his papers on superconductivity,
recognized the importance of quantized flux which
arises in a gauge-invariant theory. Flux quantization
was still earlier discussed by Dirac4 in connection with
his hypothesis of magnetic monopoles. London's pro-
gram on superconductivity has been continued and
completed through the work of Onsager, Deaver, and
Fairbank, Schafroth, Byers, and Yang, Ginzburg and
Landau, Bardeen, Cooper, and Schrieffer, Froehlich,
Bloch, Blatt, and many others. 4 Many ideas in this
paper stem from F. London.

Further interest in the basic theoretical issues of flux
quantization arose through the discussions of Aharonov
and Bohm. 4 They raised the question of whether or not
a split electron beam channeled around a perfectly
localized magnetic field would, in its diffraction pattern,
account for that magnetic field (a unit C, causes
diffraction with just one fringe unit displacement and
might be said to be unobservable in this sense). By
carefully considering the all-important role of the
potential involved or, alternatively, by using %eiss-
kopf's4 consideration of gradually switching on the
magnetic 6eld, it can be seen that the answer is in the
afFirmative. Furry and Ramsey4 and Feynman4 have
further clarified this issue (cf. also the end of Sec. III).

In the case of superconductivity, it is necessary to
consider such cooperative eRects as the pairing of
electrons. In what follows, we shall discuss the quantized
flux loop of one lepton. It is not the purpose of this
paper to consider the many-body implications of flux
quantization.

Our work also departs in two important ways from
Dirac's treatment.

(1) In his consideration of singularities, he assumed
the flux lines to start at one point and end at another,
i.e., to originate from magnetic monopoles. This implies
supplementation of electrodynamics by magnetic four-
currents and four-potentials. Although Kentzel has
shown how to quantize a theory which uses such con-
cepts side by side with the electric four-currents and
four-potentials, it seems that the complexity of such a
theory might make it very difficult to accommodate and
reconstruct the results of relativistic quantum electro-
dynamics —at any rate without arbitrary assumptions
and without a loss of simplicity. Such argumentation is,
however, subjective and should not distract us from the
merits of monopole theories. In particular, we should

point to the interesting monopole theories of Schiff,
Schwinger, Peshkin, Zwanziger. , Biedenharn, Goldhaber,
and many others. In our approach we work, however,
without monopoles and consider "elementary loops, "
i.e., closed flux lines only. The Ruderman-Zwanziger
and Barut theories of magnetic pole —anti-pole pairs may
be closely related to the present theory.

(2) The kinds of admissible singularities in Dirac s
theory are 'unnecessarily limited: As Dirac does not
consider a statistical distribution of singularity lines
over a continuous manifold of loopforms, he suggested
that the (field lepton's) f function should by itself have
no discontinuity. Thus, the singularity line of V'8

(around which 8 changes by &2~) should coincide with
a nodal line of that P function. In that case the factor
e'~ does not lead to an infinite derivative of lt.

Rather than dealing with a particular location of the
quantized flux line (the loop attached. to a source
lepton), we consider a statistical distribution of the
forms of such a line. More specifically, we assume that
a lepton which is the source of the magnetic 6eld,
affecting another lepton, will have one closed flux loop
connected with it, which may take on alternative loop-
forms, forms similar to the Faraday lines of a dipole.
Accordingly, each alternative loopform of that flux
loop has, associated with it, an infinitesimally small
probability amplitude. Thus the total wave function
of the field lepton which is under the influence of the
magnetic field of the source lepton is also, like that
magnetic 6eld, to be constructed by means of a super-
position of the P functions associated with these various
singularity loopforms, each with the aforementioned
infinitesimally small probability ampl'itude. This is done
in much the same way as alternative path histories of a
particle are superposed to form the description of the
quantum-mechanical path of a particle.

Because the amplitude associated with a singularity
loop and the amplitude of the corresponding P function
are infinitesimally small, we may include contributing
P functions with singularity loops located anywhere
not just along nodal lines of those f functions. Though
a crude sort of assumption, this may allow us to inter-
pret a continuous magnetic field in terms of a super-
position of flux lines in a reasonable manner.

Superposition of alternative loopforms of quantized
flux by fractional amounts (with probability ampli-
tudes) also disposes of the frequently raised question in
regard to the observability of quantized flux. The
effective flux of a lepton is, because of that superposi-
tion, only a fractional amount of the quantized flux
4 „cf.(9.16) and (9.17).With this qualifying statement
in mind, one may consider (3.5) to imply that all
magnetic flux is quantized.

The amplitudes associated with the various quantized
flux loopforms will have, for the most part, complex
phase factors. %e emphasize that these should not be
confused with the phase 8 of the contributing f function
that is weighted with that probability amplitude.
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The way in which the electric field arises from the
spinning flux loopforms may be seen by considering a
very simple model in which it is assumed (I) that
the flux orientations ( of the alternative loopforms are
all the same, viz. , that of the magnetic dipole vector p
(taken to be in the +s direction), and (II) that the
source lepton is localizable at a point in position space.
The eRective magnetic field (defined as being related to
the Bohr- or muon-magneton p,«by the Maxwell-
Lorentz equations)

(a&

1.e.)

B«3r (p «'r)r —r p «, (4.6)

(4.7)

in the equatorial plane, gives rise to a magnetic flux
linked with a field point P located a distance r from
the dipole,

B,tt27rrdr= (eA/2mc)2 r/ir. (4.g)

This corresponds to the fraction

(4 9)

of the quantized flux (3.6).
In order to avoid topological complications associated

with the surfaces 8=const as the flux loop spins, we
assume that the Aux loop carries the "field" of the phase
0 with it. For simplicity, we choose 8 to be time inde-
pendent in the rotating coordinate system. When the
lux loop makes a complete turn, the phase at P changes
by 2x if that loopform extends beyond P; it then con-
tributes to V according to (4.3). The tl, multivalued in
ordinary three-space, may be represented as a single-
valued function on a kind of Riemannian surface lying
in the equatorial plane with branch points at the origin
and at the point where the loopform again passes
through the equatorial plane. There will be infinitely
many sheets because 8 acquires an extra 2' with each
revolution (cf. Fig. 2).

Using the angular velocity (4.5), we obtain

(e/Ac) V,« —(ci8/c7cl), ff (1/c) 2m-FQ/27r

= (1/c) (e'/2riscsr) (2rtscs/A) = (e /As)/cr (4.10).
Because of the assumption (I), the electric potential,
calculated crudely in this way, is not even spherically
symmetrical. Further, because of the assumption (II),
an infinite total magnetic Aux is implied if the magnetic
moment is 6nite, p,«L(Eq. (4.4)j, i.e. , if the potential
is V, t& fEq. (4.10)j. Because of the cancellation of res

in (4.10), the same Coulomb field results for muon. and
electron.

We would like to replace the oversimplified assump-
tion (I) by the assumption suggested earlier (cf. Fig. 1),
i.e., that the manifold of loopforms from which we con-
struct the magnetic dipole field comprises not only one

Fro. 3. The intersections of the surfaces 8=const with the
equatorial plane. The plane 8=0 (or 8=0&2m. , ~4', etc.) is
shaded; its intersection ( ) is a straight line, and the
continuation of this line across the interior of the flux loop,8= —2x j2 or 8= —27f./2+2m, &47f., etc. , has the intersection
( . ).The surfaces' = ——,'71. andi' = —

&m (orO= ——',7i-

~2~, ~47i-, . . . , and 8 = ——',7i-~2~, &47r, etc.), instead of being
egg-shaped as in Figs. 2, happen to be imagined here to be of the
form of an apple or tomato surface. (A gauge transformation
permits the changeover from one form of such surface to another
form. ) Their intersections with the equatorial plane are indicated
by curves (—.— —) and ( ~ ~ ), respectively.
(A)—(C) show the spinning flux loopform with its associated 6
6eld at three consecutive moments to illustrate the type of change
of 8 in the course of time. For a point E, 8 decreases by 2m every
revolution; for a point Q, 6 oscillates back and forth about 8 =0,
to perhaps 8 = ——,'7r on the one side and 8= —$7i-+2m=+&~ on
the other side, staying always on the same "Riemannian" sheet.
It may also be noted here already that the expectation value of
8A/Oct, i.e., (0 jest) (—V'8), has a zero time average for both P
and Q. In contrast, the expectation value of V'(B8 /act) is not zero,
but depends on the spatial distribution of loopfortns I cf, Eqs.
(5.13), (8.18), and (8.19)j.
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X

I IG. 4. EUler angles P, 8, n to characterize
the position of a sheaf of loopforms of Aux
orientation (, in relation to a Geld point
P(r), which for convenience is laid in the
(—I", Z) plane.

(4.11)

B dS= A dr= —
p~ 2& r sin' r, . 4.].2

I' r

The contour integral is to be taken over a circular path
lying in a plane perpendicular to ( and passing through
P(r). This sheaf of loopforms of magnetic moment pr is
assumed to spin with the angular velocity

Qr ——& (2mc'/A) ( (4.13)

about the Aux orientation of the sheaf's magnetic 6eld,
every sheaf having the same angular velocity 0, and to

sheaf of loopforms of Rux orientation ( in the +s
direction (two-parametric manifold of size o and
azimuth n), but a manifold of sheaves of different flux
orientations ( (a manifold of altogether four param-
eters), with ( predominantly in the +z direction. We
consider

~
(), i.e., the distribution of amplitudes, which

we assume to be similar to that of the projection of a
spin state ~lit) onto a state ~li,+), with (li,+~lit) being
proportional to (1+i.)t/', 1, is the projection of the
unit vector ( onto the +s axis (cf. Sec. VIII).

So that we may proceed with the calculation of the
electric 6eld in this general case, we consider 6rst the
classical expression for the flux associated with an
arbitrary field point P(r) at a distance r from the
source lepton, arising from one of the sheaves of loop-
forms of given Rux orientation (, a sheaf of magnetic
moment

carry the 6 6eld with it as it spins. With each revolution,
8 would increase (or decrease) by 2~ at the field point if
the total flux Co were linked with P(r). In fact, only
the fraction

B ds/4, (4.14)

=W(2 /c)( 8 dS C,)(B/2 )

= (&2~/c) Lier(2m/r) sin'(r, (')/(2mAc/e) j
&& (2''/2orA) . (4.15)

It is necessary to average this expression over all Aux

orientations. This might tentatively be done by re-

placing the sheaf's pt by the Bohr or muon magneton
(4.4), respectively, and by weighting the Rux orienta-
tions g with the probabilities (1+/.) (cf. Sec. VIII).

In order to calculate such an average of sin'(r, (), cf.
Fig. 4, let us consider the spherical triangle spanned out
by unit vectors in the direction of the s axis, of r and of

(, s,nd name the angle (r, ()=b, the angle ((,x) =8,
cos8=&„and the angle (x,r) =c, cosc=r,/~r~. Theangle
P between the r, x plane and the g, x plane is important
because the probability distribution of ( (cf. Sec. VIII)

is linked with the point P(r) and thus contributes
towards 88/Bt The avera. ge over a period then gives
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is given by

(—1+t.)(df./2)(dP/2~)(«/2~) (4.16)

Using the notation (8.20) and (8.21) with the choice of
thc —p, 8' plRnc so Rs to contain x', arid thc ncw 3 Rxls
which is placed in the ( direction, P is the Euler angle
arccos f—f„(1—f'.') "'j; Euler angles (in Goldstein
notation) are P, 8, a. With the cosine law

cosh =cos8 cose+sin8 sine cosP, (4.17)

%'c obtain

&sin'(r, ()), = (1—cos'b&.

.(1—cos'8 cos'e

—2 cos8 case sin8 sine cosP —sin'8 sin'e cos'P)

we remember tha, t the contributions towards &308 are
additively composed from contributions of bundles of
sheaves. Accordingly, let us-consider the contributions
from different bundles (in the sense of Sec. IX) as being
superposed with probabilities

(I+K )(dl */2)(~P/2~)(«/2~)

If, by (9.12) and (9.16),

C =magnetic flux of the bundle =((Ii) (
4&, j (X))

=(2/»)~, =3&.'IC'. I.. &...=3C',«(4»)

=(2/») .=3& *'I
=3perf

then that bundle's linkage with a point P(r) is, by
(4.12) and (4.21),

X(1+1-.)(dt-./2)(d8/2 )(& /2 )

f 1—cos'8 cos'c ——', (1—cos'8) (1—cos'e) )

&& &1+0.)(df'./2)

(!+-.'V+(-.'- f.')"'/")df. /2

= (2/»)ii, (2m./r) sin'{r, g)

=3&i .+
~
p,

~ i .'&,.d(2~/r) sin'(r, q)

=3p.ii(27r/r) sin'(r, () (4.22)

if each bundle of sheaves spins about its Aux orientation
axis (magnetic moment axis) (().The ratio

(odd. powers of f, in the integrand give no contribution).
Accordingly

I'.«—= &I'&-=(&e/e) &808&-
= (Ae/e) (a 2m/c) (ek/2nzc) (2s/r) '-, (e/2s ke)

&&(2~e /2 &) =~-,'e/». (4.19)

Ke thus obtain a spherically symmetric potential which
diRers from the Coulomb potential by the factor —', .

The present evaluation of (4.15) is done by means of
a simple classical Inagnctic 6cld picture. Ke proceed.
now to evaluate this more accurately on the basis of the
sta, tistica, l description of the 6eMs, given in Sec. Ix.The
reader mRy defer studying thc details of thc reIQalndcr
of Sec. IV, but we report it here because it would be
out of place in Sec. IX.

The second factor on the right-hand side of (4.15)
shouM then be understood to mean

I3 iIS/+ =. 3p.«(2~/r) sin'(r, q)(»/2e, ). {4.23)

V.«=
& V).,=+e/r. {4.25)

Parallelism of Inagnetlc Tnoment RDd spin implies) in
this theory, and electric 6eM equivalent to a positive
charge; antiparallelism implies a 6CM of a negative
charge, as indeed it should be.

ls to bc Rvcr'aged ovcI' the bundles. because of
random phasedness, the fa,ctor E drops out and the
averaging over I8, f, is calculated in (4.18). For the
potential~ we then gct

&8o8&-=+{2~/e)h(e&/2~e)(2~/ )(s' '(r, ()&../
(2~Ac/e) j(2me'/2wk), (4.24)

3 d'3 C

The expression which is to bc averaged is tha, t fra, ctlon
of the Aux 4 of a bundle of sheaves which is linked with

. the point P(r) (cf. Figs. 2 and 3). This is the correct
expression because for a point for which this fraction is
unity (a point on the core surface), 8 changes by 2s per
cRch splIlnlng period. ID order to pcI'foIIQ thc RvcI'aging
over the manifold of bundles of sheaves of loopforms,

With a point source, two difFiculties arise: (a) While
singulRr'ltlcs assoclRted with thc cjuantizcd Qux

loopforms may be permissible as long as the loopforms
are continuously distributed over space, an essential
singularity is implied at the location of the point dipole
if this is a point through which all loopforms pass. (b)
The ratio of the total magnetic Aux of the distribution
of loopforms to the magnetic dipole moment. is ~ to $,
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FIG. 5, A source lepton described in. terms of alternative loop-
foI'IQs wh1ch R quantized magnetic Aux loop IQRy Rdopt. Thcsc Qux
loopforms may resemble the 6eld lines of a magnetic dipole. The
concept of R dipole source to which Aux loopforms are attached
implies, on the one hand, that this source be considered as a single
particle. On the other hand, the source shoUM be considered a
Dirac particle, which means the, t a single-particle picture is to be
obtained by the nonlocal Pryce-Foldy-Wouthuysen transforma-
tion, i.e., that it is Qonlocal when viewed in ordinary positio~
space. In a symbolical way, that is expressed in this figurc by
plctUI'1ng the souI'cc Rs Rn cxtcnded source, cvcn thoUgh such Doll-
locality dc6ned by the Prycc-Foldy-%outhuysen transformation,
cannot be truly represented by drawing these 6eld hoes in position
spRcc. Wc may CRll such R soUrcc quRsl-nonlocal bccRUsc thc
theory is compatible with loce, l quantum electrodynamics. Ac-
cordingly, the extent A/mc of que, si-nonlocality is to be considered
R Inattc1 of thc space-time pictuI'c of Qux-loopform lntcrplctatlonI
and Qot a measurable deviation from local quantum electro-
dyQRm1cs.

The spacing of the field lines in Fig. 5 is such that their density
ls propoI'tlonRl to t'BI 1.c., thc lines rcprcscnt 'toroldel SUI'faces
which subdivide the total flux into ten equal parts,

The "6rst shell, "as dc6ned in Figs. 9 and 10, is characterized
by &core«~'f ~~3fcorep Whcrc f ShOws the S1zc (RPhCl1OQ distance) of
the loopfoxm. The 6rst shell carries about 60 jo of the total Aux.

owing to the in6nitesimal smallness of almost all
loopforms.

In spite of these difhculties, we obviously do not want
to get in conflict with quantum electrodynamics, which
is based on the concept of local interaction. %e rather
solve the dllcHlIQR which woUld arise with Rn Unsophisti-
cated Use o5 a point-source model in the present theory
by analyzing the concept of position, remembering the
Prycc-Foldy-Wouthuysen (PFW) transformation.

