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The concept of a closed quantized flux loop (‘‘elementary loop”’) which avoids the implication of magnetic
monopoles is investigated, leading to a theory of a charged lepton (muon or electron). In order to reconstruct
a continuous magnetic dipole field of a source lepton, it is assumed that the flux loop adopts a statistical
distribution of alternative forms characterized by a complex probability amplitude superposition, in a
manner somewhat analogous to the superposition of path histories in Feynman’s space-time approach to
quantum mechanics. Flux quantization results from the equivalence of a line discontinuity of the phase
factor of a y function of a field lepton (due to its phase multivaluedness by 42) to the presence of a line
of quantized flux. On the same basis as quantized flux arises from such a singularity of that phase factor,
so also an electric field arises when this singularity line is moving. In particular, the source’s Coulomb field
results from a spinning of the quantized flux loop (about the center of the source) with an angular velocity
equal to the Zitterbewegung frequency 2mc?/h, if the statistical distribution of flux loopforms properly
represents the magnetic dipole field of a muon or of an electron. The reconstruction of the magnetic and
electric fields of a charged lepton and the comparison of them with the quantized flux 4c/e gives a numerical
estimate of the electromagnetic interaction constant €%/, i.e., an understanding of the relationship be-
tween ¢ and %. The energy mc? and angular momentum 7%/2 may be interpreted as electromagnetic. The
theory should work for both muon and electron and is expected to give some insight into the ratio of the
masses of these two leptons. A representation of quarks in terms of linked quantized flux loops is suggested
to describe a low-lying meson as a linkage of an elementary loop with an antiloop, and a low-lying baryon
as three interlinked elementary loops. We are here developing a model approach to problems of structure
and conservation laws in particle physics. A more abstract version of a quantized flux theory of particles
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should be preceded by such an heuristic model.

I. INTRODUCTION

NE of the puzzles of modern physics is the occur-
rence of two quantum constants: %, indicating the
quantization of action, and e, the quantization of
electric charge. They are numerically interrelated in the
electromagnetic coupling constant, the ‘“fine-structure
constant” ¢2/%c. This relationship has to be considered
solely as a relationship between ¢ and %: With the advent
of special-relativity theory, one eliminates the constant
¢ in €2/%c by measuring time in units of centimeters. (We
shall use, however, the ordinary cgs notation, retaining
all the constants so as to bring the discussion of the
relationship between the fundamental constants e and
# into a familiar language.)

One may ask why, apart from purely historical
reasons, one should start with a separate discussion of
the issue of the electromagnetic coupling constant here,
instead of discussing this issue in relation to all the other
coupling constants. There are two reasons for starting
the discussion of e2/%c¢ on its own. (1) Quantum electro-
dynamics is an exceedingly successful theory: More is
known about electrodynamic interactions than about
any of the other interactions. This means that a new
approach to electromagnetic theory has so many known
facts to comply with that any basically wrong new
attempt to understand e?/%c will show its inconsistencies
immediately. These constraints permit no important
ambiguities in the choice of assumptions for the present
approach; once one tries to carry through a theory like
this one, based on flux quantization, the assumptions
for such a theory are almost uniquely determined with
little choice for alternatives.

(2) In studying the theory of the electron and of the
muon, we may hopefully tackle their basic properties
by electromagnetism alone (and there are good reasons
to expect that the weak and the strong interactions
might be understood in terms of the same concepts
which we are employing in this electromagnetic theory
of the electron and of the muon). A theory of the
electron has not much hope of being relevant if it
cannot give at least a plausible interpretation of the
dual existence of the two similar particles, the electron
and the muon, and of their essential differences in mass.
It is for this reason that from the outset we paid atten-
tion to only such formulation of a theory of the lepton
which might make it possible to understand this duality.
When we develop the theory it will be seen to be more
convenient to discuss it first in terms of the muon and
then look for the specialization which the electron
implies; we have so far, however, only given a crude
qualitative discussion of this electron-muon issue.

