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The discussion given in Ref. 2 on this point is not at
all clear.

Note that the index of the distinguished pion can be as-
signed to only one of the operators (n V) (x & 8&m).

~The expansion of a symmetrized multiple commutator
like

()ri(1) (xi(n) pp(n+ i) ~2 ]]
P |"-&]T]L&(&) " i(~)l

gives rise to the occurrence of binomial coefficients (n~)

in the following way: A typical term in the expansion
consisting in m factors X'(') (5 &n+ 1) to the left of
g'("+l), m~] and (n -m) factors to its right may be as-
sembled in n t ways. However, symmetrization allows
us to reorder each of the two groups of m and (n —m)
factors X' ~ and only nl/I. ml(n-m)l] of these arrange-
ments are distinguishable, The alternation of sign fol-
lows, of course, from the antisymmetry of the commu-
tator.
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Making use of generally accepted assumptions about the equal-time commutator algebra of
axial charges and axial divergences, the spin and helicity dependence of Weinberg's algebraic
relations is entirely determined for pions in arbitrary partial waves. It is shown that the
algebraic structure of axial-vector coupling matrices may be given by the Lie algebra of the
group $0(4, 3), and so hadron states must be assigned to unitary representations of this group.
Furthermore it is proved that the mass-spectrum operator is given as a sum of a scalar and

a component of a 35-dimensional totally antisymmetric irreducible tensor of the group
$0(4, 3), The general form of the mass spectrum is exhibited as a linear combination of the
Clebsch-Gordan coefficients of the group SO(4, 3). Application to hadron states of fixed in-
trinsic quantum numbers leads to the conclusion that mass-squared values of hadrons must be
a lineal" fuDctlon of spin, This resUlt ls a Unique and exact coDsequeDce of the structule of
certain algebraic relations.

I. INTRODUCTION

Recently Weinberg' has derived extremely pow-
erful and elegant algebraic relations involving the
pion-hadron decay amplitudes and the hadron mass-
squared matrix. These relations have the following
form:

where a(p, A.,) and h(p', A. ,) denote hadrons with mo-
menta p and P', helicities A., and A, , and masses
ng, and m„, respectively. I' is the isospin genera-
tor matrix, yn' is the diagonal mass-squared oper-
ator, and I „=190 MeV is the pion decay amplitude.
The matrices X are diagonal in helicity, i.e. ,

where a, P=1, 2, 3 are isospin indices of the pion.
The meaning of the various symbols in the previ-
ous two equations is as follows. (X')„is a matrix
element in the space of the internal quantum num-
bers b and a such as isospin, spin, hypercharge,
parity, etc. It is related to the invariant Feynman
amplitude M"„(p'q; p) for any collinear (helicity-
conserving) transition process

a(P, )i..) —b(P', )%.,)+ )i (q)

of the massless pion m
~ by

I"a.(P 'e' P) = ~F. '(222.
'

-222,')(X )„,

The essential assumptions used by Weinberg
in his derivation of the aforementioned relations
were:

(a) Tree-graph contributions to the forward scat-
tering amplitude with massless pions, calculated
from a. chirally invariant Lagrangian, should not
violate the asymptotic behavior predicted by Regge-
pole theory. This requirement is equivalent to the
saturation of dispersion-theoretic sum rules by
single-particle states, as was demonstrated by
Weinber g. '

(b) There should be no so-called exotic states
having isospin I = 2.

The algebraic relations (1.1), along with the re-
lations involving the isospin generator matrices
P of the isospin group SU(2)„define the Lie algebra
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of the chiral group SU(2) SSU(2), and this implies
that the hadron states must, for each helicity and
various isospins and spins, be assigned to unitary
(irreducible or reducible) representations of the
chiral group. The commutator (1.1) then deter-
mines the transition amplitudes among the hadrons
accommodated in the single unitary representation
of the group in question. Once the matrices X
are known, they can be inserted in the second al-
gebraic relation (1.2) which then gives the form of
the mass spectrum of the hadrons under consider-
ation.

As can be seen, the method demonstrated by
Weinberg has a great amount of appeal since it
provides a scheme for calculating the pion-hadron
transition processes and hadron mass spectra —the
goal of strong-interaction physics.