~ Papers relating to nonlocal aspects of particles: M„H.L.
Pryce, Proc. Roy. Soc. (London) A195, 62 (1948); A150, 166
(1935); L. L. Foldy Rnd S. A. %outhuysen, Phys. Rev. 78, 29
(1950); L. L. Foldy, ibid. 102, 568 (1956); 122, 275 (1961);in
QggÃt@@b The%'y, edited by D. R. Bates (Academic, Ncw York,
1962), Vol. III; S. Tanl, Progr. Theoret. Phys. (Kyoto) 6, 267
(1951);K. M. Case, Phys. Rcv. 95, 1323 (1954); T. D. Newton
and K. P. signer, Rev. Mod. Phys. 21, 400 (1949);R. J. Finkel-
stein, Phys, Rev. '7S,, 1079 (1949);E. P. Wigner, Ann. Math. 40,
149 {1939)"„H.Yukawa, Phys. Rcv. 91, 415 {1953);H. Yukawa
and S. Tomonaga, in Proceedings of the Inter~a&'aw gl Cogj'agama
ON

Thematic

gl I'bye. s, Eyoto @ed Tokyo, September, 1953 (Science
Council of Japan, Tokyo, 1954); P. Kristensen and C„Mufller,
Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd. 27, 7 (1952);
A. Sankaranarayanan Rnd R. H. Good, Jr., Phys. Rcv. I40, 8509
(1965);A. Pais and G. E. Uhlcnbeck, iMd. 79, 145 (1950); G. N.
Fleming, ibid, 137, 8188 (1965); 139, 3963 (1965);R, Ingraham,
Nuovo Cimento 24, 111'7 (1962)," 27, 303 (1963);32, 323 (1964);
33, 246 (1964); J. D, Landau, in E. Bohr and thol Devehapmeet of

In Sec. IV we calculated the correct isotropic electric
Coulomb field as owing to a muon (or Bohr) magneton
field spinning with angular velocity 2mc'/k. Below we
shall give a justification for that choice 0= 2IIIc'/A. We
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If, instead of this value, we assume

re= 0.73A/risc, (5.1b)

we arrive with Eq. (10.3) at the correct numerical
value of the electromagnetic interaction constant 1/137.
Sometimes, when this factor 0.73 is of no importance, we
use the simple approximation re=A/rrtc.

To be more explicit, it is not only the position of the
source but also the location of an entire Aux loopform
(when viewed in ordinary position representation)
which is to be considered as nonlocal. We may illustrate
this circumstance in Fig. 10, which shows a loopform;
but because of the quasi-nonlocality, it is blown up into
a "tube" in the same way as the position of the source
is blown up into a "core."

It may finally be remarked that the quasi-nonlocal

negative-frequency terms are admixed to an essentially
positive-frequency probability amplitude distribution,
as required for a Dirac lepton. This brings in the
ZBterbewegmng which manifests itself in a diverse set
of phenomena; the terms bilinear in the probability
amplitudes now show this frequency which implies both
a spinning angular velocity and fluctuation terms.

As the transformation from PFW representation to
ordinary Dirac representation is nonlocal, the source
becomes quasi-nonlocal in ordinary position. This was
first recognized by Schrodinger in his analysis of the
Zitterbemeglng. We use the word "quasi-nonlocality" to
avoid the impression that we would have to deal with a
truly nonlocal theory (cf. the analysis by Parke, ' 1967).

In this quasi-nonlocal description the source lepton
might be represented by loopforms in some way
approximating the magnetic held lines corresponding to
a Gaussian distribution of magnetization (cf. Fig. 5)
with a root-mean-square deviation of the order of ro.
Such an approximation of quasi-nonlocality by an
"extended source" is very crude indeed, and certainly
such approximation should not be misunderstood to
mean that we actually postulate an extended source
corresponding to a truly nonlocal picture. The Zitter-
bemeglng has been shown by Huang to be interpretable
as a spinning motion with angular velocity Q=2ttsc'/A
in ordinary position. We may accordingl. y not be amiss
in having postulated this spinning frequency in Eq.
(4.5). It was also shown there that the spin angular
momentum is characterized by the expectation value
(of the component 3 in the direction of spin) for

(r )&r'), = (A/rrrc) c (1—costi),

corresponding to a velocity c and radius A/mc of the
Zitterbeweglng amplitude. Anticipating the Gaussian
model of Sec. V C )after Eq. (5.10c) or Eq. (7.1)],
Figs. 5 and 6, which sets the core radius as r =1.23rD,
we may assume that this core radius value of r corre-
sponds to the Zitterbezveglng amplitude, which means

rp r/1 23=0 815(A/mc). . . (5.1a)

ff anal (&P'Z,) 13

a~e plotted i~ unitS

of $/

0.2.73

0.)3&

0 1 2 3 4 5 6 7 2//i. go

0 0,818 1.535 2,452 3.270 4088 4.900 5.720 tlro

Same abscissae for both curves

Pro. 6. Assuming the extended source to correspond to a
spherically symmetric Lcf. Eq. (5.7aj Gaussian distribution of
magnetization, we may calculate the magnetic field J3 (dashed
line) in the equatorial plane and the spherically symmetric
electric field 8 (solid line), indicated by RB.

Please note that the size of the core, r=1.23r0, even though
shown as di8ering in size, should be considered of equal size in
all illustrations, Pigs. 5—16.

B dS=— B dS ~ r' sin'(r, (), (5.2)

where r is the distance from the origin, and the integra-
tion is done over a surface which is perpendicular to the
( axis at a distance

~
rr

~
(the projection of r onto the (

direction) from the origin. Both (5.2) and (4.12) are
proportional to sin'(r, (). This means that because of
(4.18), both the inside and outside electric fields are
spherically symmetric and so is the resultant 6eld of the
Gaussian spherically symmetric distribution. The
electric field intensity is also plotted in Fig. 6. This is

description may overcome the difficulties (a) and (b)
mentioned in the beginning of this section. In Fig. 6 we
have plotted 8 as a function of r in the equatorial plane,
for the extended source approximation.

If the extended-source model may be used to describe
the quasi-nonlocality, a spherically symmetric quasi-
nonlocal model still gives a spherically symmetric
electric held. This is so because a spherically symmetric
distribution of magnetization can be obtained by a
linear superposition of homogeneous spheres of (con-
stant) magnetization. The magnetic field which results
is a linear superposition of these homogeneous-sphere
fields. Thus, if it can be shown that the electric field of
the homogeneous sphere is spherically symmetric, the
resultant will be also. To show this, we recall that the
outside magnetic field of a homogeneously magnetized
sphere is like the field of a point dipole located at the
center of the sphere. The field inside the sphere is con-
stant and parallel. For a field point E(r) inside the
sphere, the integral (4.12) becomes



H«~«~ i««
proportional to

&,.n ~~.n =&.nr/(p) '"rp, (5 3)

and E,ii goes over into the Coulomb field ~e/r' for
large r if B,n goes over into (4.7).

In Sec. XI we shall discuss such definition of loopforms
and of bundles of loopforms.

In a similar way, mean spin is dered and leads to an
interpretation of the Zitterbemeglrlg in terms of a con-
tribution to the expectation value of ordinary position,
a contribution which has an angular frequency

A. Mean Position, Mean Syin 2mc'/A (5.4d)

V =dX/(dt =ac'p/I &
I (5 4b)

has no ZiOerbemegleg. This mean position operator X
is, in ordinary Dirac representation,

X=x+(2~ &1) 'tAcPn —L2I&l'(I&l+m") j '

XAc [ip(n p)p+nXpl&l/c3+",

where x is the position operator, i.e., a multiplication

with x, in ordinary Dirac representation. In this repre-

sentation the mean position operator X is nonlocal of

extent A/mc, an enormously large amount of nonlocality.

The numerical value of X—x of course depends on

what state is chosen (mean position eigenstate, or a

Gaussian distribution over mean position, perhaps a
state of optimum localizability for a given span of time,

or a stationary state).
It may be remarked that even though we referred

here only to nonlocality of position of the source, this

nonlocality concept rejects then also on the nonlocal

character of the loopforms attached to the source lepton.

If, in a very crude way, it is suggested to represent

nonlocality by an extended source picture, it may then

be appropriate to use a picture like Figs. 9(a)—9(c),
10, and 11(a) which subdivide ordinary three-space

into elementary regions of size =A/mc. One may then

characterize loopforms simply by marking a consecutive

sequence of such regions, i.e., representing a loopform

by a dosed string of beads (like a necklace of popbeads).

The concept of position of a particle has been ana-
lysed' by Pryce, Foldy, and Wouthuysen, Newton and
Wigner, Huang, Landau, Pais and Uhlenbleck, Wight-
man, Schweber, Case, Fleming, Yukawa, Tomonaga,
Finkelstein, Mpller and Kristensen, Ingraham, San-
karanarayanan, and Good, Thirring, Henley, Parke, and
many others. (For a casual reading, all subsections A—C
may be omitted, here and in later sections. )

This analysis relates to our present theory because
we try to attach loopforms to a source lepton in order
to reconstruct its electromagnetic field. The trans-
formation from the many-particle to the single-particle
picture is achieved by the Pryce-Foldy-Wouthuysen
transformation

f' =e'ep, S= i (pe—p/2p) arctan(p/mc) (5.4a)

which transforms the Dirac equation from the ordinary
four-component representation into independent two-

component equations, i.e., the FW representation. The
position operator, when applied to the FW-transformed
P' function, has the amazing classical property that

It is for this reason that we think that the adoption of
2mc'/A rather than mc'/A for the spinning angular
velocity 0 of loopforms is well advised.

B. Quasi-Nonlocality and Spin Frequency

We pointed out that the cancellation of mass in the
calculation of the electric field provided for a Coulomb
field of the same equivalent charge e for the electron as
well as for the muon. As the quantization of the charge
e is as fundamental and precise a matter as the quan-
tization of action A, we should look into the question of
what causes these two kinds of quantization to be pre-
cisely related to each other. We recognize that if we
assume the amplitudes of loopforms to be chosen so
that the muon magneton or Bohr magneton, eA/2mc,
results, and if we multiply these eA/2mc with the muon's
or the electron's spinning angular velocity 2mc'/A,
respectively, the result is, by Eqs. (4.10), (4.24), or
(5.19b), the Coulomb field, independent of the difference
in mass m. The magneton is, however, not a funda-
mental quantity in the present theory; it is Lcf. (5.10)
and (9.17)j

e/(hc/e) ~ r(V), /(27rAc/e)

= (r/2~) (86/Oct). „

1 eA hc 2''
c 2mc e

by (4.3)

by (4.24)

=& (c 'p, n/C, )(2mc'/A)

~ c '(A/mc) (2mc'/A) by (5.5b), (5.5c)

(apart from the reduction factor pN), i.e., a product of
the extent of a quasi-nonlocality A/mc and the Zitter
bewegurtg spin 2mc'/A. As these two factors are, by their
definition, inverses of each other, the mass cancels out
rigorously.

ff =3.1rpC', n/4z =3.1rpC p/4ir(3N/2), (5.5a)

i.e., the product of the amount of quasi-nonlocality
rp=A/mc times the quantized flux Cp=hc/e times a
reduction factor (2/3N) Lcf. (10.3)j, i.e. ,

eA/2mc=ti, n o- (A/mc)(hc/e) (2/3N) . (5.5b)

The quantum of flux hc/e being a fundamental quantity,
we are interested in the mass independence of the ratio
of electric charge e in (5.19b) to quantized flux h%.
Here, the "charge e" is defined as rV,n=r(V)„at-
large r:
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B ii ~ p «/r

For a Gaussian distrbution of magnetization,

3f,ff =SfPe
—8&

where

M o li.«(3——/2n. ro') "'

(5.6)

(5.7a)

(5.7b)

(5.7c)

we may calculate 8,« in the equatorial plane by slicing
the area under the Gaussian curve into horizontal layers
of radius E', each layer corresponding to a homo-
geneously magnetized sphere of magnetization

C. Electromagnetic Field of Extended Son'ce

For large r, the equatorial magnetic 6eld of a dipole
of effective moment p,,ff is

the ( directions). In the first case we talk about B,ii and
4 ff in the second case about contributing B and C .

Figure 5 shows the magnetic field lines of such a Gaus-
sian distribution of magnetic 6elds, again to be used for
C ff with p,«pointing in the z direction, or for the con-
tributing 4 and p of sheaves. Figure 5 shows the "core"
whose radius we de6ne as reaching from the origin to
the zero point of the magnetic field on the equatorial
plane; thus its radius becomes 1.23rp. Figure 5 shows
the symmetry axis and nine toruses in cross section,
subdividing space into ten regions, each of which carries
0.1 of the total magnetic Aux.

To evaluate the electric field, we begin with the
simplified calculation of the field in the equatorial
plane, on the basis of Eqs. (4.4)—(4.10), but with B,if
taken from (5.9) instead of (4.7), which was used in

Eqs. (4.4)—(4.10). We have thus to evaluate

so that
deaf ff= —3fp2Ee ~ dE, (5.8)

B,ff2mrdr =-34xrp' B ffRdR, (5.11)

jeff ~P 3~
'=p

which is the fraction

+-', 4m. 2R'e ""dR' . (5.9)
'=R

F=-', rp'(e/Ac) B.«RdR (5.12)

This gives us the means to evaluate the total magnetic
flux C ff and thus the needed relationship (5.10),
which expresses the effective magnetic moment p, ff in
terms of the Qux C,ff and the root mean square rp of the
Gaussian. The total Aux becomes, by numerical inte-
gration of (5.9),

of the quantized flux 2prAc/e, (3.6). As the effective
vector potential A, ff of a stationary lepton is, in this
theory, a time-independent quantity in the average, the
electric field is

E*ff grad V,«—8A.i&/8ct—= —grad V,if (5.13)

C.ii ——4n p,«/3. 1rp.

Similarly, we may define iip by iip/ii, ff —Cp/C, ff.

C p=4prp, /3. 1rp.

ccordingly, by (5.9), (5.7), and (5.10),

(5 10) (cf. the caption to Fig. 3 and Fig. 7). In the equatorial
plane,

(5.10q)
E ff — 8V ff/8r — (8/8r)(AC/e)(879/8ck) ff

= —(A/e) (8/8r) L(2') 'Q2~F]

(B,«)„p——(8n/3)Mp
= (8pr/3) (3.1/4pr) C,ffrp(3/2pr) 'i'rp '
=0.6824,«/rp',

(B )„«» (3.1/4m. ) (rp/r) P—@,if/rp' .
(5.10a)

(5.10b)

= —(A/e) (2mc'/A) p rp (e/Ac) (2rp'/3)

&& (8/8R) B,iiRdR

= 2(-,') ' "B,ffRrp/(A/mc) . (5.14)
Outside the equatorial plane,

(B.«)„„—+ (3.1/4pr)

&(L3(r/ro) '(z r/rp)r/rp —(r/rp)
—'z]C,«/ro'. (5.10c)

We recorded and plotted B,ff in Fig. 6 in units of
C'.«/ro'

Comparing electron and muon, their rp's (as we shall
soon see) as well as their ii.«'s are of the ratio 207 to 1,
and thus, by (5.10), their C,«'s are equal. Therefore the
B ff s at a given r/ro are of the ratio 1 to 207'.

We shall use the same graphs for the effective re-
sultant field (with p,«pointing in the z direction) as
well as for the contributing sheaves (whose y point jn

dpi =dM(4pr/3)r", (5.16)

the magnetic field outside the sphere is as if coming

We shall now 6nish this calculation by repeating the
arguments which led us to (4.18) and (4.19), to inquire
into the spherical symmetry of the electric 6eld. To this
effect we consider one of the spheres of radius r', of
homogeneous magnetization

(5.15)

contributing to the spherical Gaussian magnetization of
flux orientation (, analogous to (5.8). With
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group the loopforms of larger size into similar bundles,
each carrying a same amount of flux C &i& (8.11a).

(2) Instead, we may subdivide ordinary 3-space into
elementary regions using an array of close-packed
spheres, each of radius 1.23rs (Fig. 9). We then specify
6rst-shell distinctly diRerent bundles merely by the
sequence of elementary regions which the loopforms
pass through [Figs. 9(a)—9(c)j. For the loopforms of
larger size, we may group together those loopforms
which pass through the same sequence of elementary
regions; different but neighboring groups would, how-
ever, still have some phase relatedness of their ampli-
tudes. We call a set of several neighboring groups a
"bundle" if the bundle's phase relationship to any other
bundle is random, which is assumed to mean that all
bundles carry the same amount of flux 4ti& Lcf. (8.11a)].

In either case, in choosing assumptions about the
degree of phase relatedness versus random phasedness
of loopforms, we essentially choose a unit radian
difference in flux orientation ( or in azimuth n as charac-
terizing statistical independence of the phases of their
corresponding probability amplitudes. We thus grouped
loopforms together into "bundles" of statistically
independent loopforms. This procedure is plausible as
regards ( and n because any other numerical a,ssumption
would have been unreasonably arbitrary indeed. As
regards the size 0, the grouping into bundles is not so
obvious. We assumed that those sizes 0- of loopforms
which reach into the 6rst shell of elementary regions
surrounding the core (cf. Fig. 9) are statistically inde-
pendent of the loopforms of larger size. Also we assumed
that the bundling is to be made so that all bundles carry
essentially the same amount of magnetic Aux, to char-
acterize the bundling with respect to the parameter 0-.

We should like to show now that it is indeed plausible
to assume that bundles of statistically independent
loopforms all carry essentially the saIne amount of Aux.
In the beginning of Sec. XIII it will also be pointed out
that this is what is demanded on physical grounds.

