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In a previous paper a simple bootstrap hypothesis was applied to the meson-meson and

meson-baryon scattering amplitudes of a hypothetical set of arbitrary numbers of even-
and odd-parity mesons and baryons. A set of self-consistency relations for the trilinear
interaction constants of the hadrons was obtained. In the present paper, this set is re-
examined and extended by considering baryon-baryon scattering. The most striking new

predictions are that the mesons must interact with the symmetry of quark-antiquark com-
posites, while the baryons behave as quark-quark composites. The meson Regge trajector-
ies must be parity-doubled, while the baryon parity depends on the symmetry with respect
to the interchange of the two (mathematical) quarks. Particles of baryon number more than
1 are forbidden.

I. INTRODUCTION

In the last several years many papers have been
written concerning the induction of hadron symme-
tries from a bootstrap hypothesis. ' In these papers
a hypothetical set of hadrons is considered; the
interaction constants, and usually the number of
hadrons in the set, are left arbitrary. Some simple
dynamical hypothesis is applied either to scattering
amplitudes or to vertex functions, and used to ob-
tain self-consistency conditions on the interaction
constants. The aim is to show that these conditions
require that the hadron set possess a simple sym-
metry.

Recently, the author used a bootstrap hypothesis
based on duality to obtain such consistency condi-
tions for meson-meson and meson-baryon scatter-
ing." The main advantage of the duality formula-
tion is that it allows for mesons and baryons of
both parities to be included on the same footing.
This is important mathematically as well as phys-
ically, for there are no solutions in which mesons
of one parity exist without the other, or baryons of
one parity exist without the other (except for a
trivial solution involving only one meson state)."

In this paper we reexamine the conditions and
extend them to include baryon-baryon scattering.
The three most striking new results are: (i) The
mesons of each parity must interact as if they were
quark-antiquark composites. (ii) No states of
baryon number greater than 1 may exist. (iii) The
baryons interact as if they were quark-quark com-
posites, the baryon parity corresponding to the
symmetry under interchange of the quarks. This
quark structure is not assumed but is forced by the
bootstrap equations. The quarks are "mathematical"
in that no one-quark state can exist in the model.

The consistency equations, derived in previous
references, are listed in Sec. II. In this paper;

we are concerned particularly with the algebraic
implications of the conditions. The implications
for mesons and for baryons are given in Sec. III
and Sec. IV, respectively. In order to aid com-
prehension, we have made the logical arguments
in Sec. III and Sec. IV complete. Results obtained
previously are rederived, if they are necessary to
the argument. Old and new results are labeled as
such. The general relation of the results to the
experimentally observed hadron spectrum is dis-
cussed at the conclusion of Sec. III and Sec. V; a
detailed comparison with experiment is not made.
The consistency conditions used are obtained from
considering forward and backward scattering; the
problem of extending to other angles is discussed
only briefly, in Sec. V.

II. THE CONSISTENCY CONDITIONS

s: Q+ 6» c+d~

0+c» 5+d~

u: c+5-a+d,
(2.1)

where i denotes the conjugate (antiparticle) state
of i. The consistency conditions are applied only
to forward and backward amplitudes. The particle
labels refer both to internal quantum numbers and
to spin components along the direction of inter-
action, taken as the z axis. For collinear ampli-
tudes these spin components behave as internal

%e assume a hypothetical universe of four types
of hadrons: mesons of even and odd parities, and

baryons of even and odd parities. Each of these
four hadron subsets is taken as degenerate, but the
numbers of hadrons and their trilinear interaction
constants are left arbitrary. A two-hadron
—two-hadron interaction may be represented in the
s, t, and u Mandelstam channels as follows:
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G, ,„=q" G, „-; (i=meson sta, te). (2.4)

If i, j, and k are all meson states, Eq. (2.4) follows
from Eqs. (2.2) a.nd (2.3).

'Ve first consider the cases when a and c are
meson states, so that b and d are either both me-
sons or both baryons. The consistency condition
corresponding to the s-u pair of channels is

(2.5)

where the sums are over all possible intermediate
states of both parities. ' Our bootstrap equations
are Eq. (2.5), and corresponding equations for the
s-t and u-t pairs of channels and for baryon-baryon
scattering. It is required that all two-hadron
—two-hadron amplitudes be considered, and that
the set of internal particles be identical to the set
of external particles.

A model that leads to this condition is discussed
in Ref. 3; we give here only the general features
of the model. The virtual particles are the lightest

quantum numbers under crossing.
The bootstrap condition relates the contributions

of one-particle poles in any two of the three
Mandelstam channels. We use the general coupling
constant G, ,, to refer to the vertex 0-i+ j, where
i and j are states emitted in the +z and -z direc-
tions, respectively, in the 0 rest system. Revers-
ing the directions of the two emitted particles leads
to the symmetry relation

(2.2)

where g'" is the orbital parity of the vertex. We

define a, parity factor g" with a variable number
of indices, subject to the restrictions that the num-
ber of indices referring to states of baryon number
1 is even, and the number referring to states of
baryon number —1 is also even. The value of q is
the product of the intrinsic parities of the meson
states and the relative parities of the pairs of
baryon and antibaryon states.