This treatment has been extended to multipion
production processes by McDonald, ' and also to the
higher chiral group SU(3)IRSU(3) by Ram Mohan. '

The Weinberg algebraic relations can be obtained
in many ways. For example, they are equivalent to
the relations derived by Gilman and Harari. ' A

very important method for deriving these relation-
ships is based on the infinite-momentum saturation
of commutators of SU(2) SSU(2) [or SU(3) SSU(3)]
axial charges and axial divergences, "' and in

particular (1.1) is derived by saturating the equal-
time commutator between axial charges, '

d'xA, (x, f), 'zA,'(z, t) =is'&I&, (1.6)

d'xA, (x, f), I', d zA, (z, f) =6" A, (1.7)

where A, (x, t) is the time component of the axial-
vector current and A is a.n isoscalar-Lorentz-
scalar operator. It should be mentioned that the
double commutator (1.7) may also have an isospin-
2 component, in general. This is assumed to be
absent as exotic states have not been seen in na-
ture. This means that the algebraic structure of
the relations (1.1) and (1.2) has a profound origin
in the equal-time commutator algebra which
charges and axial divergences satisfy, as was
pointed out by Fubini and Furlan. '

Unfortunately (1.1) and (1.2) do not provide any
information on how the representations with differ-
ent helicities are related to each other. As was
pointed out by Weinberg, ' the helicity and spin de-
pendence of the matrices X can be determined if
one assumes that only a few partial waves predom-
inate in the pion-hadron transition processes (1.3).
Then (1.1) and (1.2) become finite matrix equations
in the internal variable space, with the range of

while (1.2) is obtained by saturating the double com-
mutator, '

the labels restricted to a finite discrete set. The
solutions to these relations have been found in a
series of papers. '~'~"~" It was found that predic-
tions following from (1.1) and its generalization to

p waves were in good agreement with experiment. '~"
However, results following from (1.2) and its gen-
eralization were disappointing in that they predicted
that the masses of the hadrons either decrease with

increasing quantum numbers" or are degenerate. '
The purpose of the present paper is to generalize

Weinberg's algebraic relations (1.1) and (1.2) to
pions in arbitarary partial waves, i. e., to find the
complete and general dependence of the matrices
X and m' on spins and helicities. One possible
way to get information about the spin and helicity
dependence of the matrices X is to perform a
partial-wave decomposition of the Feynman ampli-
tude (1.4) as indicated by Weinberg. ' We know that
this approach works very well if only one'~'y" or
two'&" partial waves are assumed to predominate
in pion-hadron interactions. However, in a com-
pletely general case, where all partia. l wa,ves
should be included, one is forced to deal with an
infinite number of pion-hadron coupling matrices,
i. e. , with one matrix for each partial wave. Thus
this treatment would lead to cumbersome infinitely
many algebraic relations, and that is why we shall
use a different approach to this problem.

Our approach consists of employing a boost trans-
formation of the homogeneous Lorentz group, along
with an information following from one -particle-
state saturation of the equal-time commutators
(1.6) and (1.7). We recall once again that the com-
mutators (1.6) and (1.7) can be considered as a
starting point for the derivation of the relations
(1.1) and (1.2). We shall also show that these com-
mutators are powerful enough to determine the
spin and helicity dependence of Weinberg's algebra-
ic relations (1.1) and (1.2) when completed by
Lorentz transf ormations.

In Sec. II it is shown that the spin and helicity de-
pendence of Weinberg's matrices X~ is fully gov-
erned by the Lie algebra of the noncompact group
SO(4, 3). This group is generated by the matrices
of isospin, relativistic spin, and by axial-vector
current operators. In Sec. III it is proved that the
mass-squared diagonal matrix behaves as a sum of
two terms which transform as a scalar and a com-
ponent of the 35-dimensional totally antisymmetric
tensor of the group SO(4, 3). The general form of
the mass spectrum is given in terms of the Clebsch-
Gordan coefficients of the group SO(4, 3). In Sec.
IV the derived results are applied to hadron states
with the same intrinsic quantum numbers, such as
the third component of isospin, hypercharge, and

pa.rity, and it is shown that the mass squared of
these hadrons is a linear function of their spins, a
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result always assumed in Regge phenomenology.
Concluding remarks are devoted to the discussion
of the relationship between different algebraic ap-
proaches proposed for the description of pion-had-
ron dynamics.