To this effect, we recall that quasi-nonlocality implied
an "extension" 1.23rD of the position of the source
lepton, and similarly of any other definition of structure,
i.e., the points of a loopform. A loopform may be thus
represented by a tube which one obtains if one moves a
sphere of radius j..23rD with its center on a dipole 6eld
line along that dipole field line (this sphere is shown at
the location of the core in Fig. 10). We now con-
sider the manifold of similar (congruent) loopforms
which may readily be placed into that tube. The 6gure
shows, besides the center line, two other similar lines
(dashed lines), one inclined to the left, the other to the
right. We may now raise this question: What degree of
phase relatedness will this manifold of loopforms, all
confined to that tube, be expected to haveP Or more
simply: What fraction of one statistically independent
bundle do these flux loopforms (confined to the tube)
represents We may assume that this fraction is pro-
portional to the product Bnii'(, where fin and 8'( are the

Fxo. 10. A Aux loopform, considered "quasi-nonlocal. " To
represent that, a tube of diameter equal to the core diameter is
drawn. The question is then raised as to how far the Aux loopform
may be inclined in the clockwise and in the counterclockwise
direction, indicated by the two dashed lines which represent each
a flux loopform congruent to the original one (center line) but still
confIned inside the tube. The angles of clockwise or counterclock-
wise inclination are of the order of ro/a, where 1.23r0 ——radius of
the core sphere= tube radius, and 0 =size, i.e., about the aphelion
distance of the loopform. The manifold of loopforms is not only
inclined clockwise or counterclockwise, but spans out a 3-para-
metric manifold 5'(Sn which is proportional to ir0/o)' ~o 'O-'B at
aphelion ~ Aux through the tube. As a statistically independent
bundle is characterized by So'(' Son =1 sr Xrad, the loopf orms fitting
into the tube are a fraction S'(Sn of such a bundle, which fraction
is proportional to the Qux going through the tube. Thus each
statistically independent bundle should carry the same amount of
Aux. First-shell loopforms may be characterized by an average
o.= 1, i.e., an aphelion distance equal to twice the core radius.

intervals corresponding to the permissible inclinations
of loopforms as long as they are con6ned to the tube.
As the tube diameter 2.46ro is given, the product Snab'(

is evidently proportional to o. ' (the size o being defined
as aphelion distance of the loopform). But o ' is
approximately proportional to the magnetic Qux carried
by that tube. Thus, as regards the 0. dependence, we
realize that the amount of magnetic Aux carried by the
tube is a measure for that fracfiots (of one statistically
independent bundle) which this magnetic flux tube
represents. This means that every statistically inde-
pendent bundle carries the same amount of Aux. That
is a crude estimate, but it is significant.

Furthermore, by this definition, each bundle of loop-
forms of the type Figs. 9(a)—9(c), i.e. , each bundle of
first shell size, amounts to just about one statistically
independent bundle. This definition of correlatedness
of loop forms (i.e. , of the size of statistically independent
bundles) thus encompasses both correlate dness as
regards the parameter 0. as well as regards the param-
eters rz, (. That provides a single basis for the counting
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of %=207 statistically independent bundles of loop-
forms in Sec. XI and Fig. 11.

The notation for a loopform may be given by &&—= (,
n, 0,' for an elementary bundle by (X)—= ((), (n), (o); and
the probability amplitude for that bundle of loopforms,
referring to a lepton in the spin-up quantum state
It&.+), by a normalized

4'&»—= ((l&) I ti +)

—= ((&)(~)(~)lt ") & 4&»*«i&=1 (7.2)
() )

The expectation values for the fields 3 and K in terms
of those bundle amplitudes @(),) are assumed as

(7 3)

E„.« ——(E),» = —(P &&i&*(grad V) &i&&&i&)«+0. (7.4)
() )

(curlA) &i& and (gradV) &i& are bundle averages of the
loopforms' A, (4.2), and V, (4.3), averages defined
below

I (8.18) and (8.19)7. The term with (BA/Bt) &i& is
indicated by the 0 in Eq. (7.4); cf. the caption to Fig. 3
and Eqs. (5.13), (8.18), and (8.19).It may be seen from
these expressions that the B,«and E,« in a region P(r)
simply depend on the Aux loopforms passing through at
that region.

I oopform-bundle amplitude superposition is a con-
cept which implies that for the determination of the
eRective value of a certain physical quantity, be it p or
B or K or 8', etc. , one considers which bundle manifold
contributes toward the desired quantity Le.g. , the few
bundles contributing toward B at a certain far-outside
region P(r) or, e.g. , all bundles contributing toward the
field at the core] and thereupon forms the weighted
averages (7.3), (7.4), and (9.2)—(9.5).

To be more specific about (7.3) and (7.4), we write
those averages in terms of the loopform manifolds (7.2).
In order to do that, we digress on the formulations of
those bundle amplitudes, considering first only the (()
manifold, i.e., a two-parameter manifold of 4z loopform
bundles.

we need probability amplitude superposition of the
loopforms. There is thus the obvious assumption before
us, i.e., to make randomness of phases responsible for
the reduction from 4, to 4,ff.

There may be various ways of carrying through such
a reduction procedure. We may, at a later time, do that
on the basis of superpositions of functions of the type
(8.21), but we try to formulate such a reduction pro-
cedure now in terms of randomness of the phases of
bundles of loopforms, as specified in Sec. VII.

It should be kept in mind, however, that the forma-
lism given here is nothing more than an attempt to
illustrate the reduction procedure; definitions and de-
tailed assumptions are made so as to construct one
possible, reasonable formalism in terms of which the
reduction may be formulated.

We study the expansion of a quantum-mechanical
state vector It&.+& into an underdetermined set of loop-
form-bundle amplitudes

I (())or
I (()(n)(o))—= I (X)).For

an expansion in terms of loopform amplitudes
I o or

I
(no.)—= IX), integrals would take the place of sums.
We consider now the expansion of ordinary quantum-

mechanical kets of magnetic moment (or spin):

lt ')=2 It t')&t t'lt ')
=

I t t'&&& r'I t '&+ I t t &&& r I t '&

= It t')&t t'It '&+ It -t'&&& t'It *'-) (8 1)

From this form, we may obtain a suggestion as to how
we might write an (underdetermined) expansion of
I)«.+) in terms of bundle amplitudes or random-phased
amplitudes, respectively, viz. ,

It ') =2 I(())((()lt '&. (8.2)

It ')=2 I(4)s)((4)~lt '), (8.3b)

For random-phased amplitudes also, we assume

(8.3a)

so that also

VIII. FORMALISM FOR (UNDERTERMINED)
SETS OF BUNDLES OF LOOPFORMS

To start with the discussion of the muon (as was
stated at the beginning of Sec. VII), we have in mind to
make the random-phase relationship of amplitudes of
loopform bundles responsible for a reduction from
quantized Aux 4, to effective Aux C,ff. The rationale of
the procedure is quite simple: The quantized Aux C, is
a given quantity, and there is just the one obvious type
of quasi-nonlocality which is of extent A/m„c (or A/m, c),
respectively. The product of these two quantities is too
large by two orders of magnitude for explaining th.e
muon (or Bohr) magneton, respectively. For the de-
scription of the electromagnetic field, we have seen that

where
I (()) is a two-component spinor with K= 4m. , i.e.,

12 columns, so that

&»' l &&)) =( (8 4)

( * I(&))=& "'(1-0.)'"
x(f*'+f')'"/(f. C.)"' (—8 4b)

With i, representing the s component of an average (
of the bundle ((),
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They are X '~'(I+t, )'&2 times a phase factor. It is
evident that with (8.4a), (8.4b), and (9.9),

be characterized as carrying, apart from the factor
(I+i.)(dl, /2), the same amount of magnetic flux,

(8.5) C'O&/2 C'O"&=A' '1
()& ')

(8.11b)

This makes a probability amplitude interpretation
possible; (8.4a) and (8.4b) had been chosen so as to
imply (8.5). Furthermore,

(8.6)

as indicated in (9.8), (9.9);

I (&li) II2+) I

= (1+1 )'"(@'&»/ 2 ~'o &)'"
()&.')

=(1+| )'&'X '~'. (8.11c)

I(())= II '&&I 'I(())+ II * &&I I(()& (8 7) A. Comments on Definition of
Bundle Matrix Elements

With

1 0~
&I 'II *II .")=I

0 —II

it is possible to set

(8.8)

We specified the underdetermined bundle matrix
elements ((Xi) II2, 1(I1&)) and ((Xi)1»2,1(»)) from the
corresponding quantum-mechanical matrix elements
&Ii.'1&2, 1I2,") which, of course, refer to two quantum
states, instead of E bundles. We indicated the conver-
sion both ways in Eqs. (8.9) and (8.10),

(8.9a)
&11) ( I I ) (8.12)

—(((i) II . &&I. 1((2))3 (89b)

and obtain the inverted formula

&& 'II II "&= E &I .'1((i))(((i) I ~ I ((2))(((2)II"")

(D —11
(8.10)

Up to this point, we have not dealt with "reduction"
but rather have simply converted the ordinary spinor
formalism to the new formalism and vice versa, for
phase-related amplitudes

I (()).Let us assume that these
same expansions hold when, instead of the manifold
((), the manifold (I~)=—(()(o)(0) is considered, if we
replace (() and X by (I~) and E, respectively, where
1V ()X) is the larger number of bundles in the manifold
(x).

To reconstruct an appropriate distribution of mag-
netic field as a function of r, we may choose the magni-
tudes of the loopform amplitudes as

) 1/2

)
(8.11a)

The term (I+t.) = 1+cos((,z) occurs here because the
simplest choice for the underdetermined ((I is to set
them proportional to (1+1',)'&2 by the analogy of (8.1)
with (8.2); the (&it+I are proportional to (1+1,)'&2.

In Sec. VII, along with the Figs. 8, 9, and 10, we
have given a definition of "phase relatedness of prob-
ability amplitudes of loopforms" and have reformulated
that in terms of the concept of "statistically independent
bundles of loopforms. "We found that such bundles may

In the next section it will be shown how the bundle
matrix elements ((Iii)1&2,1(»)) may be used, by means
of random-phased bundle amplitudes (p12)&21p,.+)1 to
define averaged reduced quantities

((») Is *I(»))~ & *+II.II *'&-.=I.«, (8»)
which are identified with the effective values of p, for
the quantum state 1»2,+&.

As regards the de6nition of the bundle matrix ele-
ments ((») II2, 1(I&,2)), we should be reminded that the
definition (8.9a) and (8.9b) was given for a sheaf, i.e.,
for (((i) II2, 1((2)). It was adopted in that form so that,
with the choice (8.4a) and (8.4b) of the sheaf amplitudes
(p,'I(()), the appropriate reconstruction of ordinary
matrix elements &&2,

'
I Ii, I Ii,"& (8.10) resulted.

With the definition (8.11a)—(8.11c), of the bundle
amplitudes (Ii, 1(X)), the possibility is given to extend
the definition of sheaf matrix elements (((i)1&ti, I ((2)) to
bundle matrix elements ((Iii) II2, 1p 2)). We have simply
to imagine that the sheaf generated by the flux loop-
forms of Fig. 5 is being literally subdivided into bundles
which are subsets of sheaves ((), characterized by the

parameters (n)(0). The subdivision of a sheaf in regard
to o. is to be uniform. In regard to 0. it is given by the
second factor in Eq. (8.11c) where the fluxes Ci are the
Quxes corresponding to a magnetic dipole field, built up
according to the prescription given in Fig. 1, and so as
to represent the dipole field (4.6), in other words, so as
to satisfy the Maxwell-Lorentz equations.

As a "bundle" is fairly large, in particular as regards
the distribution over 0., one might for practical purposes
work with 10 or 10 ' fractions of bundles to make
approximate use of differential calculus, and use (8.11a).

This procedure, which is simply taking advantage of
the extended-source picture of Fig. 5, permits us to
define matrix elements not only for such "global"
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quantities as (P.i) Ip, , l(hz)) but also for bundle con-
tributions to V(t,x,y, z), A(t, x,y, z), i.e. , to ((Xi) IB

I (4)),
etc. , as far as contributions from the s component p,, of
the magnetic dipole 6eld are concerned.

In this way we de6ned the bundle matrix elements,
working backwards, i.e., ( I I

)~(
I I ), which is

the easiest way to do it and is proper because the
Maxwell-Lorentz magnetic dipole field is to result from
these Aux bundles. We may now proceed to discuss also
the forward approach of definition of bundle matrix
elements ( I I ) from the singular Rux loopforms.

We propose to specify the bundle matrix elements

Remembering (4.13), which states that the angular
velocity of a loopform is in the & direction of its Aux

orientation and is of size 2mc'/A, we may consider apa
as a Geld which by (8.17) directly follows from the field
V6 of a loopform and may be averaged the same way as
V8 to obtain 808 for a bundle of loopforms.

Because of the multivaluedness of a loopform's 6eld
a(t,x,y,z), an important property of the bundle-averaged
field ((Xi) I

Val (Xi)) results (cf. caption to Fig. 3): Its
time derivative, when averaged (averages taken over a
period) and when there is stationarity of loopform dis-
tribution, becomes zero, and therefore

((l i) I
A

I 0 i)) = —(«/e) ((l )ll )
C (yI)

(apA), ii ———(Ac/e)

x(E &t .+I (~))((l ) I apval(l ))(0)I„,+&&,.=o. (8.18)

x(x
I
va

I x)(x
I
(xj))dx, (8.14)

((l ) IVI(l ))=+(A /) ((l ) ll )

a,a=c-i(aXr) Va. (8.17)

x(x
I
a,a Il )(x I

(z,))dh (8.15)

Land, similarly, with integration over XQ((Xi)U(4)),
for ((Xi) IAI (Xp)), etc.].

Several remarks relating to the multivaluedness of 8
as function of x, y, and s should be made. There exists
such a multivalued function 8 which differs from loop-
form A, i to loopform A.~, we tried to illustrate one such
function 8 in Figs. 2, 3, and 7. There does not, however,
exist a function 6 for a manifold of loopforms, neither
for a bundle of loopforms nor for the entire lepton,
because for every loopform the singularity (and branch)
line is located somewhere else. But there exist bundle
functions V0 and 808, constructed from loopform
fields Va and ap8' by (8.14) and (8.15). The individual
loopform's field VB is singular, like an irrotational
streaming field with a vortex line; the superposed
averaged V8 for a bundle is a smooth rotational field.

We have to make some comments as regards the time
derivatives. By apa we always mean (1/c) times the
time rate of change of a at a particular location x, y, z.
In a primitive but useful way, we may designate a
moving bundle by

(li) = (()( )( ). (8.16)

This means that the same value, (X), i.e. , the same (n),
is associated with one bundle as it spins, i.e., with the
bundle of Fig. 3 illustrated there at three subsequent
moments: The time rate of change of 8 is discussed in
that figure caption (it would be zero in a coordinate
system rotating with a loop bundle).

At the end of Sec. V B we saw that the spinning
angular velocity 2mc'/A is a quantity as fundamental as
the quasi-nonlocality A/mc for a lepton of mass m, and
that 806 and V8 are interrelated; for a loopform or
bundle,

We apologize for using formula (9.2) with (8.13) already
here. On the other hand, however, the above-de6ned
L(8.17) and (8.15)] Geld apa(t, x,y, z) has a gradient
(dependent on the distribution of the size of loopforms)
which, in the equatorial plane of a loopform bundle Lor
anywhere for a distribution (4.16) of loopform bundles],
points in a radial direction inward or outward for
positive or negative leptons,

(VU).ii ——+(Ac/e)

x(P &t *+I 0))(0) I vapa I (l ))(0) It +»-«(8»)

Finally, we may specify a more general and important
alternative in denoting time dependence of loopforms
and bundles of loopforms. Let us start with bundles. In
the treatment given by Fig. 3 and Eq. (8.16), we took
the attitude that a particular bundle is designated by
(X), spins and that accordingly a is a function of t, x, y, z.
It is, however, to be expected that the temporal be-
havior, besides a spin about the respective ( axes, indi-
cated in Figs. 3 and 7, also consists in a change from one
loopform of Figs. 9 to another loopform (cf. Fig. 12,
below, and Sec. XIV). We may therefore prefer an
alternative description in which the loopform bundles

P ) = (()(p)(~) (8.20)

designate bundles 6xed in space, a description which
resembles the gradual switching on and off of light
bulbs on an electric sign bulletin (flash board for running
news messages), in order to take care of more general
motions.

B. Spin Amplitudes (p,+I ()
In analogy to &ti,+Itir+)& Eq. (8.1), it was assumed in

Eqs. (8.4a) and (8.4b) that the ( dependence of the
amplitudes &p,.+I(), apart from a phase factor, was

given by (1&f',)"'.That this is the right choice might
also be inferred from the spin model developed by Bopp
and Haag' (cf. also Gel'fand, Minlos, and Shapiro' ).
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Hopp and Ha, ag recognized that a spin model is not to
be formulated. in terms of ordinary spherical harmonics
because those refer to the motion of a mass point
around a center. A spin model is to be formulated i'
terms of generalized spherical harmonics which are
eigenfunctions of the symmetric top, cf. the functions
(8.21). A model of loopforms spinning with angular
velocity 2mc'/t't (8.22) might refer to the latter, cer-
tainly not to the former. The eigenfunctions of the
spin angular momentum are

Ta (n 0 p) —c+imups (cosg)c+inp

$=2, m =2 S
(8.21)

where the Euler angles P, tI, and n are our arccos

( {„(f—'+f„')'t'), arccos {'„andn, respectively. The
(1&cose)"" occurring in (8.21) appeared in the Eqs.
(8.4a) and (8.4b); these expressions had been nor-
malized to give Eq. (8.5) and do not yet contain the
dependence of the amplitudes

( 'I(()( )( ))=( 'l(I))
on (n) nor on (0.).