If i is a meson state, the G's are defined so that
they have the crossing property

G, ,„=G;„(i= meson state). (2 3)

Baryons are defined as particles with a conserved
baryon number; we do not want to specify in ad-
vance whether their spins are integral or half-odd-
integral. We avoid the consequent ambiguity con-
cerning the intrinsic parity of baryon-antibaryon
states by always letting the right-hand subscript of
a meson-baryon-baryon coupling constant refer to
a baryon or antibaryon, so that one baryon is in

the initial state and one is in the final state. Bar-
yons may be crossed two at a time; the corre-
sponding crossing property of G is

ndn nbn Z 1 r rdbtnn (2.6)

where we have chosen a conjugate representation

states on Regge trajectories. The meson states of
one parity lie above those of the other by an interval
of (a') ' in the energy squared, where a'is the
universal slope of the trajectories; a similar ex-
change-degeneracy condition applies to the baryon
trajectories. The consistency condition results
from a simple proportionality assumption concern-
ing the Regge residues, together with the duality
condition that the imaginary part of the s-channel
resonance contribution to the amplitude in the back-
ward direction be equal to the imaginary part of the
u- channel exchange contribution. When the parity
factor q' '" is negative, the s- and u-channel am-
plitudes are odd in the center-of-mass momentum
k. The q'"" is included in the condition because k

is odd under s-u crossing and must be removed from
the amplitude when coupling constants are defined
from the residues. For an elastic process (a=c
and b = d), it is seen from Eq. (2.2) that the con-
tributions of virtual particles of opposite parity to
either side of Eq. (2.5) are of opposite sign, as they
should be for backward scattering.

In this model, the Regge residues of all meson
trajectories are assumed proportional, and those
of baryon trajectories are assumed proportional.
If p. and m are the masses of the odd-parity mesons
and even-parity baryons, the constants G of Eq.
(2.5) are essentially the residues when all meson
and baryon energy factors are JL(, and m. Thus the
G are equal to physical coupling constants only for
interactions involving only odd-parity mesons and

even-parity baryons. The physical coupling con-
stants involving even-parity mesons and odd-parity
baryons are proportional to the G's. Since the G's
have been defined in terms of states of definite
spin components, the relation of the states to the
total angular momentum operator J' is not simple;
this is discussed briefly in Sec. V.

We now turn to the s-t-channel consistency con-
ditions. These may be obtained by making the re-
placements a- b and a b in Eq. (2.5). However,
when baryons are involved, the resulting equations
violate our convention of letting the right-hand
index refer to a baryon state. Therefore we will
write the s-t conditions for meson-meson scatter-
ing in a different form, and then use this form as
a guide for writing s-t conditions for meson-bar-
yon and baryon-baryon scattering.

We write the s-t condition for meson-meson
scattering, and use Eqs. (2.2) and (2.3) to permute
indices so that the subscripts corresponding to
internal states are first. If this is done for the t-
channel term only, the result is
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for the virtual mesons r (i.e. , r=r). The ~ factor
is 1, but is included in order to make generaliza-
tion to baryons easier. The expression on the right
may be visualized as corresponding to the exchange
of t-channel trajectories, for the s-channel ampli-
tude. The q"" corresponds to the Regge signature
factor. If a similar permutation of indices is made
in the s-channel term also, the result is

Q I GrsaGr~c =g 1 GrcaGrdbr (2.7)

where again the x are conjugate states.
When considering meson-baryon scattering, we

will identify a and c with meson states, and use
Eq. (2.6) as the s tequatio-n, including the arbi-
trary constant & to account for the fact that the
virtual particles on the left and right sides are
baryons and mesons, respectively. In the case of
baryon-baryon scattering, we will choose the u
channel to correspond to baryon number 2, and use
Eq. (2.7) for the s tconditi-on.

(3.1)

while if the parity factor q'"'" is odd, Eq. (2.5) may
be written

Q dear far b +feil~ darb Q dadrfcrb +Qfadr dern

(3.2)

Since all channels are meson-meson channels, the
s-t and u-t conditions are superfluous; one may
obtain all the conditions by permuting indices in
Eqs. (3.1) and (3.2).

It is convenient to define a coupling-constant
matrix G, , with jk matrix element G, ,, Then
Eqs. (3.1) and (3.2) are equivalent to the db ele-
ments of the following matrix commutator equa-

III. THE MESON SYSTEM

A. Form of the Equations

In this section, we consider only meson-meson
scattering amplitudes, Throughout the rest of the
paper, we work only in representations in which
all meson states are self-conjugate. The vertex
parity factor g'" is equal to the product of the
intrinsic parities of the three mesons; we denote
the G,,~ corresponding to positive and negative
q factors by d... and f..., respectively. One may
use Eqs. (2.2) and (2.3) to show that the d;,, are
real and completely symmetric, while the f...are
imaginary and completely antisymmetric.