II. ALGEBRAIC STRUCTURE OF
AXIAL-VECTOR-CURRENT MATRIX ELEMENTS

Consider a completely general pion-hadron tran-
sition process,

a(p) - b(p') + v"(q), (2.1)

where a(p) and b(p') denote arbitrary hadron states
with momenta p and p', respectively, and v (q) is
a pion of momentum q and isospin index z. The in-
teraction of a single pion with a, target hadron can
be described by means of the following Lagrangian':

g, =-p, -'A„(x)a"y (x), (2.2)

(2.3)

where the hadron states lap& and Ibp') have been
normalized to

where A„(x) is a phenomenological axial-vector cur-
rent and q& (x) represents a pion field.

Using the Lehmann-Symanzik-Zimmermann re-
duction technique, " the inva, riant Feynman ampli-
tude M„(p'q;p) for the process (2.1) can be written
as

M",.(p'q; p) = ~.-'(»)'(4p.'p.)"(p -p')'&bp l~„(0) lab&,

ting the I.orentz-group elements A separately for
every spin s by means of the signer rotation
w'(A p)"

U(A) Ia, p& = la', w 'p&w-:..(A, p). (2.6)

(ii) The second possibility is to leave the Hilbert
space II the same and to represent the Lorentz
group directly on the rest states Ia). In this case
each moving particle state Iap& of three-momentum

p is characterized by its rapidity vector $, which
has the direction of p and the magnitude given by

tanhg f=lpl/p, . (2.7)

This moving state is obtained by boosting the state
Ia& at rest by means of the homogeneous Lorentz
transformation, i.e.,

lap) -=la( &
= (m. /p, )'"e' la) = B(E) la)—, (2.6)

where N, =J„is the Lorentz boost, m, is the mass
of the particle a, the factor (m, /p, )~' is due to the
chosen normalization (2.4), and B($) is the known
matrix of the finite Lorentz transformation. " This
definition of the representation of the Lorentz
group on the Hilbert space of the physical states
is always used intheories of dynamical groups and
infinite-component wave equations, and it will also
be used in the remaining part of this section.

In view of what we have said, the Feynman am-
plitude (2.3) can now be rewritten in the following
form:

(ap Ibb'& = &.,6'(p - p'). (2.4)
M „(p',q; p) = r, '(2 v)'(4m, m, )~'( p —p')"

Since the Feynman amplitude (2.3) is Lorentz-
invariant, one may assume without loss of gener-
ality that the initial state is at rest, i.e. ,

lap) = la&&
-
=la& (2.5)

To proceed futher, assume the existence of a
Hilbert space II spanned by all particle states at
rest, Ia). The Hilbert space H of rest states must
be invariant under rotations; hence one can de-
compose it with respect to its spin contents. There-
fore one can assume that a contains the spin labels
s and s, among other possible quantum numbers.
If one wants to describe any relativistic interaction
between particles, he must specify how the physi-
cal states transform under Lorentz transforma-
tions. To put it in a better way, one must define a
representation of the Lorentz group on the Hilbert
space of the physical states. There are two distinc-
tive ways to handle this problem.

(i) The most usual way to do this is to increase
the Hilbert space 8 to the Hilbert space II',
spanned by states Iap), by adding the momentum

p as an additional quantum number, and represen-

&&(ble "'NA"„(0)
I a) (2.9)

(X"„) = (21t) (b IA„(0) la&. (2.10)

It was shown in the work of Ref. 15, using several
quite general assumptions listed below, that matri-
ces X„, J„,, and I may form a closed Lie algebra.
The most general form of this algebra is isomor-
phic to the Lie algebra of the noncompact group
G=SO(3, 1)SSO(4, 3). Here the factor algebra
SO(3, 1) is generated by matrices M„, defined a.s

Mpu = Jpv Sp (2.11)

where the $„, may be interpreted as matrices of
the relativistic spin. The M„, then play the role of
external momentum matrices. Since our consider-
ations are restricted only to a rest frame, the

where Ia) and lb& are hadron states at rest.
In order to find the algebraic structure of the in-

variant amplitude (2.9), one may define matrix ele-
ments of the relativistic momentum operators J„,
a.s well as elements of the isospin matrices I on

the hadron states at rest. In addition to these,
twelve matrices X„are constructed as follows:
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matrices M~, can be omitted. Denoting the genera-
tor matrices of the group SO(4, 3) by

ab ba~

its Lie-algebraic properties can be written as fol-
lows:

LS„,S„]=f(g„S„—g,„S„—g„S„+g„S„), (2.12)

where a, b, c, d= 0, 1, 2, 3, 5, 6, 7 and the metric ten-
sor ~ah s defined as

COO 855 g66 877

g&x
—g22 —gg3 —-1

~

SOt)1 X Il 7 (2.13b)

and $„,with p, , v = 1, 2, 3, 0 are matrices of the in-
ternal angular momenta.