The problem of e? versus # received attention with
Sommerfeld’s 1916 paper, which marked the first success
of linking relativity with quantum theory. In 1925, at
the start of quantum mechanics, and then again with
Dirac’s relativistic theory of the electron, there were
expectations that this puzzle of ¢2/#c might be solved.
In the 1930’s, with the inquiry into the basic topics of
quantum electrodynamics, there was, in Niels Bohr’s
words, another hope, but even quantum electrody-
namics had failed to shed light on this issue. Heisenberg,
during the past few years, has made another attempt
towards the resolution of this issue. His starting point
is that a coupling of the Maxwell-Lorentz field equations
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with the Schrédinger-Klein-Gordon or Dirac equation,
in a fashion somewhat resembling Hartree’s self-consist-
ent field, implies a nonlinear equation because the four-
potentials are dependent on y*y. This interesting start-
ing point of Heisenberg’s is similar to what Bohm,
Ruderman, Finkelstein (and a little bit myself) and
many others tried to follow up in the late 1940’s, but
only a few results seemed to have been forthcoming in
such approaches.

The approach taken to the problem here is heuristic.
When we use a quantized magnetic flux loop (an
elementary loop) in this theory, we use a space-time
description of the forms which this loop may adopt.
Such a picture is, for loop motions, on the level of the
Bohr theory for electron orbits. We then attach prob-
ability amplitudes! to the alternative forms of such a
loop and superpose these loopforms to represent the
structure of a “particle.”

We consider an elementary loop, i.e., a quantized flux
loop, as the basic unit of particle physics. Whereas a
single loop represents an electron or muon, three inter-
linked loops represent a low-lying baryon, and a loop
and an antiloop interlinking represent a low-lying meson.
It isimpressive to realize how many puzzles of the quark
picture get resolved with such an interpretation.

Enormous success has been achieved by abstract
approaches to particles physics. Just as a century ago
when it was recognized that it is the group which deter-
mines the geometry, so later and now we experience the
benefit of that recognition in the field of physics, too.
That does not absolve us, however, from the need to
identify physically the operators and the states entering
in the group-theoretical description. It is in that con-

1 The footnotes are grouped together under a few general topics.
They cover a broad spectrum of references most of which have
only an indirect bearing on the present paper. It has been found
useful to have the quotations at hand. Papers relating to ampli-
tude superposition: R. P. Feynman, Rev. Mod. Phys. 20, 367
(1948) ; Phys. Rev. 76, 749 (1949); 76, 769 (1949); 80, 440 (1950);
84, 108 (1951); Science 153, 699 (1966); in Proceedings of the
Twelfth Solvay Institute of Physics Conference (Interscience, New
York, 1961), p. 61; R. P. Feynman and A. R. Hibbs, Quantum
Mechanics and Path Integrals (McGraw-Hill, New York, 1965);
J. R. Klauder, Ann Phys. (N. Y.) 11, 123 (1960) ; Lectures, Uni-
versity of Bern, 1962 (unpublished) ; thesis, Princeton University,
1959 (unpublished); C. Morette-de Witt, Phys. Rev. 81, 848
(1951); C. W. Misner, Rev. Mod. Phys. 29, 497 (1953); W. E.
Brittin and W. R. Chappell, 7bid. 34, 620 (1962); R. P. Feynman,
Quantum Electrodynamics (Benjamin, New York, 1961); Theory
of Fundamental Processes (Benjamin, New York, 1961); R. P.
Feynman, R. B. Leighton, and M. Sands, Feynman Lectures in
Physics (Addison-Wesley, Reading, Mass., 1965); F. J. Dyson,
Phys. Rev. 75, 486 (1949); Advanced Quantum Mechanics,
lecture notes, Cornell, 1951 and 1954 (unpublished); M. Kac,
Probability and Related Topics in Physical Science (Interscience,
New York, 1959); I. Gel’fand and A. Yaglom, Fortschr. Physik
5, 517 (1957); S. S. Schweber, J. Math. Phys. 3, 831 (1962);
I. Gel'fand and A. Yaglom, ¢bid. 1, 48 (1960); L. Streit, Acta
Phys. Austriaca Suppl. II, 2 (1966); D. ter Haar, Path Integral
Methods in Statistical Mechanics (to be published); E. R. Speer,
Generalized Feynman Amplitudes (Princeton U.P., Princeton,
1962); D. Peak and A. Inomata, J. Math Phys. 10, 1422 (1969);
A. M. Arthurs, Feynman Integrals for Classical Waves (Wisconsin
I(Jl,P.,6) Madison, Wisc.); Proc, Cambridge Phil. Soc. 62, 463
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nection and in providing heuristic tools that models are
an important counterpart to an abstract theory.