If the product of the a, b, c, and d parities is even,
one may use Eqs. (2.2) and (2.3) to write the s u-
equation, Eq. (2.5), in the form

Z car darb Zfcdrfarn =g daur dern gfadrfcrb t

tions:

(3.3)

(3.4)

The vector space includes all meson states of both
pa, rities.

B. Some Results Obtained Previously

Q (fair fere +facr ford +fanrfjrrc ) = O' (3.5)

This is the Jacobi-identity condition. Together
with the antisymmetry condition, it implies that
the f's are proportional to structure constants of
a, Lie group (with imaginary proportionality con-
stants) and that the meson states correspond to the
regular representation of the group. "

We consider the real Hermitian metric tensor
g„=—g, ,f;,,f, ,„and diagonalize it with an orthog-
onal transformation. Each term in the sum con-
tributes a zero or negative amount to g„. If a
diagonal element g„ is zero, then all f,,, are zero.
Thus, if we consider only the set of states with
one or more nonzero f's (called the "antisymmetric
set"), the metric g„ is negative definite, implying
that the Lie group of this set is compact and semi-
simple. 9 The f, matrices are the r.egular repre-
sentation of the group genera, tors.

(4) Existence and group properties of the d's.
Since the f's do not all commute, Eq. (3.3) implies
that some d's exist. Thus, mesons of both parities

We list here five important implications of Eqs.
(3.1) and (3.2) that have been obtained previously. '

(1) The one state s-olution. It is clear that if
only one state A. exists, of even parity, with one
interaction constant d~z~, Eqs. (3.1) and (3.2) are
satisfied. We look for another solution that is less
trivial.

(2) Lack of nontrivial solutions involving only d's.
We examine all possible solutions in which all f's
vanish. The d, are real and Hermitian. If all
f...=o, Eq. (3.3) states that all the d; commute
and so may be diagonalized simultaneously by an
orthogonal transformation. Such a transformation
preserves the self-conjugate property of the basis,
so the d's remain completely symmetric. Since
all the d's are diagonal and completely symmetric,
each d, ,, vanishes if any two indices are different.
Thus, the change of basis has yielded a set of dis-
joint, one- state solutions. Nontriviality requires
that some f's exist.

(3) GrouP ProPerties of the f's. We sum Eq.
(3.1) over all 24 permutations of o, b, c, and d,
including a minus sign with the odd permutations.
If the antisymmetry property of the f's is used,
the result may be written in the form



3062 RICHARD H. CA P PS

This equation implies that each d, transforms
either as the regular or the singlet representation
of the group.

(5) Constant matrix character of the d's for
states not in the antisymmet~ic set. If a state c
is not in the antisymmetric set, so that f„, =0,
Eq. (3.6) shows that d, commutes with all the f 's,
and Eq. (3.3) shows that d, commutes with all the
d's. Thus, by Schur's lemma, d, is a multiple of
the unit matrix in any irreducible subspace of the
representation of the f's or d's. We call such a
matrix a unit-type matrix. The state c is a singlet
state.

C. New Results

If we subtract Eq. (3.4) from Eq. (3.3), the re-
sult is the matrix commutator form of the s-u
channel condition, i.e.,

[p„m. ]=0, (3.7)

where P, =f, + d, and m; =f, -d, . Two further
equations may be obtained by subtracting Eq. (3.2)
from Eq. (3.1) and applying the permutation oper-
ators (I+II„)II,„, where II,, permutes the indices
i and j. The two resulting equations involve the
"plus-type" (p, ) matrices, i.e. ,

[p. p. ]=2&f.,P„ (3.8)

Q„p.],=2pd. ,„p„. (3.9)

These may be regarded as the difference and sum
of the s-t and u-t channel consistency conditions.
It is convenient to write two more equations by
adding Eqs. (3.1) and (3.2), and then applying the
permutation operators (I + II„)II„.The results
are

[m. , m. ] = 2gf.,„m„, (3.10)

(m, , m, ],=-2+d„„m„. (3.11)

The indices a, c, and r in these equations apply
to meson states of both parities, and the vector
space in which the matrices are defined includes
states of both parities. It is convenient to assign
all the even-parity states the lowest row and
column indices, so that the matrices consist of
four distinct quadrants. Since the f and d are non-

zero only when the numbers of interacting odd-

must exist and Eq. (3.2), as well as Eq. (3.1), must
be considered I. f Eq. (3.2) is summed over all
permutations of the three indices a, b, and c, and
the symmetry properties of the f's and d's are
used, the result may be written in matrix form,

(3.6)

parity mesons are odd and even, respectively,
each d,. or f, is nonzero only in one pair of diagon-
ally related quadrants. Thus, if i is an odd-parity
state, f, is nonzero in the diagonal quadrants, and

d, is nonzero in the off-diagonal quadrants. For
this reason, the m; may be determined from the

p, . Thus, the information in Eqs. (3.10) and (3.11)
is already contained in Eqs. (3.8) and (3.9); how-
ever, it is convenient to consider all these equa-
tions.