The above-mentioned algebraic structure of the
axial-vector-current matrix elements was derived
in the work of Ref. 15, using the following set of

assumptions:
(1) The axial-vector current A„(x) transforms

like an isovector and Lorentz four-vector. This
requirement guarantees the isospin and Lorentz
invariance of strong interactions.

(2) The equal-time commutator algebra' (1.6) js
valid. This condition is in some sense equivalent
to Weinberg's first algebraic relation (1.1).

(3) Exotic states, i.e. , those having isospin I = 2,
are excluded. This is the same requirement as
that which leads to the commutators (1.2) and (1.7).

(4) The matrices X„ transform like algebraic
isovectors and Lorentz four-vectors.

It should be stressed that since the group G is
noncompact, Eqs. (2.12) are matrix relations
among 21 infinite-dimensional matrices. The rows
and columns of these matrices are labeled by all
quantum numbers of hadrons. From this follows
that the operators e i™and A"„(0), which appear
explicitly in the final expression for the scattering
amplitude (2.9), can be represented by infinite-
dimensional matrices acting on the vector space
which forms a representation space (generally re-

g„=0 if awb.

The range of numbers a, b, c, ...= 1, 2, 3, 0 is associ-
ated with the space-time indices of the Minkowski

space, while the remainingset of numbers a, b, c, ...
= 5, 6, 7 is connected with the isospin labels o, P, y.
The matrix elements of the matrices S„represent
measurable physical quantities and are associated
with the matrix elements of the physical observa-
bles as follow's:

S,R= -c 8'I&, o. , P, y= 5, 6, 7; e.
' '=+1 (2.13a)

ducible) of the group SO(4, 3). Since the successive
operation upon the vector ~a) with the two operators
A„(0) and e '"'" is well defined, the scattering
amplitude (2.9) is then determined by the repre-
sentation of the group in question. Once the right
representation is chosen to describe hadrons, the
mathematics of the group takes over and the calcu-
lation of this scattering amplitude is straightfor-
ward.

The matrix relations (2.12) can be considered as
the generalization of Eq. (1.1) to the form deter-
mining the spin and helicity dependence of the ma-
trices X . This follows from the fact that both
(1.1) and the algebraic structure (2.12) can be
uniquely derived from the equal-time commutator
of axial charges (1.6) if one demands the absence
of exotic states. This generalized algebraic re-
lation implies that hadron states mutually corre-
lated through pion transition processes must be as-
signed, in general, to unitary reducible represen-
tations of the noncompact group SO(4, 3).

If the representation to which the physical hadron
states are assigned is irreducible, the matrix ele-
ments of S„will be uniquely determined and conse-
quently the invariant Feynman amplitude will be
completely known. So this method for determining
three-body scattering amplitudes almost coincides
with the approach used in the relativistic frame-
work of dynamical groups proposed by Barut. "
Note that all dynamical groups SO(3, 1), SO(3, 2),
and SO(4, 2), which have been successfully applied
to strong decays of mesons" and baryons" as well
as to the study of mass spectra and form factors
of hadrons, "'"are the subgroups of the group
SO(4, 3).

However, if the hadrons belong to a. reducible
representation of SO(4, 3), the invariant Feynman
amplitude (2.9) will not be uniquely determined,
but will contain a number of free parameters, us-
ually known as mixing angles. '

The remaining task is to find the restriction on

the mass spectrum of hadrons accommodated in

the single unitary (irreducible or reducible) repre-
sentation of the group SO(4, 3). This problem is
solved in Sec. III.

III. ALGEBRAIC STRUCTURE OF
THE MASS MATRIX

A. Mass-Spectrum Condition

In order to find the dependence of the mass—
squared operator pn' on the internal quantum num-

bers, the double commutator (1.7) is saturated
with a complete set of hadron' states. Recall that
this double commutator, under the a,ssumption of
single-particle-states saturation in the infinite-
momentum limit, '" leads to the second Weinberg
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algebraic relation (1.2).
Before proceeding further, Eq. (2.12) is rewrit-

ten in terms of the matrices of the axial-vector
current X™,the isospin generators I, and the rel-
ativistic spin operators S„,as follows, using the
definitions (2.13):

(3.1)

rest are going to be considered. Using the defini. -
tion (2.10) for the matrix X, , i.e. ,