The spin tI/2 requirement of Eq. (6.5) is evident
whether one considers it a condition for a loop subject
to (8.21) or simply a condition for the resultant struc-
ture, i.e., the electron or the muon, cf. the end of Sec.
VI. A spinning motion about the flux orientation ( has
a time dependence of the probability amplitude wave

expi(n/2 (mc'/—t't) t) = exp—', i(n —(2mc'/t't) t) . (8.22)

Ke defined the quantum-mechanical matrix elements
as averages of the type of (9.1) (they are written out
explicitly in Sec. IX, but are referred to in the text
several times in earlier sections). Corresponding
averages (8.23) of the probabilities ( I )( I ) which
Quctuate according to the large number E of bundles,

(( *+I (n)(()(n))((n)(()(n) It *+)&- (8 23)

I no summation over (X) = (n), ((),(a)], i.e., these
averages of the highly Quctuating terms, correspond to
the smooth spin s=-,' eigenfunctions. The bundle prob-
ability amplitudes may thus be considered as represent-
ing the distribution of loopforms and their Quctuation
in structuralized bundle language.

Ke want to discuss the transformation properties of

(8.21) or a superposition of them, a sum over positive
and negative m, n; we may first consider m=+s,
n=+2. Let us consider what happens when complex
conjugation is carried through. Complex conjugation
acting on the field. leptons' P functions implies Lby the
definition (3.3) of i1]

~i8 ~ ~
—i' (8 24)

mA ~ m'tz ~

Applying both (8.25) and (8.26),

g C „exp(+imn)
fS) 6

(8.26)

&&P'„„(cose)exp(+inP) exp( —ia&t)

~P C „~exp(+imn)

&&P' „*(—cose) exp( in(P+—vr)) exp(+icot) . (8.27)

Considering for example m=n =+2i, it is clear that this
transformation does not change the direction of
spinning,

expi(mn —&ut) ~ expi(mn+a&t), (8.28)

because by definition of n, the spinning in the direction
of increasing o, , before the inversion, equals the spinning
in the direction of decreasing n after the inversion of the
predominant direction of g.

As pointed out before, the inversion of Qux orientation
( by (8.27) with unchanged spin changes the signature
of the electric field, i.e., of the charge. This transforma-
tion (8.27) is indeed the C transformation which leads
from lepton to antilepton. Equation (8.27) shows that
a lepton is not in an eigenstate of C.

It is interesting to study the C transformation of the
product of lepton and antilepton:

and therefore, by (3.4), an inversion of the flux orienta-
tion ( and of the accompanying electromagnetic field at
the origin (the spinning direction is, as we shall verify,
not changed). Such an inversion at the origin is charac-
terized by (cf. Fig. 4)

n ~—n, 8 ~ ~—tI, P —& P+ir. (8.25)

Complex conjugation acts also on the probability
amplitudes, transforming

C{ P d„„P'.„.(cos8') expi(m'n'+n'P' ~t)P' „*(c—os8") expi(m"—n"—n" (P"+ir)+cot)}
~l ~ll

=L p d„„"*P'.„*(—cos8') expi(m'n' —n'(p+~)+cot) P' "„(cos8")expi(m"n"+n" (p"+2m) —cot)], (8.29)
n'n"

sl s/1 s 1
2&

m'=m"=+-'

Apart from the irrelevant names (primed or double
primed) of the variables 0, n, and p and apart from the
factor exp(in"2~) = —1 with n" equal to +-,' or ——,',

the { } and the L ] are the same if

d~l ~ I l d+/ I~l )
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C
I
triplet lepton-antilepton)

= —
I
triplet lepton-antilepton)

C
I
singlet lepton-antilepton)

= + I
singlet lepton-antilepton) .

(8.30)

e.g. , d+,+~=1, all others=0, or d, ;=1, all others=p,
or d+, , ——d,+, ——1/V2 all others=0. They are the op-
posite of each other Lagain apart from the factor
exp(iff"2fr) = —1j if d+.. .———d,*+z ——1/W2 allothers=0.
Thus, as indeed to be expected,

(((f)
I f *'I ((2))

=Z(((i) If '&& .'If .If .'"&&f '"(I())

x((()if."")&f.""If.lf.")& .-"I((,))

=Z(((i) I ~, l (())((()l~*l ((.)), (9 7)

the latter expression following from (8.5); we may
calculate, with the help of (8.9a),

IX. REDUCTION OF FIELD DUE TO
AMPLITUDE SUPERPOSITION

We de6ne reduction due to random-phased ampli-
tudes in the following manner: Using Kqs. (8.9a) and
(8.9b), we form the matrix elements ((Xi) Iff, l(X,))
which correspond to given ordinary quantum-mechani-
cal matrix elements &fz,'lfz. lfz, "&. We then define the
reduced &ffz'Iffzlffz"&„d (muon- or Bohr-magneton) as
averages, by means of

&ffz
I
ffzl ffz )red

(f 'l (l f)~)(P i) If ». I
(l ~))((~~)~

I f *"&&-
(&I)a ()t2) Z

(9 1)

where p~, represents the value of the unreduced mag-
netic moment (9.10). In averaging over phases, we only
get contributions from (Xf) ff = (X2) ff,

& *'If.lf.")-d

=&2 &f.'I(l))((1) If "I(l))(P)lf."))- (92)

Similarly we may define

&f .'I f .'I f ."&,.d
=&2 &f .'l (1 ))((l ) If, 'I P))((l ) if ."»-

(X)

=& Z &f. I(l.))(hf)l., l(~.))

(9.3)

X((x ) lf,.l(1 ))((l ) lf."»... (9.4)

(ffz )eff= &ffz I ffz
I ffz )red

which leads to (9.4).
We have already commented upon the average

formations (9.2)—(9.4) which yield reductions. In those
comments we took cognizance of the fact that, if the
complex bundle amplitudes were all in phase, a physical
quantity p, could be simply obtained from the quantized
Qux C„parcelled out in loopform bundles. Since the
complex bundle amplitudes are not in phase, such a
distribution of a random-phased distribution is expected
to yield resultant probability amplitudes reduced by a
factor E '~2.

We now discuss details of the reduction of linear
versus quadratic field quantities. Let us 6rst formulate
the problem in terms of the reduction of magnetic
moments.

The superposition of dipole 6elds of a point source as
well as those of an extended source, their Qux orienta-
tions ( distributed with probabilities (1+I'.), yields a
resultant dipole field in the +s direction, corresponding
to a moment (9.14).

The s components of the superposed magnetic mo-
ments may simply be added, and so may the s com-
ponents of the superposed core fields (designated by the
projections 4', of the core fluxes).

We are now going to obtain the relationship between
bundle Qux, quantized Qux, and effective Qux. It is
convenient to replace the summations over (() or (X),
necessary in the subsequent calculations, by integra-
tions over di .. We assume that the same distribution of
amplitudes over ( or X holds for all size (outreach)
parameters o. and we assume the distribution to be
dependent on i, only, independent of n The squ. are

i«(8»))
&((f *+IP. lf '&-d)'= ((f .).«)' —(95).

I &.'I (l ))I'=&-'(I+i.) (9.8)

The matrix elements of (9.5) are not of the type of
common quantum-mechanical matrix elements such as
(8.10) and (9.10). In order to show the formation of
(9.4) we recall

can be interpreted as probability because of its unit
norm; cf. (8.5). A summation may be replaced by

(~ 'I~*'If ")
= & &f.'If *If *"'&&f.'"lf:If."&

Q =1V
('A)

'At e naturally assume

id' (9.9)

///p //// (g)
&f

'
I f I f *"')

&f
*"'

I (()) 1 0
(f *'If.*if "&=/.

0
(9.10)
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(() ) I ~q. l (~))

=I .L(() ) II '&( *'I()))—(()t) II * &( I() ))j

and obtain thereby, according to (8.9a) and (89b) TABLE I. Contributions of IooPform bundles, of flux orienta-
tions ( shown in Fig. 1(C), towards the effective magnetic
moment, if there are E=207 bundles. /Instead of those five rows,
there are 207 rows (bundles) to be envisaged here. )

= E ((~)l. &(. 'I., I.."&(."I(~)) (A)=—((»l~q. l(x))=2l*sP '
(II)=—

I (I .+I (») Ie= (I+V.)ftf '

(C) —= &i.'I (»)(( ) Ii *.I (»)((» li.")
(D) —= ((i *'ll *li *'))-d=Z.u(~) &i *'I (»)((x) li q*l (x))((» li *').

=I qN 'E('1+0.) (I—i *)—j=2i.N 'I q (9.»)
Correspondingly, a bundle contributes toward the z
component of the coreQux the amount

(() ) l4,.I() ))=—((()( )(.) I4,.I(~)( )(.))
=2(,N '4„(9.12)

((&,) I4, I (&))=2N-'4, .

1.0
0.5
0

(A} (s)
0.00966@~ 0.00966
0.00483@, 0.00724
0 0.00483

{C)

0.930X10 4@~

0.350X10-4'
0

0,5 0,00483p&I 0,00241 0, 116X 10 yqI—1.0 —0.00966@,, 0 0

(D)

3.22X10 4@~
= (2 /3E)pq

This might be interpreted to mean that the quantized
Aux C, is parcelled out among the E bundles, each
having a Aux 2$ 'C

„

the factor 2 arising because each
of the two quantum states contributes. Equation (9.2)
is the "inversion" of (9.11) and (9.12); using the
square of (9.10), we get

which we used in Sec. IV as Eq. (4.21).
As (9.13) leads to (9.15), so

(() ) I4„I () ))=2N—'4, ',
(~ ).«=—(.'14. I.. )...=(2/N)~, ',

s.e.,

(9.18)

(9.19)

(() )l~.*'I() ))=~.'Ll(( )I *I'&I'+ I(() )II * &I'j
=Izq'N '(1+/.+I—f', ) =2N 'pq'. (9.13)

Accordingly, by (9.2), (9.8), (9.11), and (9.13),

(Irz Ipzlfzz )red

tsdf N i(1+t' )2f' N tfzq (2/3N)Irq (914)

(Izz llzz I pz )red

sN=4'q'/(4"). «(9 2o)

These calculations, all based on the derivation (8.9)
of rounded matrix elements from the ordinary quantum-
mechanical matrix elements, gives the following interest-
ing relation. By (9.15) and (9.14),

(0 )eff=(Pz IPz IPz )red= 2N Pq
= (9N/2) ((~'I ~*

I
~-'&.')'

=—(9N/2) (~.«)', (9 21)

and similarly
(4r'), it

——(9N/2) (4,rr) '. (9.22)
—s'df', N '(1+1,)2N 'Izq'= (2/N)fzq'. (9.15)

As (9.11) leads to (9.14), so (9.12) leads to

4 eff= (Irz
I
4z

I fzz )red

= (2/3N)4, =-', (()t) I
4,

I
()i)) . (9.16)

The left-hand side is evidently what we called C,ff so
that

sN = 4'q/4'efi =pq/petr ~ (9.17)

This result, (9.16) and (9.17), is self-evident, since the
average value of f, with probability (I+i',)(df',/2) is
equal to —,.Equation (9.17) is giving the relation between
bundle Aux, quantized Aux, and effective Aux. Equation
(9.16) simply spells out the definition of the bundle flux
((h) I 4, I (& )). In fact, the "quantum-mechanical matrix
element" (9.10) is not a measurable entity. Measurable
is the superposed and averaged (p,+lpzllrz+&red, Eq.
(9.14), constructed from (9.11).

The relations (9.12) and (9.16) have an intuitively
interesting interpretation:

magnetic bundle flux=(())
I 4,

I () ))=2N '4,
=3(I 'I4' ll '&-d=34 «, (4»)

In order to illustrate further the magnetic-moment or
flux-reduction procedure, i.e., (9.14) or (9.16), we set
it into the form of Table I (in which we have anticipated
the number N =120+87=207 of bundles of loopforms,
to be discussed in Sec. XI).

Because we want to estimate the electromagnetic
energy and angular momentum, the question comes up
how the reduction of helds 8 and E and bilinear terms
formed from them are to be reduced.

In line with the reduction of magnetic momentum
(9.2) one may assume

(Pz I
B

I Pz )red

=(2 ( 'I()))(() ) I Bl()))(()) II."&)-, (923)

which is to give the field (4.6), cf. (8.11a) and (8.11b).
The definition of (()) IBI ())) by (8.9a) and (8.9b) is
clear cut, but it gives only that B contribution which
arises from the z component of the bundle's magnetic
dipole field; a look at (9.10) makes this evident. It is
this contribution which, however, is only of interest for
(9.23) because the B field from x and y components of
magnetic moment cancel out. The full (()I,) IBI()t))
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FIRST SHELL OUTER SHELLS CORE

TYPE OF
LOOP FORM

NUMBER OF 2 (I2 + 24 + 24 )LOOP FORMS
=87 207

(a)

BUNDLE

MANIFOLDS

100% of flux of sheaf
I

t- 60% of'flux of sheaf ~

I

t 1

(&), {~), (~)=1 (~)»
l I

1 sheaf

120 bundles
I

207 b un dl e s

(b)

Fyo. 11. (a) Types and numbers of loopform bundles. The 120
erst-shell bundles are described in Figs. 8 and 9. The estimation
of 207—120=87 outer-shell bundles is sketched in (b). (b) Bundle
manifolds. Estimation of the total number, 207, of bundles of
loopforms from the number of first-shell bundles, 120 (cf. Figs. 8-
10), by the proportionality 60/100=120/207 (cf. Fig. 5).

matrix elements may be considered as ((X) ~B~ (X))
=field of a dipole 2N ti~ oriented in ( direction, i.e.,
in agreement with (8.14).

For the electric field calculation we have, in Sec. IV,
used the detailed distribution of Aux orientation which
was a simple procedure because the detailed (reduced)
effective magnetic field had to be (4.6); this procedure
was actually following the definition (8.15).

When it comes to calculation reduction of the 82,
F.', rX(E&&B) fields, the straightforward calculations
from (8.14) and (8.15) become much more tedious. We
may perhaps oversimplify the discussion by simply
taking the essence of the previous discussion, i.e. , (9.22),
and use it in the form

(13').H= ( /2)( .«)'. (9.24)

Consequently, the averaged quantities in (9.2), (7.3),
(7.4), (9.23), and (9.24) are all being reduced in much
the same manner compared with the nonreduced ex-
pression in (8.10) and the corresponding expression for
B, E, and 8', i.e., all of them by factors of the order of
E '. B,~~ and E,~~ are related to muon- or Bohr-mag-
neton p,«and charge e by Maxwell-Lorentz equations.

In order to form an average for B or 8' at a region

P(r), we should sum over those loopform bundles P.)
which actually pass through that region. Only the large
size loopforms contribute at distant regions (large r). In
parcelling out the total (eRective) flux into bundles of
equal size, these distant regions are covered by only one
or a fraction of one bundle. Consequently, as far as these
faraway regions are concerned, there is no reduction
and (8'),«-+ (B.«)'. This, indeedis ni,cely in accord-
ance with the Maxwell-Lorentz theory which we expect

directly to apply to P,«, (8,«)' at large distances as
quasi-nonlocal effects become insignificant at large r
where B changes little over distances of the order of
A/mc.

As regards the Aux which passes through the core, all
loopform bundles are contributing to it; this summation
over (X) in (9.23) thus contains all (X), thus we find that
"full reduction" applies.

When we come to estimate the reduction factor
applicable to electromagnetic energy and angular mo-
mentum, we should be aware of the fact that the major
contributions toward these quantities come from the
core and from "close-by" regions. Thus, but only
approximately, we might start by summing over all (X)
in forming (8'),«which, together with the correspond-
ing (8'),«(r&&(E&&B)),« formulas, determines energy
and angular momentum. As, however, the reduction
factors are quite sizeable numbers, such approximation
is very crude. Only by taking into account the regional
differences in superposition may we achieve a more
reliable average reduction for energy and angular
momentum Lcorresponding to (6.1), (6.4), and (6.5)].

In Sec. XII our calculations are done on the basis of
the "full" reduction factor. In Sec. XIII we shall
discuss the use of the term "regional reduction" for
regionally differentiated consideration of amplitude
superposition.

X. RECONSTRUCTION OF ELECTROMAGNETIC
FIELD AND FINE-STRUCTURE CONSTANT

We reconstructed the magnetic (and thereby also the
electric) field of a source lepton by superposition of
bundles with random-phased (not in-phase) amplitudes,
starting from a quantized Aux

(10.1)

equally distributed over E bundles. Such an electro-
magnetic field is equivalent to the field of a muon or
Bohr magneton eA/2mc, and electric charge e Lcf. (5.10)
and (5.19a)],

C « =4x (eA/2mc)/3. 1ro, (10.2)

if e'/Ac has the appropriate magnitude.
Indeed, if we know the size of ro/(A/mc) and the

number N, the use of (9.17) with (10.1) and (10.2)
yields

a N =4,/4, «= 3 1(Ac/e') pro/(A/. mc) ]. (10.3)

as the basic equation which determines the fine structure-
corIstamt.

With the adoption of N =207 (11.1), and ra adopted
as 0.73A/mc, (5.1b), one gets the right value for e'/Ac.