Because of this redundancy, the requirement
that some interactions are nonzero implies that
neither the p,. nor the m, set of matrices may be
identically zero. We now limit attention temporar-
ily to states a and c that are members of the anti-
symmetric set, but consider all meson states in
the vector space of the matrix equations. Since the

f, ,„are proportional to structure constants, Eqs.
(3.8) and (3.10) are the conditions that the p,. and

m,. matrices are representations of the group
generators i.

We turn next to the p,. anticommutation relation,
Eq. (3.9). If a state r' contributes to the sum in
this equation, and yet does not contribute to the
sum in the p,- commutation relation for any a and

c, then x' cannot be in the antisymmetric set.
For such an r', f„.=0 and property (5) of Sec.III
B states that d„ is a unit-type matrix. Thus, Eqs.
(3.8) and (3.9) show that every product of p,. ma-
trices is a linear combination of the P s repre-
senting the generators and unit-type matrices.
This is sufficient to show that the group is SU(n),
and that the P s are a fundamental representation,
or a direct sum of a fundamental representation
repeated, " Thus, the space of the p's is quark
space. Since the signs in the p and m commutation
relations [Eqs. (3.8) and (3.10)] are the same, and
the signs in the anticommutation relations [Eqs.
(3.9) and (3.11)]are opposite, the m matrices are
the fundamental representation conjugate to that
of the p's, i.e., the m's are operators in antiquark
space. Furthermore, Eq. (3.7) states that the p's
and m's commute, so that each state in the vector
space is characterized by a quark index and an
antiquark index, and the two indices are indepen-
dent of each other. This is the quark model for
meson- meson- meson interactions.

We now study the question of whether the SU(n)-
symmetric solution may contain only n' meson
states, corresponding to one regular and one sin-
glet representation. If the n'-state solution exists,
parity conservation requires that every state of the
regular representation with a unique, nonzero set
of eigenvalues of the diagonal generators, must
correspond to definite parity. If it is possible to
connect two such states with just one of the non-
diagonal generators of the sets P, and m, , a con-
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a=+A;, Q;Q, ,
i j

(3.12)

where a capital letter denotes the coefficient ma-
trix associated with the meson state denoted by the
corresponding small letter. The coefficient ma, -
trices are normalized by the criterion Q, , (A, , p = 1.
Those matrices associated with the regular-rep-
resentation states are a fundamental represent-
ation of the generators. The coupling constants
are proportional to traces of products of these
matrices,

d„„=XTr[(AB+ BA)Rj,
f, = A.Tr[(BA AB)R], -

(3.13a)

(3.13b)

tradiction results, since these generators involve
a mixture of parities. This argument shows that
if n&2, the n'-state solution is not possible.

The SU(2) case will be discussed later. If n &2,
the above argument shows that regular represent-
ation multiplets must exist for both parities. It
can be shown to follow that singlets of both parities
must exist also. The simplest possibility is the
parity-doubling solution, in which there are 2n'

states, a singlet and a regular representation for
each parity. The group is SU(n)SU(n). The two
SU(n)'s in the reduction of this group correspond
to the sum and difference of the states of the two

parities. It can be shown that in this solution each

d;,, and f... is invariant to changing the parities
of two of the states i, j, and k. Therefore, we may
omit the parity labels from the meson indices, and

let these indices and the dimension of the vector
space in Eqs. (3.7)-(3.11) range only over the n'

states of the regular and singlet representations.
Each d... and f... is defined to be the value corre-
sponding to the "right" vertex parity, i.e., d, j~ is
the value that occurs when all three mesons, or
only one meson, is of even parity. The four quad-
rants of the matrix equa, tions are collapsed into
one. The I equations, Eqs. (3.10) and (3.11), are
then independent of the p equations, rather than
being redundant, but the content of the set of Eqs.
(3.7)-(3.11) is the same as before.

In the case that the group is SU(2)I3ISU(2), if one
considers only amplitudes for which the four ex-
ternal mesons are members of the odd-parity tri-
plet and of the even-parity singlet, all internal
mesons are also members of this set. Hence this
set and its mutual interactions are a special solu-
tion, which involves no parity doubling.

For completeness, we give here a simple form
for the coupling constants in the parity-doubling,
SU(n)SSU(n) solution. The quantum numbers of
each of the n' meson states of either parity may
be represented by the quark-antiquark construction,
l.e.~

where A. is a real constant. The n' Hermitian co-
efficient matrices of a conjugate representation
satisfy the closure property

(3.14)

or, alternately, +~Tr(RX)Tr(RI') = Tr(XY). One
may use this closure property to verify that Eqs.
(3.13a) and (3.13b) satisfy the basic conditions,
Eqs. (3.1) and (3.2).

Experimentally, the lightest meson set is the odd-

parity set. The group is SU(6), and the vector- and
pseudoscalar-meson nonets fill out the singlet and

regular representations. It can be shown that the
spin components must be treated by the SU(2)~ pre-
scription. " In terms of the model discussed in
Refs. 2 and 3, our parity-doubling prediction applies
to Regge trajectories of even and odd parities;
this prediction appears to be satisfied. The relation
to experiment is discussed further in Sec. V.