(X, )„„=(2&)'(b ~A, (0) ~n),

and defining the matrix M by

(bf'),„=m, '6,„,

(3.9)

(3.iO)

Eq. (3.8) is rewritten in the following matrix form:

[x" [M' x,']]=6'A. (3.11)

and

(I,S„,] =0,

(I,x„']= z~ "&x~,

[s„„x,'] =f.(g„,x 8 g„,-x', ),

[x„,x'.] = fg„,"'u & —fb's„„

(3.2)

(3.3)

(3.4)

(3.6)

(3.6)

This property of the double commutator, combined
with the fact that M' commutes with both the iso-
spin I and spin S„,generators, is now used to de-
rive the mass -spectrum condition for hadrons
classified according to unitary representations of
the group SO(4, 3). In order to do this the 144 ma-
trices D„B are defined by

Dqu:(X„z(M z X,l]. (3.i2)
where the convention has been used that the super-
scripts n, P, y label isospin indices, while the sub-
scripts p, , p, g, p are associated with the Lorentz
indices in Minkowski space. The relation (3.4) de-
fines the transformation properties of isovectors,
while Eq. (3.5) specifies the transformation law
for Lorentz four-vectors.

Now consider the double commutator (1.7) for
t = 0, sandwiched between two hadron states ~bp')
and ~ap), i.e.,

'dzd( z0), I'Jd*zd,'(zz) , zp),
= 6"'(A),.6'(p —p ).

(3.'I}

To evaluate the left-hand side of the last equation
a complete set of the intermediate particle states
~np„) is inserted, and the integrations over the
spatial variables x, z, and momentum variables p„
are performed by using the translation invariance
of matrix elements. This yields the result

(2m)'Q [(bp(A", (0) ~np) m„'(np (A,(0) (ap)
n

—(bp )A;(0) ~np) (np ( A,'(0) )ap )m.'

-m, ' (bp [A,(0})np) (ngA, (0) )ap)

+ (bp (AB(0) Inp) m„' (np ~A, (0)ap)]

= 6'(A)... (3.8)

where the fact that the mass-squared operator rn2

is diagonal has been used, and in addition the com-
mon factor 6'(p —p') has been cancelled on both
sides. It should be stressed that the above relation
can only be derived for states ~bp') and ~ap) with
the same three-momentum p. In view of this, and
without loss of generality, only hadron states at

[X [M' X ]]=& 8&A~(~,)+U{„,), (3.14)

where AI-„„& and U „, are matrices, and the sym-
bols [pp] and gp) are abbreviations for antisym-
metry and symmetry, respectively, in the cor-
responding pair of indices. It can be shown, by
using the method outlined in Appendix A. of Ref. 15,
that A~t„,

&
=A~„= -A~, „ is an 18-dimensional isovec-

tor and antisymmetric I orentz tensor, and that
U~~„B~ transforms as a 60-dimensional totally sym-
metric isotensor and Lorentz tensor. The re-
striction of Eq. (3.14) to the time components,
1.e.,

[x,",[M', x', ]] = U{&„)', (3.16)

must give Eq. (3.11). This implies that

U&"'&= ~'A. (3.16)

Since the matrix A is an isoscalar and Lorentz
scalar, it follows (formally, by taking the repeated
commutators [UI»},S„,] and [U{(»81 I&]) that U&PB))is
an invariant totally symmetric isotensor and Lor-
entz tensor. This implies that U~ 8~ is restricted

fp v$
to the form

The Jacobi identity applied to the double commuta-
tor (3.12) along with Eq. (3.6) gives

D~, = D,~. (3.13)

This implies that the matrices D„B are symmetric
with respect to the interchange of pairs of indices
(o.p)and (ptd) and therefore their number is re-
duced to 78 independent matrices. Hence the ma-
trices D„8 behave as the sum of completely sym-
metric and completely antisymmetric isotensors
and Lorentz tensors, and the most general decom-
position of the double commutator (3.12) takes the
form
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(3.IV)

[x [i)f' x']] 6"-g A+~"'~A' (3.18)

ng
U(p, )

——5 g~, A.