We may be reminded that the factor 3.1 resulted from
a simple numerical calculation of the relation between
magnetic moment p, ff, magnetic Aux C,f~, and root mean
square ro of the Gaussian distribution.

As regards. ro, we have indicated its approximate size
in Eq. (5.1) for the quasi-nonlocality of the source. This



RELATIONSHIP OF FLUX QUANTIZATION

implies that with the angular velocity 2mc /A of spin-
ning, the outer regions of the core spin with a linear
velocity of the order of c, a not unreasonable implication.
This, again, as many other features of the present
proposal, was anticipated by Slater's model. "

In recognition of the difhculty {without use of complex
probability amplitude superposition) of accommodating mc'
and A/2 as electromagnetic energy and electromagnetic angular
momentum, Slater's model PJ. C. Slater, Nature (1926)g sug-
gested that the electromagnetic field responsible for the structure
of an electron is the field of an electric point charge e and of a
magnetic dipole ek/2rnc, but that this field be considered virtual
and thus contributing neither to the energy nor to the angular
momentum of the electron. On a circle of radius rp= A/2rnc, the
electric field intensity is then equal to the magnetic one, and the
Poynting vector there fulfills the requirements to make it to
represent a velocity (velocity c on a circular path). The held is thus
considered to guide a light quantum orbiting with angular
velocity 0 =c/(A/2mc) = 2nzc'/1Iz. For the two-valued functions of
a spinning electron, the lowest eigenvalue of the angular mo-
mentum is A/2. Using the relativistic relationship, energy=mo-
mentum&(c, one gets A/2 =angular momentum =rpXmomentum,
i.e., momentum=use, and thus energy=xzc2. The latter part of
Slater's argument differs slightly from this.

7 Papers relating to general aspects of this problem and to pre-
vious work on it: F. Rohrlich, Classical Charged Particles (Addison-
Wesley, Reading, Mass. , 1965};A. O. Barut, Electrodynargzcs and
Classical Theory of Fields and Particles (MacMillan, New York,
1964); M. S. Longuet-Higgins, in Proceedings of the Thirteenth
Syrrsposzurn in A ppli ed j/Iatherrsatics, A nzeri can Mathenzatical
Society, edited by G. Birkhoff, R. Bellman, and C. C. Lin
(American Mathematical Society, Providence, 1962); Proc.
Cambridge Phil. Soc. 52, 234 (1956); 53, 230 (1956). Classical
theories are reviewed, besides in Rohrlich s book, loc. cit. , in the
article by P. Caldirola, Nuovo Cimento Suppl. 3, 297 (1956).
Topological aspects are discussed by J. A. Wheeler, Les Bouches
Notes, 1063 (Gordon Bz Breach, New York, 1964); Georrsetro-
dynarrsics (Academic, New York, 1962). Early attempts at under-
standing spin before Dirac, and in correspondence terms, are
J. Frenkel, Z. Physik 3'7, 243 (1926); lVave Mechanics, Advanced
General Theory (Dover, New York, 1950), p. 321; H. J. Bhabha,
and H. C. Corben, Proc. Roy. Soc. (London) A178, 273 (1941);
H. C. Corben, Nuovo Cimento 20, 529 (1961); Phys. Rev. 121,
1833 (1961); 134, B832 (1964); 145, 1251 (1966); F. Bopp and
R. Haag, Z. Naturforsch. 5a, 643 (1950); H. Hoenl, Ann. Physik
33, 565 (1938); H. Hoenl and A. Papapetrou, Z. Physik 112, 512
(1939); J. W. Weyssenhof, Nature 141, 328 (1938); P. Nyborg,
Nuovo Cimento 23, 47 (1962); H. C. Corben, Classical and
Quantum Theories of Spinning Particles (Holden Day, San
Francisco, 1968). An interesting model has been given as early as
24 April 1926 by J. C. Slater, Nature 117, 587 (1926); J. Riess,
Ann. Phys. (N. Y.) 5'7, 301 (1970); Phys. Rev. D 2, 647 (1970);
R. Haag, Z. Naturforsch. '7a, 449 (1952); E. P. Wigner, Am. J.
Phys. 38, 1005 (1970};L. DeBroglie, Introductzon to the Vigier
Theory (Elsevier, Amsterdam, 1963);K. Rafanelli and R. Schiller,
Phys. Rev. 135, B279 (1964); W. H. Bostick, Dial'ogue on Flux
Loops (Stevens Institute of Technology, Hoboken, N.J., 1968);
B. W. Wessel, Z. Naturforsch. 1, 622 (1946); F. Boop, ibid. 3a,
564 (1948); H. A. Kramers, Physica 1, 825 (1934); Quantum,
Mechanics (Dover, New York, 1964); Collected Papers (North-
Holland, Amsterdam, 1956); V. Bargmann, L. Michel, and V. L.
Telegdi, Phys. Rev. Letters 2, 435 (1959); A. E. Ruark (private
communication); P. Havas, Phys. Rev. '74, 456 (1948); J. Riess,
Swiss Federal Institute of Technology, thesis„1968(unpublished);
B. d'Espagnat and J. Prentki, Nucl. Phys. 1, 33 (1956); R. J.
Finkelstein, Phys. Rev. 75, 1079 (1948); R. J. Finkelstein, R.
LeLevier and M. Ruderman, ibid. 83, 326 (1951); R. J. Finkel-
stein, C. Fronsdal, and P. Kaus, ibid. 103, 1571 (1956);M. H. I..
Pryce, Proc, Roy. Soc. (London) 168, 389 (1938);T. Takabayasi,
Prog. Theoret. Phys. Suppl. 21, 339—82 (1965); Phys. Rev. 139,
B1381 (1965); V. Weisskopf, Rev. Mod. Phys. 21, 305 (1949);
CERN Report No. 62—15, 1962 (unpublished); W. Heisenberg,
Unifi'ed Field Theory of Elerjzentary Particles (Wiley, New York,
1967); P. Roman, Phil. Sci. V, 363 (1967); Phys. Rev. 158, 1377
(1967); V. Bargmann, Rev. Mod. Phys. 34, 829 (1962); Preuss.
Akad. Berlin, 346 (1932); H. B. G. Casimir, Rotation of a
Rigid Body in Quantum Mechanzcs (J. B. Wolters, Groningen,

KI. ESTIMATE OF NUMBER N OF STATISTICALLY
INDEPENDENT BUNDLES OF LOOPFORMS

We now estimate this number of "elementary
bundles. "This may be done in different ways. As indi-
cated at the start of Sec. VII, the bundle manifold may
be characterized by average flux orientation (() of the
bundle, average "size" (o.), i.e., average aphelion dis-
tance of the bundle of loopforms, and average azimuth
(n) (cf. Figs. 1, 8, and 9). It is suggested that although
closely similar loopforms ought to have phase-related
amplitudes, these phase relationships give way to
randomness when loopforms are sufficiently distinct as
far as muons are concerned. It is suggestive to consider
a difference of ~&1 rad in azimuth o, as criterion of
sufhcient difference to imply a random phasedness.
Also, a difference ~&1 rad in flux orientation ( may imply
random-phase relationship. So one might subdivide the
n, ( manifold into 6X20 bundles (n)(() (Fig. 8). The
subdivision of "size" o. too, follows on the same principle
(Fig. 10). The subdivision of the manifold of flux loop-
forms (, n, o defines bundles {(()(n)(o.)}.The consider-
ation of Fig. 11(b) would result in a total number
27rX4vrX(100/60)=132 bundles, or 6X12X(100/60)
=120 bundles if Fig. 8 were interpreted to mean that
there are 12 essentially different ( directions corre-
sponding to the 12 sides of a pentagon dodecahedron.
But the angle between any two neighbors of those 12
directions is 1.425 rad. So we may better choose the
20 corner directions as essentially different, each char-
acterizing a bundle s Aux orientation for a given n and
o. These corners are 0.9763 rad=i rad apart, as it
should be. There result 6X20X(100/60)=200 bun-
dles in that way of counting the (n) (() (o) manifold of
bundles.

Alternatively, we may consider a set of Aux loopforms
to be defined in the following way: Subdivide ordinary
position space by drawing a close-packed set of spheres
of radius r„„each,one of which represents the core.
(These spheres may be called "elementary regions. ")
Then mark a consecutive set of these spheres in a
manner resembling a closed string of beads, one of the
beads representing the core. This loop of beads may
then represent a set of Aux loopforms, the size r,„„of
the beads representing the quasi-nonlocal aspect of the
loopform when represented in ordinary position space;
cf. Fig. 11(a).

An appropriate analysis of manifolds of loopforms
defined by such loops of beads might correspond to some
fluctuating form of the loop; the absolute values of the
amplitude ("magnitudes") and the phase relationships
of the amplitudes of the set of loopforms represented by
the loop of beads are appropriately postulated so as to
1931);E. P. Wigner, Group Theory (Academic, New York, 1959);
Syznznetri es and Rejlections (Indiana U.P., 1967); M. H. L.
Pryce, Proc. Cambridge Phil. Soc. 32, 614 (1936); A. O. Barut,
in Lectures in Theoretzc Physics, edited by W. E. Britten et al,
(Gordon and Breach, New York, 1968), Vol. XB, p. 377; L. H.
Thomas (personal communication); L. Durand III, Boulder
Lectures (Interscience, New York, 1962), Vol. IV, p. 524.
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lead to a resultant superposed field which represents the
electromagnetic field of the lepton; cf. Eq. (8.11b).
Fluctuation eRects should also be accounted for. It may
be assumed, on the basis of the postulate that every
bundle carries the same amount of flux, that the lux
passing through an elementary region far from the
source is equivalent to less than one elementary bundle.

We proceed now to us- this picture in a much simpli-
fied manner to define bundles of loopforms. We first
consider only loopforms which reach into the first shell,
i.e., loopforms of aphelion distance r„„&~0-(~ 3r „.
These loopforms are of the type of Figs. 9(a)—9(c), i.e.,
connecting the core with one or two or three elementary
first-shell regions. There are 12 nearest-neighbor spheres
to the core LFig. 9(a)], 24 nearest-neighbor pairs LFig.
9(b)], and 24 nearest-neighbor triplets )Fig. 9(c)].

Each of these 12+24+24=60 loops of beads may be
traversed by Aux in one or the opposite direction, so
that we count 120 essentially different sets of loop-
forms. LWe count also the 12 cases of Fig. 9(a) doubly
because they, like the others, should be able to make
two alternative contributions to magnetic moment. ]As
regards distribution of flux over these different types of
loops of beads, we assume that the above 120 each carry
the same amount of flux and thus may be designated as
the 120 elementary bundles of loopforms reaching into
the first shell Lsee Fig. 11(b)].

Consider any one of these bundles. It is composed of a
subset of loopforms of the type shown in Fig. 5 La
subset of the sheaf (() of Fig. 5; the full sheaf (() spans
all azimuths n and sizes 0]—the subset of aphelion
distance r, &o.&3r, and of azimuth confined to 1 rad or
60'. This subset carries 60% of the flux carried by the
set of loopforms r, &0.& ~ and the same azimuth do-
main. LA numerical integration of the flux, or a counting
of the flux lines between r, &0-&3r, shows this figure of
60%. The lines of Fig. 5 are drawn so that their density
per unit do (o is in the direction perpendicular to (; o. is
marked as g in Figs. 5 and 6; 0 is equivalent with the r
in the equatorial plane as in Sec. V C) is proportional to
o-B, the distribution of lines over the angle azimuth n
is a constant, independent of size; the lines in Fig. 5
thus represent torus surfaces which subdivide the total
flux into ten equal parts. ] Consequently, the flux
carried by the 120 bundles is 60% of the total linear sum
of flux (note that 4, at the core region is additive, the

P ii i C iz i does not appear as resultant anywhere
physically). As each bundle is assumed to carry the
same amount of flux, there are 120/0.60=200 bundles
in all.

Ke make the assumption that a more appropriate or
accurate way of counting may have resulted in

X=207

instead of the above number 200. Ke assume this
because such a result may give us a possibility of
representing the diRerence between muon and electron,
as outlined in Sec. XIV and Fig. 12. We illustrate this

XII. CALCULATION OF EFFECTIVE FLUX)
ENERGY, AND ANGULAR MOMENTUM

FROM NUMBER OF BUNDLES OF
STATISTICALLY INDEPENDENT

LOOPFORMS

Ke ask how close we come to those desired results
mc' and A/2 if we choose for ro/(A/mc) the value 0.73
of Eq. (5.1b); cf. also (10.3) and Ref. 6.

This is done in two steps: (1) In the present section
we apply to the densities of electromagnetic field energy
and angular momentum everywhere the same reduction
factor as should be used in the core region only, whereas
(2) in reality the reduction factor goes towards unity for
the far-away regions (Sec. XIII).

Neglecting thus, in this section, regional diRerentia-
tion of the averaging of electromagnetic energy and
angular momentum, we use the same full superposition
and full reduction everywhere, though it only applies to
the core region.

The random phasedness (lack of in-phase relation-
ship) of the complex amplitudes, affecting 8', E', and
EXB, dictates that we use Eqs. (9.24) on (6.2) and
(6.3). Consequently, we get the following averages:

electromagnetic energy
= 21V{0.138Lro/(A/mc)] '

+0.365Lro/(A/mc)] ') (e'/A ) c'mc
=—',X207 {0.138/0.73'

+0.365/0. 73}(1/137)mc'
=931{0.352+0.430) (1/137)mco =5.3mco (12.1)

distribution schematically with (0) =1 representing the
flrst shell and (o))1 the remainder shells, in Fig.
11(b) t (0) =1 means loopforms of average aphelion
size 1 in units of 2A/mc].

On the one hand, all loopforms which pass through a
given sequence of elementary regions should have
phase-related amplitudes. This gives an estimate for the
minimum size of a bundle, i.e., a bundle of the type
Figs. 9(a)—9(c). A bundle could, however, not well be
deflned larger than these 9(a)—9(c) bundles. On the
other hand, for sizes beyond the first shell, (0))1, sets of
loopforms which pass through a given sequence of
elementary regions, carry less magnetic flux than each
of the standard 120 bundles of the first shell; as the
"bundles, " by definition, each carry the same amount
of flux, such sets cannot be considered as full-sized
bundles, and we should not, therefore, consider the
relative phases of their amplitudes as random, but
adopt the argument of Sec. VII and Fig. 10. Kith
Eqs. (5.1), Eq. (10.3) then yields the correct value of
the fine-structure constant 1/137.

A better analysis of phase correlation of probability
amplitudes of loopforms is obviously necessary both for
the calculation of (11.1) and for the definition of phase-
related and random-phased motion in Sec. XIV.
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the first and second term referring to magnetic and
electric energy;

l
angular momentum

l

=-,'$(0.47l ro/(A/mc)] '}(e'/Ac) A/2
=931(0.47/0. 73}(1/137)A/2 =4.4A/2. (12.2)

The value A/2 Eq. (6.5) would be desirable for (12.2)
so that the spin A/2 of the Bopp-Haag model would be
compatible with this electromagnetic term.

The substantial discrepancies from the values mc' and
A/2, respectively, in the above are hardly prohibitive in
view of the big difference between average and full
reduction factors. A more refined calculation for the
values of (12.1) and (12.2) may be made, of course, by
estimating the regionally differentiated reduction, in-
stead of replacing it simply by one single (full) reduction
as was done here. Using this refined procedure, we find
the values 5.3 in (12.1) and 4.4 in (12.2) will decrease
quite drastically, although, since there is full reduction
at the core, (10.3) does not change.

It may be interesting to note that, in order to reverse
the electromagnetic angular momentum, one has to
reverse the electric field with respect to the magnetic
field, and that is achieved by reverting the sense of the
spinning angular velocity with respect to the orientation
of the magnetic moment, as indeed it should be.

XIII. REGIONALLY DIFFERENTIATED
AMPLITUDE SUPERPOSITION

We will now digress by considering regionally differ-
entiated amplitude superposition and reduction.

At the core and adjacent regions, a large number of
bundles of loopforms contribute the magnetic field.
Further out, only a few standard bundles contribute to
the magnetic field (in accordance with our assumption
that each such bundle carries equal amounts of effective
magnetic flux). Thus, as expected, there will be strong
reduction at the core and close to it, but not much
reduction further out. The assumption that the Max-
well-Lorentz theory be applicable at large distances
from the core, i.e., without quasi-nonlocality and
complex amplitude superposition having any appre-
ciable effect, renders this difference in reduction not
only expected but necessary: At sufficiently large
distances, the Maxwell-Lorentz fields (B), and (E),
of Eqs. (7.3) and (7.4) should, as in (6.2) and (6.3),
give the energy and angular momentum densities by
the Maxwell-Lorentz expressions (6.2) and (6.3). How-
ever, this can only be the case if there is no reduction;
that is, if at a distant region one or less than one bundle
contributes to the magnetic field.

By recalling the way in which reduction comes into
effect, we may perhaps gain further insight into the
calculation of regionally differentiated reductions. We
normalize the complex bundle amplitudes by

2 (i .+l(l~))((~)li .+) =1 (8 5)
a, ll ()~)

This normalization applies whether the amplitudes are
random phased (muon) or phase related (electron); they
are not in phase, however. In Eqs. (9.1), (9.2), (9.23),
(7.3), and (7.4), we see how the reduced ("average")
fields are defined. The reduction is obtained. by dropping
off-diagonal terms (li&)&(li2) in (9.1), whereas in the
nonreduced expression (8.10) these terms are retained.