In the above argument we have used, without
citing a proof, the theorem that if all products of
matrices representing the algebra of a simple
compact Lie group are linear combinations of them-
selves and of the identity matrix, the group is
SU(n) and the representation is fundamental. We

can bypass this theorem. ~Ve illustrate this by
a,ssuming parity doubling, so that the full group is
Ã3g. We a,ssume that 3g is a, simple group, and
consider Eqs. (3.7)-(3.11) in the collapsed space of
the quantum numbers of either parity. Let x be the
dimension of the representation of the p,. operators.
Then the p,. and m, generate x' states with different
sets of quantum numbers, so that no two of the
states have associated with them proportional pairs
of matrices p,. and m;. There can be only one
state in the set that is excluded from the antisym-
metric set, since such a state is represented by

p; = —m, = c1, where c is a constant and 1 is the
unit matrix, Hence, there are x' —1 Hermitian
matrices p,. of dimension x that represent the gen-
erators of 3}I. This defines simultaneously SU(n)
and a fundamental representation.

IV. THE BARYON SYSTEM

A. Meson-Baryon Scat tering Conditions

We define a ba, ryon to be a pa.rticle with a unit
value of a conserved quantum number (the baryon
number) not carried by the mesons. Since our
bootstrap equations are consistent with mesons
alone, the existence of baryons is not required.
Nevertheless, we investigate the properties that a
set of baryons must have if they satisfy the boot-
strap equations.

We use capital letters D and I' to denote the
interactions of even-parity mesons with baryons
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of the same and opposite parities, respectively,
and script letters g) and $ to denote the interactions
of odd-parity mesons with baryons of the same and

opposite parities, respectively. " We define inter-
action matrices, e.g. , (D,),, =D..., only when the
first index is the meson index,

In this subsection, we study the meson-baryon
scattering conditions, identifying a and c of Eq.
(2.1) with self-conjugate meson states. The s-u-
channel condition is Eq. (2.5). It can be shown that
one can write this condition in terms of the con-
stants D, F, S, and f by using the following sub-
stitution rules: If the parity of the meson i is even,
one makes the substitutions d;-D, and f, -F, in

Eqs. (3.1) and (3.2) [or in Eqs. (3.3) and (3.4)]. If
the parity of the meson i is odd, one makes the
substitutions d, -n, and f, —6:, . After the substi-
tutions, Eq. (3.1) applies when the baryon parities
are the same and Eq. (3.2) applies when the baryon
parities are opposite. For example, if the parities
of the mesons a and c are odd and even, respective-
ly, and the baryon parities are the same, the equa-
tion is

Q D,„„&,„q —Q F,d, „Fg„b—p &,~„D,„,—Q 5',„„F,„t, .
[(P~d'), , (P*6').] =+4m+ f„„(Peg)„, (4.4)

The vector space of such matrix equations includes
all baryon states of both parities. We assign the
lowest row and column indices to the even-parity
baryon states, so that the equations have a quad-
rant structure similar to that of Sec. III. The D

and S are nonzero only in the diagonal quadrants,
and the F and F are nonzero only in the off-diagonal
quadrants.

The lone script operator in Eq. (4.3) results from
odd-parity virtual mesons in the t channel. Because
of this operator, Eq. (4.3) is inconvenient, so we

adopt the following procedure: Equations similar
to Eq. (4.3) are written for all four possible assign-
ments of parities to the meson states a and c. The
indices a and c are then permuted in each equation,
and the difference and sum taken. This results in
equations for all possible commutators and anti-
commutators of the operators P, , P, , t, , and 6', .
These equations are then used to write the commu-
tators and anticommutators of the sums and differ-
ences of the P and 6' operators of corresponding
even- and odd-parity meson states. The result is

(4.1)

The s-I-channel condition is Eq. (2.6). We may
write this equation in the form

[(P+ 6'), , (P + 6'), ],= 4g g d„„(P+ f')„,

[(P+6'), , (P+ 6').] = 0,

](P+5')„(P~6 ).],=0,

(4.5)

(4.6)

(4 7)

QG,„„G,*,„=~(gd„,G~„—Pf„,G„,), (4.2)

We consider the case in which the meson states a
and c are of even parity. We use the s-t-channel
condition [Eq. (4.2)] to write equations first for the

case when the baryons are of the same parity and
then for the case when the baryons are of opposite
pa.rity. If these two equations are added, the re-
sult may be written in terms of the P,. and 6',. ma-
trices, i.e. ,

where the sum over n includes baryons of both pari-
ties, while the sums over p and q include mesons
with even and odd meson-meson-meson vertex
parities, respectively. We assume that the group
is not SU(2), so that the meson states are parity-
doubled, as discussed in Sec. III. The d and f are
the meson-meson-meson interaction constants of
Eqs. (3.13a) a nd (3.13b).