When, as in the present theory, the question is raised
as to a structure underlying an electron or a muon
(a structure in terms of a probability amplitude distribu-
tion of the forms which a quantized flux loop may
adopt), that question implies a quest for a spin model of
the electron and the muon. The possibility of a spin
model of a lepton has sometimes been considered non-
existent. Bopp and Haag have, however, shown that
indeed such a model exists and has its representation in
the spin-1 eigenfunctions

(1.1)

of the symmetric top (cf. the discussion in Sec. VIII B
of the present paper). The authors point out that a
molecule in fact does not have such half-integer spin
eigenfunctions because its atoms are not rigidly inter-
locked. The half-integer spin eigenfunctions may,
however, directly apply to the probability amplitude
distribution of loopforms.

T n® =exp(ima) P n®(cosf) exp(inf3)

II. OUTLINE

It is not unreasonable, in an attempt to understand
quantization of electric charge, to start with the concept
of flux quantization. Flux quantization has its basis in
the recognition that the phase ¢ of a field lepton’s ¥
function may be multivalued (changing by =27 in
going around a quantized flux line) without the function
itself being multivalued.? This condition of single
valuedness of ¢ which permits phase multivaluedness
by only positive- or negative-integer multiples of 2 is
a very familiar quantization condition.

Multivaluedness of the phase ¢ may occur along lines
in ordinary three-space and, correspondingly, quantized
flux occurs along these lines. Avoiding the unnecessarily
complicating concept of magnetic monopoles, we assume
that the multivaluedness of ¢ and thus also quantized
flux occurs only along lines of the form of closed loops.
A quantized flux loop, on the one hand, represents a
singularity of the phase factor e*® of any field lepton’s
wave function; on the other hand, it is assumed that the
form and location of that loop is as if it were one of the
magnetic dipole field lines of a source lepton. In order to
construct a meaningful field theory, we assume that one
such loop represents only one of a continuous manifold
of “loopforms,” this manifold somewhat resembling the
manifold of magnetic field lines of a source lepton.
Accordingly, we propose to formulate the magnetic
field of a muon or of an electron entirely in terms of
quantized magnetic flux (see Fig. 1).

2 The present ¢ is identical with 38, which we used in our spinor
review papers; the choice of the notation 8 arises from Infeld and
van der Waerden’s convention of designating 6 as the phase of the
metric spinor; cf. W. L. Bade and H. Jehle, Rev. Mod. Phys. 25,
714 (1953); W. C. Parke and H. Jehle, in Bowulder Lectures in
Theoretical Physics, 1964, edited by W. E. Britten et al. (Colorado
U. P., Boulder, Colo., 1965), Vol. VII A,
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F16. 1. Superposition of loopforms to result in a magnetic
dipole field, (D) pointing in the 4z direction, corresponding to a
pure quantum state |u."). (A) Three generators of loopforms (a
one-parameter manifold of different sizes ¢), all sharing the same
direction of flux orientation { and azimuth «. (B) A sheaf of
loopforms corresponding to these generators (A); a sheaf is a
two parameter manifold (s,a) of loopforms all belonging again
to the same flux orientation {. Differences in thickness of the
lines indicate closeness to the reader, to facilitate three-dimen-
sional perception. (C) Generators of type (A), in (C), however,
for a one-parameter manifold () of flux orientations ¢ and for a
manifold of sizes ¢. That is a two-parameter manifold ({,,0)
although in the picture only four different flux orientations {,
corresponding to four different values of the single parameter ¢,
are shown. Differences in thickness here represent differences in
the magnitudes of the complex probability amplitudes correspond-
ing to the different flux orientations {., and have nothing to do
with the facilitating three-dimensional perception; all these four
generators are in the same plane. If the full two-parameter mani-
fold of sheaves of all flux orientations { [not only the generators
(C)] and the full manifold of azimuths « is used to construct a
field by superposition with the probability amplitudes indicated in
(C), the resultant dipole field (D) results. The thicknesses of the
lines is here again employed only as a help to three-dimensional
visualization.