Let us consider a certain region P(r) and the subset
of the bundles ()) which contributes toward the fields
there. We may determine this subset by considering the
spacial coverage of the fields ((l~) l

B
l P.)) in (9.23). For

example, we might consider (curlA)~x& in (7.3) and
(gradV) &i& in (7.4). When we sum over (X) in (9.23),
(7.3), and P.4), we are, consequently, taking a sum-
mation over this subset. The reduction expresses itself
when we sum only the diagonal terms (li), i.e.,
p, ,) = p.,).

We remarked that as regards the reduction of C, or
p, to coreAux,

(pz l
C'z

l pz )red (9.16)

ol

( 'l ~. l ~')-d, (9 14)

(8 H)'(8m. ) 'd'r

=0.138Lre/(A/mc)] '(e'/Ac)mc', (6.2)

had its numerical factor 0.138 additively arising from
contributions of the core (0.109), the first shell (0.026),
and the outer shells (0.003).

The corresponding electric field energy

(E H) '(8~)—'d'r

=0 365Lre/(A/m. c)] '(e'/Ac)mc' (6.2)

comes from the core (0.0718), the first shell (0.1290),
the second shell (0.1075), and outer shells (0.0565).

respectively, we have to consider superposition of their
(additive) s components at the core region. As this
superposition involves all Aux loopforms, we have for
both cases Eq. (10.3) as the relation determining the
reduction. The regional reduction of the electromagnetic
field is characterized by the remark given above, i.e.,
that the reduced B field is again a divergenceless field
as was the bundle field (P.) l

B
l (X)).

As regards the reduction of electromagnetic energy
and angular momentum, we can, at this time, only
present a very crude, qualitative estimate.

The magnetic energy of a magnetic field correspond-
ing to a Gaussian distribution of magnetization,
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Fro. 12. The motion of probability waves (squares of probability amplitudes) through the manifold of 207 bundles of loopforms
(X) —= ((), (n), (o) is supposed to be quasi-ergodic, a wave crest of a probability wave moving periodically through that parameter
space X. In this figure the motion of probability waves, through this four-parametric manifold () ), is symbolically indicated as a motion
through a one-dimensional azimuth space "o." ranging from zero to 207 rad (only 7 rad are drawn in the figure). For the muon there
are 207 randomly distributed wave crests (represented in the figure by only seven dashed lines). Each wave crest, considered as a pulse
of duration (27i-Q„),gives rise to the Fourier term of angular frequency 2'„.The motion of the wave crests is assumed to be quasi-
ergodic with periodicity indicated as "beat period. "When a muon is about to decay into an electron, the formerly stationary random
time sequence of wave crests may, because of non-linearities in the dynamics of the loop motion, bunch together, create beat periods,
and again, because of nonlinear effects, excite probability amplitude waves of frequency equal to that beat frequency (which is 1 /207
of the muon frequency, i.e., 27f-0„/207 in rad per second). Thus the wave-crest picture of electron waves emerges (full drawn lines) with
again 207 crests along the parameter "~"but with smaller angular velocity and larger period. The linear velocities of the loopforms are
of the order of c, both in the case of muon and in the case of electron, the muon core being 1/207 of the size of the electron core.

The construction of this diagram results from the following simple considerations. From "n"=0, t =0, one draws a group velocity
line (electron) and a (heavy, dashed, 207 times larger) phase velocity line (muon). For "a"=0 the group wave crests are located at
t =0 and at integer multiples of one beat period. In each beat-period interval there are 207 randomly spaced short-period phase wave
crests. These phase wave crests are assumed to pass, in a quasi-ergodic fashion, through the entire "0," space in a time equal to the
repeat period of the 207 wave crests, i.e. , the beat period. The phase velocity line which passes through "n"=0, t= 0, reaches "n"=1
at a time 1/0„,the beat period is accordingly 207/0„,and the angular beat frequency is 2mQ„/207, the muon waves have in their Fourier
distribution angular frequencies 27'„.

The electromagnetic angular momentum With such numbers, i.e.,
First Second Outer

Total Core shell shell shell

rX(E.ffXB ff)(4rrc) 'd r

=0 47 I rs/(A/. mc) 7 '(e'/Ac) A/2 (6.3)

Number
Magn. energy
Electr. energy
Ang. mom.

207 207 35 6 1
0.138=0.109 +0.026 +0.003 +0.000
0.365 =0.0718+0.1290+0.1075+0.0565
0.47 =0.102 +0.183 +0.106 +0.075

comes from the core (0.102), the first shell (0.183), the
second shell (0.106), and the outer shells (0.075).

At the core the superposition occurs from all %=207
bundles. At the 6rst shell the superposition may be
estimated to be from about 207/6=35 bundles because,
even though loopform bundles of all sizes (o) and all

Aux orientations (() pass through a given region, i.e.,
one of the spheres of the 6rst shell, only one of the six

azimuth regions contributes to a particular given

spatial region. This number 35 may be a very crude
estimate. Still more crude, but less important, is an

assignment of six bundles to regions of the second shell

and one bundle to regions of outer shells.

and with locally differentiated reduction factors
(9%i/2), we get, instead of (12.1),

s ( (207 X0.109+35X0.026+6X0.003)Lrs/(A/mc) 7
s

+(207XO 072+35XO 129+6XO 108+1XO 056)

X [rs/(A/mc) 7 ') (e'/Ac) mc' $(105.7/0=. "/3')

+(90.4/0. 73)7(e'/Ac)mc'=2. 88mc', (13.1)

where we have used e'/Ac=1/137 and rs 0.73A/mc. ——
Similarly, instead of (12.2), we get

ss (207 XO 102+35X0.183+6X0.106+1XO 0'/5)

XPre/(A/mc) 7 '(e /Ac) A/2 =L126.8/0. 737
X (e /Ac)A/2 = 1.26A/2. (13.2)

These numbers for regionally reduced energy and
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angular momentum, compared with 5.3mc' and 4.4A/2,
obtained with the oversimpli6ed full reduction of
%=207 bundles, show that we arrive at a reasonable
interpretation of mc2 and iI/O as the electromagnetic
energy and angular momentum, even though the
numerical calculations are very crude.

XIV. MUON VERSUS ELECTRON

We may attempt to describe a distribution of loop-
form amplitudes, Q—= (I~Iti,+), by a Fourier expansion
in terms of the loopform parameters I —= {(,n,o). We
shall use n=6+Qt=azimuth in the laboratory system
rather than cx =azimuth in a rotating coordinate
system; i.e., we employ the representation resembling
a graduals witching on and off of light bulbs on a flash
board for running news messages, the bulbs' light
intensities characterizing the probabilities, i.e., the
bilinear expressions

I g I

'.
We are here discussing the loopform amplitudes

which are highly fluctuating (in time and space)
quantities, unlike the averages (8.23) which correspond
to the smooth spin functions T' „,s = ~.

Figure 12 illustrates the motion of wave crests de-
scribed in the 6gure caption; it should be studied here.

At any time, e.g. , t=0, the probability distribution
I&I'= I(&Iti,+)I' is expected to have some 207 wave
crests. In the case of the muon, because of the random
phasedness of its probability amplitudes, these wave
crests are somewhat randomly distributed over that
parameter space 'h= {(,n, o). In the case of the electron,
because of the phase relatedness of its probability ampli-
tudes, the distribution of 207 wave crests is regular, i.e.,
periodic in 0., one for each of the 207 bundles,

Such distributions of wavecrests correspond to the
aforementioned distribution of the phases of prob-
ability amplitudes which are expected to lead appro-
priately to the same reduction procedure (Sec. IX) for
muon and for electron alike. This is so because, for the
electron as well as for the muon, the phases of the
probability amplitudes are different at the loci of
different bundles (I~); the off-diagonal terms (Iii) &() 2)
in (9.1) are therefore expected to contribute nothing in
the average.

A wave crest in the four-dimensional parameter space
(, n, o may be considered a three-dimensional hyper-
surface to which there is a 6eld of normals characterizing
the propagation of the wave crest. That propagation
vector 6eld' may, in the case of the muon, be assumed to

H. Hurwizt and M. Kac, Ann. Math. Stat. 15, 173 (1944);
A. Papoulis, Probability, Random Variables and Stochastic Processes
(McGraw-Hill, New York, 1965); L. Brillouin, S'uve Propagation
and Group Velocity (Academic, New York, 1960); E. Nelson,
Dynamical Theory of Bro2onian Movement (Princeton U, P.,
Princeton, 1967); N. Wiener, nonlinear Problems in Random
Theory (MIT, Cambridge, , Mass. , 1958); A. M. Yaglom, An In-
troduction to the Theory of Stutionary Random Functions, trans-
lated by R. A. Silverman (Prentice Hall, Englewood Clips, N. J.,

pass in a kind of quasi-ergodic motion through that
parameter space. We consider "quasi-" ergodicity to
mean that this motion is defined only in its gross aspects,
as it marks out the sequence of discrete (()(n)(o)
bundles (considering the finer specification in terms of
the continuum (no. irrelevant as regards the com-
pletion of a quasi-ergodic cycle).

As each bundle, as shown in Sec. VII and Fig. 10,
"carries" the same amount of Aux, this quasi-ergodic
motion is appropriately formulated in terms of
the manifold of the 207 equally probable bundles
(X)—={(()(n)(a)).For numerical calculations -it may be
easier to use 1/10,000 of a bundle (subdividing each
parameter unit into ten subunits). To make another
crude simplification, we might introduce a parameter
"n" ranging from zero to about 207 rad, by stringing
the n intervals of each of the (()(o.) together so that the
quasi-ergodic motion of one of those normal vectors (to
a wave crest) following its path as a function of time
might be visualized as moving linearly (in time) through
that interval 0&"n"&207 instead of the complicated
random wave motion through the space I~=—{(no) Lcf.
Fig. 12, which indicates the wave crests corresponding
to that path by dashed lines which may be more
irregularly distributed, but with the inclination
II '= (2m„c'/i'i) ' shown there].

Figure 12 shows "n" as ranging from zero to seven
only, because it would not be easy to draw the whole
range zero to 207. The assumption of ergodicity means
that the figure is to be considered repetitive in the time
direction, with the indicated period; a kind of beat
period. When we study the frequency distribution
corresponding to such muon waves, we 6nd that the
probability amplitudes (as functions of t) have in their
Fourier distribution a characteristic angular frequency
approximately equal to 2m.II„=2x )&2m„c'/ti, corre-
sponding to the width (in time) of each of the pulses
Lassumed to be approximately equal to (2~r) ' of the
average spacing 1/II„ofthe probability crests], and its
overtones. It is evidently the width of the standard
pulse (switched-on light bulbs),

I@(t r) I'=2 Iw(K) I' expi{K n co„(t r)),

f(, = small number, f(=+2',

to which the frequency Q„corresponds. The randomly
spaced 207 pulses

207

(a stationary random sequence of pulses, i.e., a Poisson
process) give a resulting amplitude in terms of the

1962); S. Goldman, Frequency Analysis, Modulation and Poise
(McGraw-Hill, New York, 1958};D. Middleton, An Introduction
to Statistical Communication Theory (McGraw-Hill, New York,
1960).
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convolution

(again with the same characteristic angular frequencies
2~Q, and their overtones in the Fourier distribution).

The actual situation may, however, imply bunching
and different sized pulses instead of random-phase
distribution of standard pulses, so that the Fourier
analysis of

I p(t) I

' may resemble amplitude modulation,

or&(t) may resemble beat patterns, with "beat period"
equal to the period of quasi-ergodic passage through the
207 bundles, i.e., a "beat period" =207/Q„(which
corresponds to an angular frequency 2~Q„/207, i.e.,
=1/207 of the above angular frequency previously
discussed).

There are thus in the case of the muon two (angular)
frequencies, 2mQ„and 2~Q„/207, the latter may occur
in the Fourier analysis of IP(t) I', not in that of Q(t),
and it may have interesting consequences when non-

linearity is assumed to play a role in the dynamics of
loopform (nonlinearities may arise when an "inter-
action" between loops is assumed, e.g., a tendency for
loopforms to stay apart from each other or to bunch
together). This low "beat period" of the muon

I P(t)
I

'
is presumably only a potentiality; its relevance stems
from the presence of nonlinear effects like bunching of
loopforms. In actuality, as long as the muon remains as
a muon, the beat phenomenon might not be present, but
during the decay, it may arise as a mixture of beat
periods of the order of 207/Q„.

We thus assume that this potentiality of an angular

frequency 2x.Q„/207 of
I p„(t)I' may express itself when

the muon decays into an electron. We may assume that
when random phasedness gives way to phase relatedness
(with a sharp single beat frequency) the transition to
electron occurs. The thereby induced, phase-related,

P,(t) waves are strictly periodic in time and show one

single angular frequency 2~Q, which may be equal to
27rQ„/207. Without knowing how the equations of
motion for loopforms would have to be written, one may
suggest that nonlinear effects cause the muon beat
frequency of

I p„(t)I

' to generate an electron frequency
of g, (t) and thus to bring about

2~Q, =2' Q„/207.

In other words we presume that the metastable spinning
with the regular muon frequency yields to the other,
stable, electron type spinning whose frequency is equal
to the beat frequency of the muon.

As we have indicated in the beginning of this section,
the electron's p, distribution, expressed as a function of
the parameters P)—= (((),(n), (0)), is to have as many
(207) crests of Ig, (X) I' as the muon's Ig„(X)I', because
these two leptons are alike and subject to the same
reduction procedure (Sec. IX).

Accordingly the wave-crest picture of Fig. 12 results,

with the "beat period" being the period of quasi-
ergodic motion through the 207 bundles. (The electron
wave crests assume a velocity in the diagram which may
in some sense be interpreted as a muon transition group
velocity in relation to the muon crest velocities inter-
preted as phase velocity. ) As we a,re well advised to
consider the linear velocity of spinning loopforms to be
of the order of c for muon and electron alike, the electron
with its 207 times smaller frequency is 207 times larger
than the muon, and its angular spinning velocity Q, is
207 times smaller than that of the muon.

As these angular frequencies 2mQ„and 2mQ, are fre-
quencies of the probability amplitude waves Q„(t)and

p, (t), respectively, we may conclude the mass ratio m„
to m, to be as Q„to Q„i.e., about 207 to 1.

It should be noted that even though the reduction
formalism of Sec. IX ff. was developed on the assump-
tion of randomphasedness of the amplitudes (ti,'

I
(li)ii)

in (9.1) and thus directly relates to the muon, this
reduction formalism also relates to the electron. Indeed,
((Xi) IBI (4)) are, as indicated at (8.14) and (8.15),
defined as time-independent quantities, whereas the
(ti,' I (X)) entering into

(t *'l(~))(0 )IBIP ))((~)lt."))-
() 1) (&2)

bring phase factors into this double sum which thus, in
the average, reduces to a diagonal single sum of type
(9.2).

It should finally be noted that the introduction of a
fundamental length instead of the relationship rp= t't/mc

(5.1) would not have satisfied a model appropriate for
the electron as well as the muon.

XV. RESUME

In Sec. III we defined quantized Aux, and showed how
to avoid magnetic monopoles and how to represent the
magnetic field of a lepton (muon or electron) entirely in
terms of quantized Aux. This was done by assuming
that one quantized fIux loop belongs to one source
lepton but that this Aux loop may adopt alternative
forms (e.g. , the forms of magnetic dipole field lines).
Each Qux loopform has a complex probability amplitude
attached to it in a manner similar to Feynman's recon-
struction of a quantum-mechanical path from a super-
position of alternative path histories.

In Sec. IV we showed how an electric field follows
from Qux quantization when the magnetic loopforms
are in motion, spinning with angular velocity 2mc'/t't

around their flux-orientation axes ( (cf. Figs. 1 and 3).
It is seen there that if the magnetic field corresponds
to one muon magneton or one Bohr magneton, the
resulting electric field is isotropic and of the strength of
the Coulomb Geld for either muon or electron. This
simply corresponds to the fact that, by Dirac's theory,
the magnetic moment et'/2mc follows from the charge
e of an electron.
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In Sec. V we started pointing out the inherent diffi-

culties of a point-source model. . Recognizing that the
attachment of loopforms to a source implies the single-
particle picture of that source, described in terms of
"mean position, " this source is then, by the Pryce-
Foldy-Wouthuysen transformation, nonlocal in terms
of ordinary position. As it is only this particular kind of
representation which makes the source lepton appear to
be nonlocal (of an extent A/mc), we called this "quasi-
nonlocality. " It is presumably a very difhcult task to
properly take account of quasi-nonlocality in a theory
of quantized flux loopforms. A grossly simplified model
of an extended source is substituted for a rigorous theory
(cf. Figs. 5 and 6). For such model again the electric field
is isotropic. Appendix II gives expressions for magnetic
flux, electromagnetic energy, and electro-magnetic
angular momentum for an extended source model.

In Sec. VI it is seen that an unsophisticated approach
to the question of effective field, effective energy, and
effective angular momentum will not be compatible
with the basic facts about muons or electrons. (For
example, the product of the quantized flux divided by
4x, and the size of quasi-nonlocality, is two orders of
magnitude larger than the actual magnetic moment for
either muon or electron. )

Section VII then raises the question of how a complex
amplitude superposition may be defined. This section
notes the parameters which characterize the flux loop-
forms (Figs. 8 and 9) and groups the loopforms together
into a discrete manifold of bundles of loopforms. It is
shown how the electric and magnetic fields may be
dered in terms of superposition of bundle fields (7.3)
and (7.4).