We define plus and minus combinations of the
meson-baryon-baryon interaction matrices by the

equations

where the upper signs go together.
The algebraic argument concerning these equa-

tions is a modification of that used after Eqs.
(3.8)-(3.11). Now, however, the d and f constants
are known from Sec. III, and correspond to the
group SU(n). Thus, the two pairs of equations,
Eqs. (4.4) and (4.5), state that each of the operator
sets (P+(P) and (P 6') is either id-entically zero,
or corresponds to a fundamental representation of
SU(n). The last two equations show that all products
of a. (P+6'),. and a (P- tP),. are zero. Thus, if we

require that all pairs of baryons are connectable
by some series of interactions, one of the sets
(P+5') and (P —(P) must be identically zero. Since
changing the sign of all odd-parity meson states
converts (P,. into -6', , we lose no generality by
setting (P (P),. =0. Since the—D and B operate in
the diagonal quadrants, and the F and 5 operate in
the off-diagonal quadrants, this implies

(4 8)

i.e., the baryonic interactions of corresponding
even- and odd-parity mesons are the same. '

We use Eq. (4.8) to eliminate the 4' from Eqs.
(4.4) and (4.5), yielding the equations"

P, P, = g(g f„„6'„+gd„„P„). (4 3) [P„P.] = 2~+f.,„P„, (4.9)
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(P, , P, I =2K+ d„„P„. (4.10)

Since the D and F operate in different pairs of
quadrants, these equations imply the following
equations for the "minus-type" operators:

[M„M, ]= -2~+f.,„M„ (4.11)

(M, ,M, ],=-2~+d„„M„. (4.12)

If Eq. (4.8) is used, the s-u-channel equations for
different meson-parity assignments are equivalent,
as explained earlier in this section. One obtains
the matrix form of the s-u equation by replacing
m, and P,. by capital letters in Eq. (3.7). The
result is

P, = 2kA ", M, = —2kA 8, (4.15)

where 2k is a proportionality constant. In a repre-
sentation in which the baryons are direct products
of n and P quarks, i.e. , b = ~o. P) and b' = ~o.

' P'),
the quark-generator matrices are defined by the
equation

sentation. The s u-equation, Eq. (4.13), shows that
the P and h~ quantum numbers are independent.
Thus, the baryons interact as quark-quark com-
posites.

We call the quarks ct and P quarks. Since the
signs in the P and M commutator equations, Eqs.
(4.9) and (4.11), are opposite, the P and M are
related oppositely to the n- and P-quark generator
matrices, i.e.,

[P„M.] = 0. (4.13) (b' Q "~b) =A, bss, (4.16)

Drab Frab kebab ~ (4.14)

where k is a real proportionality constant, and the
R, , are the matrices of Eq. (3.12). (We again use
capital R,A, and C to denote the matrices corre-
sponding to the meson states x, a, and c.) This
solution is generalized later in this subsection.

(ii) The Parity undoubted sotutio-n. The other
possibility is that neither the P,. nor the M,. set
is identically zero. The situation differs from
that of Sec. III in that the relative sign of the P and
M commutator equations, Eqs. (4.9) and (4.11), is
the same as the relative sign of the P and M anti-
commutator equations. Therefore, the P and M
must correspond to the same fundamental repre-

Two classes of solutions to equations equivalent
to Eqs. (4.9)-(4.13) are found in Ref. 2. We list
these here and show that they are the only classes
of solutions.

(i) The Parit-doubLed sotution. We look for a
solution in which either the P(F+D) or M(F —D)
operator sets is identically zero. Since the D and
F operate in different pairs of quadrants, this is
only possible if parity doubling exists for baryons
as well as mesons, so that we may collapse the
vector space as was done in Sec. III. It is required
that each meson-baryon-baryon interaction constant
is unchanged if the parities of the two baryons are
changed. The baryon vector space is collapsed
into that of the states for either parity alone, and
D and F are replaced by the values in their respec-
tive nonzero quadrants of the uncollapsed space.
The M equations [Eqs. (4.11}and (4.12)] are then
independent of the P equations [Eqs. (4.9) and
(4.10)]. We may then set F —D equal to zero, in
which case the P equations require that the multi-
plet of the baryons of either parity correspond to
the fundamental (one-quark} representation The.
values of the D and E constants are

where the A are the matrices defined in Eq.
(3.12}. The constant h is the product of the pro-
portionality constants of Eqs. (3.13) and (4.2}, i.e. ,
k =X&. The D and F operators, obtained from Eq.
(4.15), are

D, =h(A +As)i F,=h(A"-As). (4.17)

Since parity doubling leads to extra multiplets,
we attempt to avoid it. It is seen from Eq. (4.17)
that this may be accomplished if and only if baryon
states of opposite parity correspond to opposite
symmetry under interchange of the n and P quarks.
Then the D connect only states of the same parity,
and the F connect only states of opposite parity,
as is required.

Because of the fact that the meson-baryon scat-
tering diagram contains only one baryon line which
goes "straight through" the diagram, each of the
two above solutions may be generalized by adding
a set of passive quantum numbers, not all of which
are the same. Thus, in the parity-undoubled solu-
tion, the baryon may be represented by

~ nPy),
where n and P are the interacting quarks and y
denotes a set of passive quantum numbers. If y
represents a third quark and the group is SU(6),
the predicted multiplets of one parity (those sym-
metric in two of the quarks) are 56 and 70, and
those of the opposite parity are 70 and 20. This is
the solution of the meson-baryon scattering equa-
tions that is closest to experimental observation.
It is discussed in Ref. 2.