In such attempts to reconstruct the magnetic field of
a muon or an electron from a superposition of alterna-
tive loopforms we shall make several assumptions, some
of them only to simplify the calculations in a drastic
way. We assume that the quantized flux loop, whatever
form it adopts, is going through the position of the
source lepton. Whereas in an ordinary Maxwell-Lorentz
description of the source this is seen to be due to the
circumstance that currents and charges are assumed to
be confined to the source region, we simply assume here
that the flux loop takes on “loopforms” which resemble
the classical magnetic field lines of a dipole source. We
may leave to a later time the question whether that
assumption might be reduced to other more basic as-
sumptions, e.g., in terms of a Lagrangian for loopform
amplitudes.

The concept of a manifold of forms (“alternative flux
loopforms”) which one single elementary loop may
adopt, as a representation of the magnetic field of a
source lepton, is similar to the concept of a manifold of
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alternative path histories! which is taken to represent a
quantum-mechanical path of a particle.

To these alternative loopforms we attach complex
probability amplitudes. The difference of the present
procedure from Feynman’s assignment of probability
amplitudes for the path histories is this: For the space-
time motion of a particle, Feynman takes the action
integral to determine the phase of the contributing
amplitudes; for the stationary distribution of alterna-
tive loopforms in the present theory, we choose the
phases of the amplitudes of a muon as random phased
in some specified way and we choose the magnitudes of
the complex amplitudes proportional to the square root
of the corresponding share of magnetic flux they are to
represent on the basis of a magnetic dipole in Maxwell-
Lorentz’s theory. We should take care not to confuse
the phases of the amplitudes with the multivalued
phase ¢ (of a field lepton’s wave function) which intro-
duces the quantized flux.

Our assumption that all magnetic flux is quantized
flux means that the gauge-invariant four-potential @y,
Eq. (3.4), is set equal to zero. This means that, with the
flux-defining singular vector potential A, an electric
potential V also arises if quantized flux lines are in
motion and if it is assumed that they carry the phase
field (i.e., the multivalued ¢ field) in the mean along
with them in their motion (for topological reasons this
is an obviously necessary assumption). In particular, if
the flux loopforms representing a source lepton of mag-
netic moment e#/2mc all spin around their axes (cf.
Figs. 1 and 2) with the angular velocity 2mc?/% of the
Zitterbewegung, and carry the ¢ field along with the
loopforms in their rotational motion, the Coulomb field
results without the explicit introduction of an electric
charge as a source. This result, so particularly important
because it holds for muon and electron alike, is not too
astonishing, however. The Dirac electron theory starts
with the charge ¢ of the electron and yields a magnetic
moment e#/2mc; in the present theory the reverse
situation applies: Starting with the concept of flux
loopforms, provided they reconstruct the magnetic
moment efi/2mc, we get the Coulomb field equivalent
to an electric charge d=e. This charge is +e or —e
depending on whether the magnetic moment vector
and the spin angular velocity vector of the loopforms
are parallel or antiparallel to each other, as indeed it
should be. (Charge and current follow from the fields
by Maxwell-Lorentz equations.)

In this connection it is to be noted that already
several decades ago Dirac remarked that e should be
expressed in terms of #, not vice versa, because a theory
which explains the charge in terms of the square root of
Planck’s constant yields both signs, -+e and —e.

If it is attempted to parcel out the quantized flux
®,=hc/e, Eq. (3.6), to the alternative loopforms of a
point dipole source, one will get zero magnetic moment,
and infinite magnetic field intensity at the location of
that point dipole. The question therefore arises how to
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avoid these obvious difficulties without relinquishing the
basically local character of quantum electrodynamics.

Although this is a formidable problem, it does seem
to have an obvious solution. When we use a description
of a source lepton in terms of a space-time distribution
of loopforms, we necessarily have to attach those loop-
forms to the mean position of the lepton described as a
single particle. The Pryce-Foldy-Wouthuysen trans-
formation of the Dirac electron to a single-particle
representation makes the particle’s mean position an
operator which is nonlocal of extent %/mc in ordinary
position space.

We thereby assume structure for the lepton. A system
of loopforms of the form of magnetic field lines of a
point dipole source do not yet define a characteristic
length. It is the length %/mc, which characterizes the
quasi-nonlocality of the source, which defines the
structure of the source lepton.