Section VIII develops the formalism for the descrip-
tion of a quantum state j p,+) in terms of the (underde-
termined) set of complex bundle amplitudes

~
(X)).

Section IX gives the expressions for linear (B) and
quadratic (B2) field quantities, as averages formed from
complex probability (bundle) amplitudes. It is dis-
cussed what this "reduction" implies for the field close
to and far away from the source lepton. Explicit
formulas for the reduced magnetic moment are given.

As the preceding section has given a relation between
quantized flux and effective flux (in terms of the
numbers A' of bundles and the extension ro of the quasi-
nonlocality), it is then recognized in Sec. X that this
reconstruction of the magnetic field from quantized
flux is compatible with the flux of a muon or Bohr
magneton only if e'/Ac has the right order of magnitude.
In other words, we arrive at an approximate estimate of
the value of e'/A Tco get to a numerical estimate of
that, we have to know both A and ro.

In Sec. XI a count of the number E of "statistically
independent bundles" of loopforms is made.

The purpose of Sec. XII is then to show that with the
values 1V= 207, ra= 0.73A/mc, the electromagnetic
energy is indeed of the order of magnitude mc', and the

electromagnetic angular momentum of the order of
A/2.

Section XIII tries tentatively to take into account
that at regions close to the source and regions far from
the source the fields result from quite different super-
positions of bundles. Regionally differentiated super-
position might specify this more detailed aspect of
superposition. One might, thereby, arrive at a better
evaluation of energy and angular momentum.

Section XIV and Fig. 12 suggest the difference
between muon and electron to lie in amplitude distribu-
tions being random phased and phase related, respec-
tively. The decay into an electron (and neutrino) may
be initiated by phase relatedness of these probability
amplitudes setting in, and beat frequencies (of the
bilinear probabilities) arising. Nonlinear effects may
then cause these muon beat frequencies to excite the low
frequencies of the electron's probability amplitudes.

The complex probability amplitude distribution of the
loopforms characterizes the internal configuration of the
lepton; the fluctuations of this distribution have a
structure which is represented by the discrete bundles
of loopforms.

Evidently the problem ahead is this: How can
the Pryce-Foldy-Wouthuysen type (Zitterbeweglng
caused) quasi-nonlocality be applied in a manner to
permit the structuralized Zitterbexegsng fluctuations
to be properly formulated& Kith the present substitute
formulation in terms of an extended source one cannot,
of course, expect to obtain accurate numerical results.
In two instances we have accordingly made adjustments
in order to obtain expected numerical answers: in Sec.
XI, Eq. (11.1), for the number 1V=207, and in Sec. V,
Eq. (5.1b), for r0=0 73k/mc in. order to get the value
1/137 with Eq. (10.3).

The present theory does not introduce hidden vari-
ables. A given quantum state is not constructed by
probability superposition from substates. It is formu-
lated in terms of a superposition of probability ampli-
tudes whose structure does not refer to substates but
characterizes fluctuations.

We should state what this structural model of leptons
is rot able to do. We could not give a discussion of an
accelerated lepton. It differs essentially from a lepton
of constant velocity (in the lab system) which may be
defined as the Lorentz transform of a lepton at rest.
This inherent difficulty in our model may be significant
when attempts are made to understand processes of
scattering, emission and absorption.

A few more remarks as regards the logical structure
of the theory may be in order, in addition to what has
already been said at the end of Sec. II. At the present
this theory is only capable of approximating the numeri-
cal values for 207 and for 1/137. It is certainly not only
the computational problem which prevents us at present
to get accurate values for these quantities, although the
definition of phase correlatedness of loopform ampli-
tudes still needs to be substantially improved. The real
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problem is that the quasi-nonlocality due to PFW is
taken account of, so far, in only a crude way by handling
the source as an extended source of approximately
Gaussian distribution (Sec. V). Correspondingly, the
definition of phase-correlatedness of different loopforms
has been given only in semiquantitative terms (Sec.
VII). When it is possible to do this in precise quantita-
tive terms, the still more dificult job will have to be
tackled: the definition and calculation of the kind of
ergodic motion of loopform amplitudes as a function of
t, n, (, o..
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APPENDIX I
An analysis of nonlocal theories in QED has been

given by Parke LW. C. Parke, thesis, University Micro-
6lms, Ann Arbor, Mich. , 1967 (unpublished)7. In this
work, the properties of nonlocal fields are investigated
and various types distinguished. The most drastic
feature of such theories, as is generally recognized, is
the lack of a causal relationship between propagating
fields and the difFiculty of incorporating unitarity
(probability interprets, tion) into such a theory. So far,
there is no evidence experimentally for a breakdown of
QED at small distances. A careful distinction must be
made between a nonlocal field theory and the nonlocal
particle properties of relativistic local Geld theory. This
kind of nonlocality arises in an attempt to give a single-
particle interpretation to the particle operators. The
possibility of pair creation during the observation of a
particle gives the single-particle operators their non-
local character. For example, the interaction of an elec-
tron with an external field involves not only the electron
wave function at the field point but its value over a
region of the size k/mc surrounding that point.

APPENDIX II: REPRESENTATION OF QUARKS
IN TERMS OF LINKED QUANTIZED FLUXLOOPS

We wish to consider the choice of appropriate assign-
ments of quantized Qux to particles other than electrons
and muons. Representing a low-lying meson (meson
without orbital angular momentum) as an elementary

Fro. 13. (a) Suggested topological forms of quantized Qux loops representing an X quark (single loop), (P quark (figures ~ loop)
and X (trefoil). (b) A trefoil. An alternative form of a spinning muon which may correspond to a strange muon. The figures show this
trefoil in two views, with an axis indicating how it might spin when not linked. A neutrino is considered as an alternative of such a loop
with a loop of same handedness and spin but opposite orientation, i.e., also opposite coreQux orientation.
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Fzo. 14. Annihilation of two, KX, loops belonging to
two separate cores (swapping).

loop interlinked with an antiloop and a low-lying
baryon (baryon without orbital angular momentum)
as three interlinked elementary loops, accounts for
many of their observed properties. Ke interpret a quark
as an elementary loop only when interlinked with one or
two other loops which restrict its independent motion.
Hence, we may explain why individual quarks are not
observable. We state certain assumptions about their
form and topology and discuss their equivalent electric
charges.

The space-time depiction of spinning loops which we
employ lies on the same level as the particle picture of
the Bohr theory. The motion of loops is, however, not
to be described in terms of the motion of mass points,
but perhaps in terms of the motion of spinning tops. By
introducing probability amplitudes for the alternative
loopform con6gurations we again may construct a
quantum-mechanical formulation. LA particle, repre-
sented by interlinked quark loops is, as in the case of a
lepton, to be formulated in terms of probability amph-
tude functions which represent the magnetic 6eld as n,
0. manifolds of loopforms of origin (coreflux) orientation
(, and of the topological features characterizing K, {Por
X loops, respectively. ]

The knot-theoretical linkage properties' (which may
be referred to as their topology) of flux loops bring many
interesting points into the picture. By "linkage" we may
denote invariant properties of one or of several inter-
linked loop(s), topological properties characterizing the

9 R. H. Fox and R. H. Crowell, Enot Theory (Blaisdell-Ginn,
New York, 1963) (contains a valuable bibliography); R. H. Fox,
Proceedings of the 1961 Topology Institlte, University of Georgia
(Prentice Hall, Englewood ClifFs, N.J., 1962); ¹ Smythe and
C. H. GifFen (private communication); H. Seifert, Acta Mat. 60,
147 (1933); K. Reidemeister, Enotentheorie (Springer, Berlin,
1932; Chelsea, New York, 1961};L. Goeritz, Math. Z. 36, 647
(1933); P. AlexandrofF, Topology (Springer, Berlin, 1932; Dover,
New York, 1961); E. Artin, Abhandl. Math. Sem. Hamburg 4,
47, 1925; Am. Scientist 38, 112 (1950);Collected 5'orks (Addison-
Wesley, Reading, Mass. , 1965); D. Finkelstein, J. Math. Phys. 7,
1218 (1966); VV. S. Massey, Introdgction to Algebraic Topology
{Harcourt, Brace R World, New York, 1967).

Fyo. 15. Suggestion as regards interlinkage of {P quark loop with
a X quark loop, contributing to a charged E+ meson. To illustrate
the topological (knot-theoretical) relationships in the case of a
meson, space is here subdivided by some toroidal surface which
surrounds the core equatorial ring (indicated by two dots). The {P
(figure ~) loop is considered to be confined entirely to the exterior
of the doughnut, the ) (cloverleaf) loop is entirely inside the
doughnut. The core is a sphere (dashed in this picture) concentric
with the doughnut, and of a diameter larger than that of the
doughnut's hole. Thus the 6' loop may pass through the core twice
while the ) loop passes once through the core. Because of this
topological confinement of the {P and ), loops to two toroidal
regions, they may coaxially spin in equal or opposite senses. We
might give an explanation for the charge ratio —1 to +2 to —1
of R, {P, X, as the effective number of wings, The interlinkage
shown in this figure might not be the only possible one permitting
independent spinning. The magnetic-moment contribution of a
quark is assumed to be proportional to its number of coretraverses.

imbedding of the loop(s) in ordinary three space. The
mathematical characterization of independently spin-
ning Aux loops is so complex that it is advisable to
start studying them with the help of simple models:
rubber catheters available from any medical supply
house provide a good way of exploring possible linkage
arrangements.

In Fig. 13(a) we illustrate the forms which quarks
might take. Simple loops represent X quarks; figure ~
loops, {Pquarks; and. trefoils, X quarks. Except for some
interactions, we assume that the loopforms are unable
to slip out of their core attachments (cf. Fig. 5), but
maintain the core crossings which characterize the
single, hgure Oo, and trefoil loops, respectively. We may
thus characterize a loop by its intrinsic linkage and
interlinkage with the ( equatorial core circle (cf. Figs.
15 and 16). As regards these X quarks we note that the
right-handed and the left-handed trefoils are topo-
logically distinct loops even if their relationship to the
core and to the spin axis were disregarded. Presumably,
this "intrinsic linkage" of a ) quark loop represents
strangeness. Two 'A's of opposite handedness may
annihilate each other without flux lines crossing each
other; this may explain conservation of strangeness in
terms of loop topology (intrinsic linkage).

Annihilation of two simple loops belonging to two
separate cores is illustrated in Fig. 14, which will be
discussed, below.

These loopforms shown in Fig. 13(a) and, interlinked,
in Figs. 15 and 16 represent one out of a manifold of
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FIG. 16. Alternative loop linkages of the type shown in Fig. 15.
The wings of one loop spin in one sense only; this implies approxi-
mate proportionality of electric charge and magnetic moment. The
core is indicated by the dashed circle, and the core equator (in cross
section) by the two dots on that circle. The interlinkages shown
in these figures permit the linked loops to spin in opposi, te sense
because they may in fact be thought of as moving entirely inside
a doughnut region (which then again overlaps with the core and
the core equator), and entirely outside, xespectively. The dough-
nut is not drawn in Fig. 16, but a model of the loops built with
rubber catheters and a core equator ring readily establishes this
topological property of the linkage. The 6gures are drawn to
indicate that O' Inay be in the doughnut, ) outside Or vice vexsa;
this means that linked quark loops are to be considered as localized
objects. This is relevant because, in constructing a baryon in
terms of a symmetric function of these loops' amplitudes, be-
sides terms of the kind (P / Xl also terms X1 S'1 have to be considered
(together with a third quark) without violating the Pauli principle.

topologically identical forms. They de6ne a 6ber space,
a diQerentiable manifold, i.e., a vector held which,
how'cveI', D1Ry hRvc sol11c dlscontlnultlcs Rs, c.g. , Rt thc
toroidal interface between two interlinked loops. Fiber-
space topology determines the character of such linked
loops. The most important properties of such a fiber
space may be discussed in terms of the aforementioned
loop models.

Wc have pI'cvlously Incntloncd ln reference to chalgc
conjugation that the sign of the charge changes when
the "orientation" of the Aux relative to the spin is
reversed, i.e, , the direction of the axial Aux vector across
the core; we use the word "orientation" as it is used. in
knot theory (instead of "flux orientation" we previously
used the term "origin orientation"). As to the problem
of the charge associated with the X, O', P loops, we
surmise that because {P has two wings, 5' might have
twice the charge of %, which has one wing. For the P

quark LFig. 13(a)] one of its wings contributes in one

way, the other two in the opposite way, to the electric
held; the effective charge would be assumed to be pro-
portional to the net number (one minus two) of wings.

X((V')"alp ")exp( t&u 3)—(A-1)

foI' a meson Rnd slIMlarly

=2 2 2 2 2 2 &I) exp(+i~. ,i)&l) exp(+t~. i)&I)
&«xp(+t~. &)((I&rl)+(I 13sl)+(I&sl)) (I &

)&exp( —ito„i)(l)exp( —no„t)(l)exp( —nov, t) (A2)

for a baryon. Remembering the representation of quarks
as covariant, the antiquarks as contravariant SU(3)
vectors, the negative frequency te;, of the SU(3) con-
travariant vector amplitude ((X")"s

I y,") may be
considered equivalent to the positive frequency

of a covariant antisymmetric tensor
amplitude

((l")ensasli ")=eeic2ea((l") "sly *"& (A3)

with a fundamental anti-symmetric tensor e;„„,of
frequency ~ „,„;we may thus have —co~, =co~, =3'„„„„
for the meson; ~„=co„=co„=-',cob,».~ for the baryon.
Let us look in more detail into the composition of
several quark loops. A quark or antiquark is represented
by a dichotomic variable as regards its spin. Composi-
tion of dichotomic variables of several quarks proceed. s
by ordinary addition as their spin-~ vector addition
amounts to parallel-antiparallel addition. In the picture
of loopforms this implies that the several loops repre-
senting a particle have to be considered to perform
coaxial spinning, and. that holds for every coreflux
orientation (, one of which is represented in Fig. 15,

Ke assume that loops spin approximately like rigid
bodies.

The actual calculation of the CGective electric charge
6eld originating from a set of interlinked loops is,
however, not simple. Ke do not want to rely on detailed
assumptions about interlinked loopforms, but rather
make a very few simpli6ed assumptions to substantiate
the model. Let us refer to linked loops of the linkage
shown in Figs. 15 and 16.

Linear addition of the electromagnetic 6elds of sev-
eral quarks' loop contributions corresponds to a par-
ticle composed of several quarks having a probability
amplitude which is the product of its quark contribu-
tions. Disregarding ZQterbmef, ueg contributions to-
wards the quark loops' probability amplitudes, the
lnstantRncous 6cld IIlay bc glvcn by expressions of thc
following type where the left-hand sides are understood
to be p,, contributions to the reduced 6eld 3, in Heisen-
berg representation

& 'I 13(r) l~."&

2 6'l(~') "~)
(),')~1 ()i")ai ()i')C& (X")ei
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Indeed this seems, as regards linkage, the only possible
motion of such loops. For coaxially spinning interlinked
loops, their attachment to the core (dashed circle in

Fig. 15) may be characterized by a core equatorial ring
(indicated by two dots), i.e., a circular ring (in a plane
perpendicular to the spinning axis () which holds the
loops together.

In contemplating the forms taken by (P or X quarks,
or by a set of linked quarks, we presume that the
magnetic flux loopforms adopt configurations as if they
were mutually repulsive, the fIux lines representing one
of the alternative forms of the set of linked loops may
be pictured as staying as distant apart from each other
as possible; but, at the core region, that distance is
limited by the core size, which is of the order of A/mc

(Figs. 15 and 16). )For this reason it may be that there
is no strange quark of the (P type, Fig. 13(a), a quark
with two wings and two coretraverses but of the
intrinsic linkage of a )i quark, Fig. 13(a); its form could
be imagined by pushing the left wing of the X quark,
Fig. 13(a), into the core.]

It should be noted that charge conservation is im-

plicit in this theory which is based on Aux quantization
because the electromagnetic 6eld is defined in a gauge-
invariant way Lcf. Eqs. (3.4) and (3.5)]: Invariance
with respect to gauge transformations Lgenerated by
continuous single-valued gauge functions &p (3.2), i.e.,
not pseudo-gauge-transforrnations 8 (3.3)], applied to
the effective fields of a set of interacting particles, im-

plies the conservation of their charge. Given the charge
of the electron, muon, this might account for the integ-
rity of the electric charges of all particles produced by
interactions: As we will indicate below, the form of the
neutrino implies zero charge. Therefore the x~ pv

decay implies an electric charge of the pion equal to
that of the muon (or electron). Similarly, as the charge
of the neutron is assumed again to be proportional to its
effective number of loopwings, i.e. ,

—1 —1+2=0 for
XX(P quarks, the charge is zero. Therefore the X—+ 5'e v

implies that the proton's charge= —electron charge.
It should also be noted that the parcelling out of charge
e to the two mesonic or three baryonic loops is solely
subject to this total charge conservation law and that
it might even be premature to consider the charges of
quarks as 6xed entities.

We now want to comment on the fractionality of the
electric charge of quarks. The highly successful analysis
of magnetic moments in SU(6) assumes proportionality
of the magnetic moment contribution of a quark to the
product of electric charge contribution of a quark times
the signature of the spin; it explains the ratio ——, of
magnetic moment of the neutron to that of the proton.
As our calculation of effective electric Geld on the basis
of V=+(Ac/e)88/Oct for a spinning loop results in a
corresponding proportionality rela, tion (the effective
electric charge is proportional to the magnetic moment
times the spinning angular velocity), the above SU(6)
result may be interpreted with loops of the type of

Fig. 13(a) on the basis of the equality of the number of
coretraverses (which gives the magnetic moment) and
the number of effective wings (which is responsible for
the effective electric field, i.e., charge).