B. Baryon-Baryon Scattering Equations

In this section we test the solutions to the meson-
baryon scattering equations by considering baryon-
baryon scattering. Only the "physical" three-
quark solution has been subjected to this test pre-
viously. The three-quark solution fails. "

We take all external particles in the u channel
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to be of baryon number 1, so the barred states of
Eq. (2.1) are states of negative baryon number.
We examine first the u-t-channel. consistency con-
dition, which may be obtained by making the sub-
stitutions a- c and c= a in Eq. (2.6). The result
ls

Z GadnGcbn Z 7 Grac Grdb ' (4.18)

The sum on the left-hand side is over states of
baryon number 2, and the sum on the right-hand
side (t channel) is over conjugate meson states.
Because of the q"" factor, the equalities S =D and
%=I' [Eq. (4.8)] imply that the contributions of
corresponding mesons of opposite parities are
opposite. Thus, the right-hand side of Eq. (4.18)
vanishes for all baryon-baryon amplitudes.
Similarly, the meson-exchange contribution to the
s-u-channel equation vanishes, so the u-channel
sums must vanish. Therefore, no states of baryon
number 2 exist in the model. " Consequently, no
states of baryon number greater than 1 exist, in
agreement with the observed hadron spectrum.

The only further condition that must be consid-
ered is the s-t-channel condition, Eq. (2.7). If
Eq. (2.4) is used to express the antibaryon coupling
constants of Eq. (2.7) in terms of baryon coupling
constants, the result may be written

7 Z Grab Grdc Z Grac Grdb t (4.19)

(4.20)

This equation is not satisfied for arbitrary baryon
states. It is clear that the addition of passive
quantum numbers (as discussed in Sec.IV A) would

not cause it to be satisfied. The parity-doubled
solution to the meson-baryon equations fails the
baryon-baryon test.

We consider next the two-quark parity-undoubled
solution to the meson-baryon equations. The D,
F, D, and $ interaction constants are given by
Eqs. (4.8) and (4.17); an expression that gives
these constants simultaneously is

G„,b= k(R,„+q"Rsb ). (4.21)

where both sums are over conjugate meson states.
In this case it follows from Eq. (4.8) that the con-
tributions of corresponding mesons of even and odd

parities to either the s- or t-channel term are
equal.

We use Eq. (4.19) to test first the parity-doubled,
one-quark solution of the meson-baryon equations.
The coupling constants are given by Eqs. (4.8) and

(4.14). One may use the closure property of Eq.
(3.14) to show that the consistency condition implies
the relation

Because of the fact that baryons of opposite parity
have opposite symmetry with respect to exchange
of the n and P quarks in this solution, the contri-
butions of the R" and Rs terms in Eq. (4.21) are
equal for each vertex, provided each baryon state
is of definite parity. Thus, the sum on the left
hand side of Eq. (4.19) may be written in terms
of 8 matrices alone, i.e.,

ZG„„G„„=BkZR,",R„, (4.22)

where the sum over 8 is over the n' states of the
regular and singlet representations, and the factor
of 8 arises because of the equal contributions of
even- and odd-parity mesons, and the equal con-
tributions of the 8 and A~ terms at each vertex.
If the right-hand side of Eq. (4.19) is written in
terms of the P-quark generators, the result is
similar, but the g factor of Eq. (4.21) appears, i.e. ,

ZG„„G„db=Bkq"g"ZR~, Rd~b .
r R

(4.23)

A simple equation results if Eqs. (4.22) and (4.23)
are substituted into Eq. (4.19), i.e.,

ZR, bRd, -ZR„Rdb .
R R

(4.24)

~ac ~bd ~ab ~dc ~ab ~cd ~ac ~db j (4.25)

where 5,, refers to the n-quark states of the bar-
yon states i and j. This equation is an identity;
the two-quark solution passes the test. "

The test would not be passed if a set of passive
quantum numbers were present that were not the
same for all baryon states. For example, if a
passive y quark were present (as discussed in Sec.
IV A), the left-hand and right-hand sides of Eq.
(4.25) would contain extra factors of 5tb 5f, and
5&, hd&b, respectively. These are not equal for all
amplitudes. Thus, the baryon-baryon conditions
are satisfied by only one of the solutions to the
meson-baryon conditions, the parity-undoubled
two-quark solution.