There are several ways in which this “quasi-non-
locality” might be accounted for in a quantized loop-
form theory of a lepton. The simplest, and perhaps
crudest, heuristic way is to handle the issue as if the
source lepton was an extended source of extension
~#/mc in ordinary position space. This is the approach
taken in the present paper.

We may then raise the question: What distribution of
the complex probability amplitudes over the space-time
configurations of loopforms of quantized flux ®, leads
to a correct reconstruction of the magnetic, and thereby
also electric, field of the source lepton (the title “rela-
tionship of flux quantization to charge quantization”
refers to that), a field whose electromagnetic energy is
mc? and electromagnetic angular momentum is #/2?
This energy then may determine the frequency of the
probability amplitude wave.

Itis seen in Sec. X that such reconstruction is possible
provided e*/%c is of the right order of magnitude, i.e.,
~1/137. No accurate figures of e?/%c can yet be calcu-
lated because the definition of manifold of loopforms
(bundled together into a discreet set of bundles) is only
approximately possible with the crude assumptions
about quasi-nonlocality used in the present paper.

It should be said that it is one part of the story that
an electric Coulomb field appears simply as a conse-
quence of a Bohr (or muon) magneton field and the
electron (or muon) spinning frequency. It is then a
second part that the reconstruction of these fields and
of mc? and #/2 from quantized flux ®,=ek/c leads to a
numerical estimate of the electromagnetic coupling
constant.

The relation of muon to electron may be interpreted
as random phasedness to phase correlatedness (co-
herence) of the space-time distribution of loopform
amplitudes, corresponding to a spinning of muon loop-
forms with high angular phase velocity versus a spinning
of electron loopforms with slow angular velocity corre-
sponding to a group velocity of muon waves. At a
particular region in space, these motions are represented
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by a high fundamental frequency of muons and a low
frequency of electrons corresponding to a beat frequency
of muon waves.

We are trying to illustrate this theory in terms of
simple manifolds of space-time forms of quantized flux
loops. These picturesque aspects have as their purpose
only the formulation of a theory in the simplest possible
terms. A sophisticated theory of space-time manifolds
of “flux loopforms” may involve deeper and more
difficult mathematical tools than those used here. We
shall also leave it to a later investigation to find out
what general equations may govern the (statistical)
distribution of the manifold of loopforms over space
and time.

In Appendix II we propose an interpretation of
mesons and baryons in terms of linked quantized flux
loops. According to that view, a quark exhibits its
properties only if interlinked with an other quark. The
quantum numbers of particle physics seem to relate
directly to topological and other properties of linked
loops and their probability amplitude distributions.
Strong and weak interactions might be qualitatively
understood in terms of interactions of quantized flux
loops.

It may be appropriate to enumerate the fields we
deal with. We started with a wave-mechanical ¢ field
(@) (of a field lepton or field particle) whose phase ¢,
because of its being single valued only modulo 2,
defines quantized flux loops (cf. Sec. ITI). This ¢ field is
considered a semiclassical field which may possess these
flux singularities with loopforms; these “alternatives’ of
fields and loop forms, like the alternatives of Feynman
path histories, are then superimposed with complex
probability amplitudes to build up a quantum state of
the source lepton. All magnetic and electric fields (II)
are built up from alternative (spinning) loopforms of
these singularities of (I), and all physical quantities
should be expressible in terms of that electromagnetic
field (II). To define that electromagnetic field, prob-
ability amplitude distributions (III) are defined so
as to imply electromagnetic fields which satisfy the
Maxwell-Lorentz equation. The probability amplitude
field (IIT) may be considered as “carrying” the electro-
magnetic field (IT). As the lepton has spin §, we assume
the carrier probability amplitude field (IIT) to corre-
spond to spin s=% eigenfunctions, of type Eq. (1.1).

We refer for further clarification to the end of Sec.
VI. The complex probability amplitude distribution of
the loopforms characterizes the internal configuration
of the lepton; the fluctuations (Zitterbewegung) of
this distribution have a structure which is represented
by the discrete bundles of spinning loopforms.