Realizing that for symmetric spin functions of
nucleons (resultant spin up) the magnetic moments are
3eA/2m „.i„„cand —2eA/2m „,i„cfor proton and
neutron, respectively, while for the loops given in Fig.
13(a), by SU(6), the average number of coretraverses is

+3 and —2 for protron and neutron, respectively, we

find that the magnetic contribution of one coretraverse
is eA/2m„„,i„„c,i.e. ,

—1, +2, —1 times of that amount
for %, (P, 'A quarks, respectively. These magnetic
moInent contributions result from our theory if one
gives all the quark loops of a nucleon a common core
extension of about A/m «i«„c;the fractional electric
charges of the quarks result from our theory if one
adopts for each quark a spinning angular velocity 0 of
the size —', (2m„„,i,.„c'/A) because the effective electric
charge of a loop is proportional to the number of core-
traverses or wings times the quantized flux (hc/e)
times the reduction factor times the core extension

(A/m„„.i„c)times the fractional frequency

(2'iitquark& /A) = 3 (2iitnucleon& /A) .

It is here assumed that the interaction between linked
quark loops is small enough to permit a simple SU(6)
product combination as spin functions (there is no
orbital wave function for low-lying baryons). Thus the
time factors get simply multiplied with each other so
that the frequencies of the quark amplitudes add up in
the case of nucleons. In line with the discussion of meson
and baryon probability amplitudes earlier in this
Appendix, for mesons the frequency of a quark
loop is again 3 of the frequency for a meson resulting in
a spinning angular velocity s(2m„„„c'/A).

The above frequency assignments may not only
account for the fractional electric charges of quarks;
they may also permit us, on the one hand, to understand
quark annihilation as being conditional on cancellation
of frequencies, &a;,+co„=0,i.e. , to distinguish antiloop
from loop by the signature of its frequency and thus
explain loop conservation (and presumably, lepton and
baryon number conservation) and, on the other hand,
to understand the meson masses as corresponding to

=2 ~1
M meson g2tt3++q1 —3+meson+ 3meson.

In any case, representing a quark. as a linked elemen-

tary loop renders meaningless the concept of an in-
dividual independent quark. When a loop unlinks,
within the constraints of the conservation laws, it
behaves as a muon or whatever else it comes to be.

The concept of parity transformation is brought into
a new perspective here, because a space inversion has
well-dered implications on the intrinsic linkage and
on the interlinkage of Aux loops. A I' transformation
applied to the magnetic field B(r) of a statistical distri-
bution of linked Qux loops does not change the orienta-
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tion of the axial-vector 8 but places it at the P trans-
formed position —r and thus may also change the
topology of the linked loops. The Aux orientation, given
by (, is not changed. We assume that if we invert the
handedness of a loop and of the linkage of loops, we
obtain a change of the signature of strangeness (5
conjugation which means a P transformation applied to
the topological form of the loop or linked loops). If such
a P transformation is applied to the handedness
(strangeness) in addition to complex conjugation dis-
cussed in Sec. VIII, the result is what is commonly
denoted as C conjugation or particle-antiparticle con-
jugation. The transition from particle to antiparticle or
loop to antiloop is thus expected to imply also a change
of the time dependence exp( —icot) to exp(+i'd) of the
probability amplitude distribution. The latter assump-
tion may permit one to understand the conservation of
number of loops minus number of antiloops which is
important for baryon and lepton conservation laws. We
might note that a loop is defined by its attachment to
the core [Figs. 13(a) and 13(b)7, by its intrinsic
topology corresponding to strangeness [Figs. 13(a) and
13(b)], by its interlinkage with other loops of the same
particle, and by its probability amplitude distribution
over flux orientation (, azimuth n, and time t, which
determines its magnetic moment, spin (and thus charge),
and loop-antiloop character. Indeed, the magnetic-
moment direction is given by the predominant orienta-
tion of (, given that the spin depends on the alternative
expi( —',nWcot), the W thus determines the signature &
of the electric charge; the change of charge and strange-
ness then characterizes the antiloop. The wave function
of an annihilating particle-antiparticle pair has then
a time dependence exp( —uvt) exp(+is&t), which is
interesting.

Ke may denote by ) the quark. which, compared with
X, is of opposite charge and frequency, has a complex
conjugate probability amplitude distribution, and is
also of opposite handedness. A ) and a ), not interlinked
with each other, may then annihilate each other by
mergers of their Aux loops without the need of Aux lines
"cutting across" each other. This states, from the point
of view of linkage, a necessary condition for a fast
process. A fuller discussion is given below. This merger
is initiated at two contact points of the trefoil pair.

A suggestion for a possible linkage of loops is illus-
trated in Fig. 16. The gist of this 6gure is to indicate
that either parallel or antiparallel spinning is possible
for these interlinked loops if one of them is con6ned to
the region inside the doughnut, the other to the outside
region (and analogously to three toroidal regions for
baryons). As the loops of a particle are assigned to
different spacial regions, there will be no conflict from
the Pauli principle with symmetric combinations of
probability amplitudes of loops representing baryons.
This is very important. Without violating the Pauli
principle, a symmetric function of these quarks (which
io. contrast to quarks considered as particles, may be

considered as "localized" objects) may be formed. , per-
mitting baryons then to be constructed as symmetric
quark functions in the customary SU(6) fashion. No
orbital wave function enters into the description of
low-lying baryons.

It is not impossible that there might be loop linkages
other than those shown in Fig. 15, but they would be
more irregular and not so clear to justify or to evaluate.
The picture of a quark as a. loop implies quite different
ways of description from a quark commonly considered
as a particle. The distribution of probability amplitudes
of a loop attached to a core is given by expressions
similar to those of a solid body, i.e., by generalized
spherical harmonics rather than by ordinary spherical
harmonics which characterize the distribution of the
probability amplitudes of a particle moving about a
center of attraction. It also seems appropriate to attrib-
ute only spin angular momentum to a linked gq pair
of loops and consider a higher meson's orbital angular
momentum in terms of two or more qq orbiting about
each other, or rather, to reinterpret the higher meson
spins as being due to higher spins of the quark. s instead
of being due to any involvement of orbital angular
momentum. If p„denotes the probability amplitude
of an interlinked loop-antiloop and p~ denotes that of a
mirror linked structure, then (P,+Pq)/K2 and (@„—P~)/
V2, respectively, might account for the different parities
of higher-lying states. These might be reasonable
predictions.

v = (y+Xo)/v2 (A4)

Ke d.enote by X a X of opposite equivalent electrical
charge because of opposite Aux orientation, not oppo-
site handedness. The mirrored image of such a neutrino
would correspond to the antineutrino F.

Complex as its structure may appear, this hypothe-
sized neutrino generates an electric 6eld consisting of
but small fluctuations so that the associated electro-
magnetic energy corresponds to a, small mass only. The
decay of m+ into p+ and v or the inverse reaction whose
sequential steps of linkage are easier to study are both
compatible with the linkage requirements, if the above
structural assumptions about neutrinos are made. The

Eeltri nos

The main text of this paper on electrons and muons
did not handle the problem of the neutrino. We may
ask: What loop (a single loop, as we are dealing with a
lepton) may characterize an uncharged. particle of spin —',

and of de6nite helicity?
A X loop might be considered [see Fig. 13(b)]. Its

handedness is intrinsic and does not depend on any
particular core attachment. In accordance with our
earlier recognition that a muon or electron is given by
a superposition of alternative loopforms, we now suggest
that the neutrino amplitude may be given by the zero-
charge superposition:
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reaction implies that Aux hnes "rut across" each other
once (cf. below the discussion of weak interaction). We
note 1n passing, that the decay x —+ p, F is of opposite
handedness as the m+ decay.

Electron-neutrinos and muon-neutrinos may be said
to arise from some phase-related and completely
random-phased probability amplitude distributions,
respectively, as it was with the electrons and muons.
This circumstance may be responsible for the two types
of neutrinos involved in muon decay. For the balance
of this paper we shall consider only muon-type, i.e.,
random-phased, probability amplitudes to represent
quarks, mesons, and baryons. It should be noted that,
whereas a single random-phased loop decays into a
phase-related electron loop, linked loops (i.e., quarks)
are expected to disturb each other so much that their
amplitudes remain random phased.

As regards the decay of a muon into an electron, it
should be noted that it is understandable why this
proceeds with the participation of a muon-neutrino and
an electron-neutrino, not merely with a photon. In order
for that process to occur, the probability amplitudes
product of p, r, and that of e F, should match when the
amplitude products' Fourier distributions over ~ and
over k are considered, and also when the ~mternat

distributions due to structure are considered. The
participation of both types of neutrinos may make it
possible to meet this condition because the frequency
and wave-number distributions of the y and s„are
similar (but opposite signature of frequency) and so are
the distributions of e and P„which makes matching
possible.

We have already pointed out, regarding loopforms,
that the % quark resembles a muon loop, while linked
with other loops, it corresponds to fractional charge,
however. The X quark loop might exist on its own, not
interlinked, so it might be worth while to look for two
strange muons (or electrons'), but we cannot yet predict
their properties. This might be another reasonable
prediction. In any case, the cross section for associated
production of a strange lepton pair is expected to be
very small mainly because the formation of a pair of
trefoils would have to be simultaneously initiated at two
contact points of the forming trefoil pair.

Photoes

Fluctuations or oscillations of a source due. to a
perturbation may lead to the disconnection of a mag-
netic Aux loop from the core, the loop moving outward
with velocity c, like the magnetic 6.eld lines of an oscil-
lator. However, since our theory of electrons and muons
does not treat fluctuating or accelerated sources, it is
better not to discuss interactions with photons and
other particles in any detail at this point, except from
the point of view of conservation laws.

Combination of Elementary Loops

We shall distinguish between diRerent combinations
(which result in diverse interactions), considering two
loops.

(A) Linkage of two loops in one core. The loops re-
sernble (in the case of an RK pair) two members of a
chain with linkage occurring in the common core. It is
assumed that all quarks belonging to the same core are
coaxial, i.e., spinning with common axes, for any gq or
pe. We denote the linkage with a notation (which also
indicates parallel or antiparallel spin of the two quarks),
by simply placing the quark symbols next to each
other, e.g.,

Coaxially arranged loops corresponding to linked quarks
may even be able to spin. in opposite directions if their
sizes fit each other (Figs. 15 and 16). Their common
axis may adopt various origin orientations ( as pre-
viously discussed in the case of leptons. The symbol
g4,5'g means accordingly a superposition of alternative
forms which the pair of loops may adopt. As the gq
loops are assigned to different regions of space (cf.
Figs. 15 and 16) and similarly for gag loops, an 2&5'g
and a 6'&Kg are two disticnct pairs, and there is no
conflict with the Pauli principle, from symmetric qqq
combinations.

(8) Extending this superposition concept, we may
form superposition of pairs of loopforms from two
different pairs of loops, belonging to the same core, e.g. ,
additive superposition of the two terms 6'5' and %X
("superposition of linked pairs of loops"):

(C) Interactions "without change of loops" may be of a
type in which there is no change in the number and
types and core attachment of loops.

(D) Actual interactions with a change in the number
or types of loops afford us an opportunity to discuss
the loop interpretation of the conservation of spin,
charge and strangeness. In the course of such inter-
actions linkage may change.

Actual Interactions between Elementary Loops

In every actual interaction of type (D) between two
elementary loops, we have to consider the topology of
the process, whether it consists of loops attached to the
same or to di6erent cores. First, we will discuss the case
of two loops attached to the same core, and their inter-
actions under the assumption that spin angular mo-
mentum or charge may be exchanged among simul-
taneously participant reactants.



HERBERT JEHLE

A simple type of interaction is the annihilation of two
loops. This may occur when they have opposite orienta-
tion and merge with each other (e.g. , and K with K or
a, tP with IP or a X with X). Opposite orientation, for a
qq combination, implies parallel spin. Such a process is
possible only if the resultant spin can be transferred to
another of the reactants (quarks). Besides, such
reactions are impeded if the two merging loops which
are brought together into one core, have the same
handedness (strangeness S) because to complete the
zip-up annihilation process the annihilating pair of
Qux loops would have to cut across each other, which is
assumed to be a slow (weak) process. A meson merging
with a baryon may thus annihilate the meson's g with
a q from the baryon, a strong interaction. Of course, the
core merging is dependent on a really close encounter.
The second-order process of the virtual-meson exchange
of that type would again be a strong interaction.
Strong interaction might not always imply a complete
(T(P or KX annihilation and creation with each meson
exchange.

When two cores merge, with a quark. and its corre-
sponding antiquark coming together with antiparallel
orientation and paralled spin, these two loop's motions
may lock in phase and thus get a chance for very rapid
annihilation.

This chance for rapid annihilation because of syn-
chronized loops occurring in the (short-range) inter-
action of merging cores may be compared with the
interactions, cf. Fig. 14, of loops belonging to separate,
dfgereet cores. Those annihilations may be much slower
because there is no synchronized spinning of the two
loops, interacting about essentially the same axis. We
may thus get a qualitative clue as to the difference
between strong and "electromagnetic" interactions,
Fig. 14, even though both are in the present theory
understood to be of electromagnetic origin.

For the merging of two loops, when two cores merge
in a strong interaction, it is not only of importance to
know the topologies of the merging loops (i.e., their
intrinsic linkages) and their interlinkages, but also to
know the two loopform distributions in terms of
generalized spherical harmonics. The operator repre-
senting the scalar product of angular momentum and
magnetic moment, which characterizes the electric field,
plays a predominant role as do the angular momentum
operators.

Many variations of such annihilation schemes may be
found, e.g. , the decay of

into y+y, where we assume the additive terms 6'f $'g and
tPg(Pf to annihilate, i.e. , tPt with 5'g and simultaneous-

ly (P& with 6'4, the two processes cancelling their spins.
So far we have not yet paid attention to the other

loops which may be interlinked with the reacting loops,
in one core or in the other core, during an interaction.

In either type of interaction for shared cores or for
separate cores, the completion of the zipping up is
apparently prevented by the presence of those other
loops which are in the way and which are not directly
involved in the interaction. We may inquire as to what
then happens to the interacting loops. The question
thus arises how loop annihilation may become possible
when that implies crossing of some of the other flux
loops.

Let us consider a meson (qiq2) and a baryon (qsq4q~)
in strong interaction. We may consider as a first step
that their cores merge; while that occurs, the combined
system meson-baryon makes a transition, denoted by b

(before) ~ a (after). Using the long expressions for
B(r) given in this Appendix, the values

for the instantaneous B(r) contain terms of the time
dependence

expiPcaq +coq +cog +coq4+coq, j t

Xexp tI ((o„—+&a„)+(o)-„+co„+co„,)jt t,

i.e., of nonvanishing frequency. The instantaneous value
for 8 at a particular point r may then pass through zero
frequently. We assume that at the moments when the
resultant instantaneous field B(r) of the combined
system passes through zero at a point r, loopforms may
readily cross there; that happens at any point, fre-
quently. It means that loops may readily cross in that
first step of a strong-interaction process.

The second step of that process is the merging of a
loop with an antiloop, e.g. , g~ of the meson with q3 of
the baryon. Such annihilation, or its inverse, the cre-
ation of a pair of loops, is assumed to be conditional on
the frequency of q&q3 after the Grst step (a=after Grst
step), i.e. , (co;,+co„),to be zero as it should lead to zero
frequency after that final step, i.e., (&o;,+co„)t=0
(f=Gnal state). To such a q2q3 pair thus corresponds
zero frequency (f I

B(r)
I
a), which implies that the Geld

3 does not pass through zero value in the manner it did
above; thus the loops corresponding to g2, q3 do not
readily cross in the annihilation process or its inverse.

The annihilation or creation of a gg pair is thus
dependent on the topological compatibility which we
discussed earlier, i.e., on their strangenesses adding up
to zero.

Considering changes of linkage, which amounts to a
quantized flux line "cutting across" itself or cutting
across another line, it appears that such changes in the
intrinsic linkage of a loop (e.g. , of a X quark), or changes
in the interlinkage of a loop with other loops, occur only
slowly and represent weutt interactions. The production
or annihilation of a neutrino or changes in strangeness
represent typical examples.

Now we may briefly consider interactions involving
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two elementary loops associated with two diferent cores
Such interactions may again lead to changes in the
numbers of loops, either by annihilation or its reverse.
With some probability, the loops may have coinciding
sections, each loop reaching over to the core of the other.
For annihilation, the magnetic moments of the two loops
now need to be parallel. In the event that their spins are
antiparallel, charge- and not only spin-conservation is
achieved. Flux loop zip-up reactions of this type may
be called a, "swapping" of loops (Fig. 14). This is an
annihilation process which does not depend on close
encounter; its probability depends on an inverse power
of the separation; this process is usually called "electro-
magnetic" interaction.

Whereas, in the case of electrons and muons, detailed
field calculations have become possible, similar calcula-
tions seem to be unattainable with the present means for
the linked loops of mesons and baryons. For theIn, this
theory gives some insight into the classification of
particles, their conservation laws and interactions.

While we have presented only sketched remarks, the
study of the elementary loops, their linkages, their
association into mesons and baryons, and most of all,
the reaction mechanisms should prove encouraging. We
should expect new insights into the nature of the various
types of strong interactions, electromagnetic and weak
interactions. These interactions might all together fall
under the theory outlined here.