V. CONCLUDING REMARKS

A bootstrap theory is like other physical theories
in the sense that the ideal is to find mathematical
equations with the following two properties:
(i) The actual universe satisfies the equations.
(ii) Other conceivable universes do not. The pres-

We will test Eq. (4.24) in the direct-product basis,
in which each baryon state is the product of an @-
quark state and a P-quark state. These states are
not eigenfunctions of parity, but they may be used
because there are no factors in Eq. (4.24) that
depend on baryon parity. We use the matrix ele-
ments of Eq (4.16) .and the closure property of
Eq. (3.14) to write Eq. (4.24) in the form



ent paper differs from most hadron theoretical
papers in that we are concerned particularly with
the second property. For this reason, we have
made very few initial assumptions concerning the
nature of the existing hadrons. Qn the other hand,
we have not written a complete theory in the sense
that we have not made use of every mell-established
invariance principle. For example, we have consid-
ered only collinear scattering amplitudes. The
philosophy is that if a limited set of consistency
equations forces the hadrons to behave like com-
posites of quarks and antiquarks, this hadron
property will not be changed if other consistency
conditions are added,

Because of the restriction to collinearity, the
only angular momentum conservation law applied
has been conservation of the z component. In
order for our solution to be physical, it should be
possible to meet one of the most important require-
ments of J' conservation, the requirement that the
physical particles have definite spins. It has been
shown that one may meet this requirement for the
odd-parity mesons and lightest-baryon set (the
even-parity baryons) by using the W-spin pre-
scription for the SU(2) subgroup that applies to the
spins. " On the other hand, if the vertices are to
be dominated by low orbital angular momenta, the
even-parity meson states and odd-parity baryon
states must be superpositions of states of different
spine. " Thus, the parity-doubling partner of a
vector-meson trajectory must be a trajectory
whose lowest state is a spin-2 meson, but this
meson should be degenerate with even-parity me-
sons of lower spin. We will not discuss the corre-
spondence to physical particles further in this

paper.
It has been pointed out by Belinfante and Renninger

that in the static limit, meson-baryon s-u-channel
consistency conditions based on SU(n)~ symmetry
are valid at all angles 'v However if such non
collinear mechanisms as two-particle intermediate
states were included in the dynamics, the SU(n)~
vertex symmetry would be broken. It is possible
that the experimental degree of accuracy of SU(6)~
vertex symmetry depends on the degree of domi-
nance by collinear processes of the dynamical
processes that determine the interaction constants,
whatever those processes may be.

Our conditions require that the baryons behave
as two-quark composites, in contrast to the three-
guark behavior observed experimentally. (Thus,
the particles of unit baryon number in the model
are of integral spin. ) However, the prediction that
the two baryon parities correspond to different
symmetries under quark interchange does agree
with experiment. [Experimentally, the SU(6)
representations of the baryon trajectories are the
completely symmetric 56 for even parity, and the
mixed-symmetry VO for odd parity. ]

The predictions are stronger than was generally
believed to follow from bootstrap conditions of the
type used. Group symmetry must be present, the
group must be SU(n) (although the value of n is not
predicted), and the mesons and baryons must cor-
respond to specific multiplets. The meson predic-
tions agree with experiment, and the baryon predic-
tions disagree by one quark. It may be that self-
consistency conditions, rather than the existence
of physical quarks, are the reason that the quark
model is successful.
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The spin-1 zero-mass "photon" of the (conformal) Veneziano model persists in the spectra
of all "new" (conformal) dual models of the Bardakci-Halpern type. In these generalized
models, however, the "photon" does not, in general, decouple through statistics.

The conformal Veneziano' model (all Ward identi-
ties' working) involves unit leading-trajectory in-
tercept, and hence a spin-1 zero-mass "photon" I".
As far as we know, this particle is not related to
the real photon (of electromagnetism). In any case,
I decouples from the model via Bose statistics, so
it is no problem. Recently, Bardakci and the au-
thor introduced a new class of dual-conformal
models' that includes spin. In each of the simple
examples we discussed, I' appeared again in the
spectrum. What we want to show here is that this
feature is completely general: For any model of
our type, I' persists in the spectrum. Moreover,
it does not in general decouple through statistics;
for example, in the additive models, it couples to
baryon-antibaryon pairs. For models with spin-
orbit forces, we cannot determine the coupling un-
til after the gauge states are removed.

We begin by describing our models in general
terms. We assume we have found a set of con-
formal generators J, constructed as Fourier
components of a density J'(8):

2 7r

J = — d8e ™J(8),
0

where the density is itself constructed of sums of
bilinears in local fields and currents, which we de-
note by (~(8)] and (V(8)], respectively. The (V(8)]
carry Lorentz and internal-symmetry labels, while

fv(8)} in general carries Lorentz and fifth (etc.) op-

erator labels. For reference, we record the pro-
jective subalgebra of the J,

[Jo,J„]=w J,~,

[J, , J ]= 2J,
(2a,)

(2b)

together with the equation for mass-shell states
fy),

J.W) = I4)

We can exhibit the dependence of J on the exter-
nal 4-momentum p" (p. =o, 1, 2, 2) in the form

J =-alt) 5 0+P A +B (4)

A. ~O)=0, ~=0
II.iO)=0, m (5b)

Equations (1)-(5) complete our statement of the

generalized models; it includes, of course, the

ordinary Veneziano model. Now we want to show

that any such system contains a "photon" l . The
particle will occur in the sector with zero fifth
(etc.) quantum numbers, so we will confine our-
selves to this case.

Consider Eq. (2a). By differentiating with re-

where the (assumed known) number a and the op-
erators A", B are j&~ -independent (though the op-
erators may depend on fifth operators). In the
sector where fifth quantum numbers are zero, we
have a vacuum state ~0) such that'