This theory tries to give a single-field account of
leptons, mesons, and baryons. It therefore does not lend
itself to ambiguous assumptions (and it is much more
conservative than monopole theories). It is to be com-
patible with the Maxwell-Lorentz and Dirac theories.
It (1) derives the electric Coulomb field from quantized
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flux. It brings in new features (2) by defining structure
and consequently the numbers 207 and 1/137 in the
analysis of charged leptons, and (3) by defining the
consequences of linkage of two or three loops in low-
lying mesons or baryons, for an understanding of the
classification of particles and of their interactions.

III. MAGNETIC FIELD FROM QUANTIZED FLUX

Quantization of flux is a concept implicit in a gauge-
invariant formulation of electromagnetism.?® As it is, the
expression

[0x—ile/tic)Ar ]y, Ar=(V,—A),

3.
e=-44.8X10710 cgs, (3-1)

which enters a wave equation of a lepton, a gauge
transformation

y=yetiv A=A, (hc/e)oro,

with a gauge variable ¢ which is a continuous function
of time and space, results in a gauge-covariant descrip-
tion of the motion of a lepton. The gauge function ¢,
apart from being assumed to be continuous, is assumed
to be a single-valued function of time and space. With-
out dispensing with the assumption of single valuedness
of the y function, we may, instead of the single-valued
phase ¢, consider a phase ¢ which is single-valued
modulo 27 only,?

£=0,1,2,3 (3.2)

v=y'e"’. (3.3)

8 Papers relating to gauge invariance and definition of potentials:
F. Rohrlich and F. Strocchi, Phys. Rev. 139, B476 (1965);
S. Mandelstam, Ann. Phys. (N. Y.) 19, 1 (1962); B. S. de Witt,
Phys. Rev. 125, 2189 (1962); P. G. Bergmann, Nuovo Cimento
3, 1177 (1956); I. J. Belinfante, Phys. Rev. 128, 2832 (1962);
R. J. Finkelstein, Rev. Mod. Phys. 36, 632 (1964); F. Rohrlich,
Phys. Rev. 150, 1104 (1966); L. Motz, #bid. 119, 1102 (1960);
J. M. Blatt, Phys. Rev. Letters 7, 82 (1961); M. Suffczynski,
Acta Phys. Polon. 12, 83 (1953); L. Infeld and J. Plebanski, Bull.
Acad. Polon. Sci. 3, 95 (1955); Proc. Roy. Soc. (London) A222,
224 (1954). One might add here also a very incomplete list of
spinor reviews: I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro,
Representation of the Rotation and Loreniz Groups and their Appli-
cation (Pergamon, New York, 1963); H. Feshbach and F. Villars,
Rev. Mod. Phys. 30, 24 (1958); N. Kemmer, J. C. Polkinghorne,
and D. L. Pursey, Rept. Progr. Phys. 22, 368 (1959); L. Infeld
and B. L. van der Waerden, Preuss. Akad. Wiss. 380 (1933);
0. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380 (1931);
37,1552 (1931) ; P. Roman, Theory of Elementary Particles (North-
Holland, Amsterdam, 1960) ; E. M. Corson, Tensors, Spinors, and
Relativistic Wave Equations (Hafner, New York, 1953); W. L.
Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953); W. C. Parke
and H. Jehle, in Boulder Lectures in Theoretical Physics, 1964,
edited by Wesley E. Brittin, B. W. Downs, and Joanne Downs
(Colorado U.P., Boulder, Colo., 1965), Vol. VIT A, p. 297; J. H.
Helgewoerd and S. A. Wouthuysen, Nucl. Phys. 40, 1 (1963);
E. Cartan, Theory of Spinors, edited by R. Streater (Hermann,
Paris, 1937; MIT Press, Cambridge, Mass., 1966); J. Serpe,
Physica 18, 295 (1962) ; R. H. Good, Jr., Rev. Mod. Phys. 27, 187
(1955) ; V. Bargmann, Helv. Phys. Acta 7, 57 (1934) ; Ber. Preuss.
Akad. 346 (1932); Rev. Mod. Phys. 34, 829 (1962); M. Tierz,
Helv. Phys. Acta 12, 3 (1938); J. von Neumann and O. Veblen,
Geometry of Complex Domains (Institute for Advanced Study,
Princeton, 1955); J. Serpe, Les Lois de Conservations en Physique
des Particules Elementaries (Institute Inter Universitaire, Brux-
elles, 1959); R. Brauer and H. Weyl, Am. J. Math. 57, 425
(1935); J. Rzewuski, Field Theory (Polska Akademia Nauk, 1958).
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This means that Vi, considered as a function of ordinary
three-space, has singularity lines around which ¢
changes by a positive- or negative-integer multiple of
27. Blatt called (3.3) appropriately a “pseudo-gauge
transformation’’; in this paper we also prefer not to
call (3.3), with multivalued ¢, a gauge transformation.
Starting with a field lepton’s wave function ¥’ which
is “singularity free” (ie., whose ¢ field=0) and
which moves in a zero A4;’ field, the gauge-invariant
combination

Ak—(h6/6)0k19=@k—':Ak/-—(’hC/e)akl?, (34:)
is equal to zero all along, i.e.,
@x=0, 3.5)

which implies the fields A4 explicitly written out in
(4.2) and (4.3). In other words, from a solution of the
wave equation for a field lepton with ‘“nonsingular
derivative” of ¢/, in a zero field 4;’=0, we obtain
another solution of the wave equation corresponding to
a y field with a singularity line and a corresponding A4y
field of a quantized flux line.*

4 Papers relating to flux quantization: I'. London, Nature 140,
793 (1937); 140, 834 (1937); Superfluids I (Wiley, New York,
1950); P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931);
Phys. Rev. 74, 817 (1948); M. N. Saha, Ind. J. Phys. 10, 141
(1936); 75, 1968 (1949); J. Schwinger, Phys. Rev. 144, 1087
(1966); N. Cabbibo and E. Ferrari, Nuovo Cimento 23, 1147
(1962); Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959);
W. H. Furry and N. F. Ramsey, ¢bid. 118, 623 (1960); V. F.
Weisskopf, in Boulder Lectures in Theoretical Physics, edited by
W. E. Britten et al. (Interscience, New York, 1961), Vol. III,
p. 54; G. Wentzel, Progr. Theoret. Phys. (Kyoto) Suppl. 37-38,
163 (1966); D. Zwanziger, Phys. Rev. 137, B647 (1965); L. 1.
Schiff, ibid. 160, 1257 (1967); Phys. Rev. Letters 17, 714 (1966);
Michael Buckingham (private communication); D. E. Zwanziger
and M. Ruderman, Phys. Rev. Letters 22, 146 (1969) ; F. Rohrlich,
Phys. Rev. 150, 1104 (1966); A. Goldhaber, ibid. 140, B1407
(1965); L. C. Biedenharn (private communication); G. Wentzel,
Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 163 (1966); J. M.
Blatt, Theory of Superconductivity (Academic, New York, 1964);
B. S. Deaver and W. N. Fairbank, Phys. Rev. Letters 7, 43
(1961) ; N. Byers and C. N. Yang, sbud. 7, 46 (1961); L. Onsager,
ibid. 7, 50 (1961) ; in Proceedings of the International Conference on
Theoretical Physics, Kyoto and Tokyo, September, 1953 (Science
Council of Japan, Tokyo, 1954), p. 935; F. London, Phys. Rev.
74, 568 (1948); C. N. Yang, Rev. Mod. Phys. 34, 694 (1962);
Phys. Rev. D 1, 2360 (1970); W. L. Goodman and B. S. Deaver,
Phys. Rev. Letters 24, 870 (1970); R. P. Feynman, Lectures 111,
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The value of the unit of quantized flux is given by
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——27r,=fV19-dr=(e/hc) > Agdr®
k=1

=—(e/hc)f/CUﬂA-dS=—'(6/h5)q’q’

Dy=hc/e=4.1356X10"7 G cm?2 3.6)

F. London,* in his papers on superconductivity,
recognized the importance of quantized flux which
arises in a gauge-invariant theory. Flux quantization
was still earlier discussed by Dirac? in connection with
his hypothesis of magnetic monopoles. London’s pro-
gram on superconductivity has been continued and
completed through the work of Onsager, Deaver, and
Fairbank, Schafroth, Byers, and Yang, Ginzburg and
Landau, Bardeen, Cooper, and Schrieffer, Froehlich,
Bloch, Blatt, and many others.* Many ideas in this
paper stem from F. London.

Further interest in the basic theoretical issues of flux
quantization arose through the discussions of Aharonov
and Bohm.* They raised the question of whether or not
a split electron beam channeled