Using this result, Eq. (3.14) is rewritten as fol-
lows:

[M', X"„]=- -iZ"„,

and Eq. (3.18) is rewritten as

(3.21)

8SU(2).
In order to proceed, an isovector-Lorentz-four-

vector matrix Z „ is defined by

A and A„, can now be written in terms of X„and
M' as [Xp, Z, ] =i6"Hg„„A +ie 8&A~v„. (3.22)

(3.19)

and

A'„, =-', e'&[X"„[iaaf',X',]]. (3.20)

B. Group Properties of the Mass-Squared Matrix

It is possible to show, quite generally, that the
mass-squared matrix M' behaves as the sum of a
scalar and a component of the 35-dimensional ir-
reducible tensor of the group SO(4, 3). The known
tensorial character of the matrix in question pro-
vides us the straightforward method for writing
down the mass spectrum of hadrons as a sum of
the Clebsch-Qordan coefficients of the group
SO(4, 3). To do this, use is made of a. method de-
veloped by Weinberg' for the chiral group SU(2)

Inserting the expressions (3.19) and (3.20) into Eq.
(3.18), a, dynamical equation is obtained, the solu-
tion to which determines the mass spectrum of
hadrons accommodated in a single unitary (irredu-
cible or reducible) representation of the group
SO(4, 3).

In the practical applications of Eqs. (3.18)-(3.20),
each physical particle state of definite spin s and

isospin I is written, in general, as a sum of unitary
irreducible representations of the group SO(4, 3).
The matrices X„are then entirely determined by
the unitary irreducible representations of the
group in question, and by the mixing angles which
define the coefficients of the irreducible represen-
tations in this sum. The known matrices X~ are
then inserted into the mass condition (3.18) and a
nontrivial relation for the unknown matrix M' is
obtained. A solution to this equation will represent
the mass spectrum of hadrons assigned to the con-
sidered representation. Needless to say, the
physical masses will be dependent, in general, on

the internal quantum variables such as isospin and

spin, and also on the mixing angles. It is very
easy to imagine that this approach to the mass
spectrum gives rise to tedious calculations and does
not have the elegance normally associated with

group theory. However, an elegant statement can be
made about M', namely, that it behaves as a com-
ponent of an irreducible or reducible tensor of the

group generated by the Lie algebra of the axial-
vector coupling matrices X, as will now be shown.

The matrices A and A~, can now be expressed in
terms of X,„and Z~, and making use of the Jacobi
identity the commutators [Xp, A] and [X"„,A~p„] can
be written as follows (see the Appendix):

[x'„A] =- -iz', (3.23)

Here A „, is defined as

Jf p„„= ,'i [xp, A'„,],--

(3.24)

(3.25)

[I,A]=[S„., A]=[I,~,„,]=0,

[I,A'„,] = ie'~A'„„

[I,zt]=is '&z„',

(3.27)

(3.28 a.)

(3.28b)

(3.29K)

and

[S„,, A"„]—i(g,pA„g, A» g-„pA,„+g—p„A „p),

(3.29b)

[S„„,f~paJ =i(gvpauaK gva~vp. +gv-~Itvpa

gpp vaK +gpa fvpz gpv~vpa)' (3.29c)

Equations (3.22)-(3.29) show that the matrices A,

Z„, A„, , and A „, may form a 1+12+18+4=35-
dimensional tensor of the group SO(4, 3). The only
35-dimensional tensor of the group SO(4, 3) which
contains an isoscalar —Lorentz-scalar A and an
isoscalar-Lorentz-four-vector V" =—e"' '8, „is
the totally antisymmetric third-rarik tensor T„,

and it is a matrix which transforms like an iso-
scalar and totally antisymmetric Lorentz tensor
of the third rank, obeying the following commuta-
tation relation:

[X,, Jtpp, ] =-i(gp A„, —g „Ap, +g,A"„).

(3.26)

In the derivation of Eqs. (3.23)-(3.26) the tensorial
properties of the matrices A, Z„, A&„, and A~„,
have been exploited. All of them transform as
proper irreducible tensors of the groups SU(2) and

SL(2, C), and therefore obey the standard commu-
tation relations
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(n, h, c = 1, 2, 3, 0, 5, 6, 7), with C~=S; W', (3.34c)

Tofgy EctgyA p Tilvp Rpvp

0.' y
~pnv ~ pv ~ Tcxsp ~nay~)l'

Using the SO(4, 3) definitions of I, S„„, and X„
given in Eqs. (2.12) and (2.13), Eqs. (3.12)-(3.2S)
may be compactly written as follows:

(3.30)

~~ab ~ Tcde~ ='(gbcTade gbdTace+&aeTbcd

gac bde gad bce gbe acd)' (3.31)

This is nothing but the statement that the 35 matri-
ces T„, defined by Eqs. (3.30) form a 35-dimen-
sional totally antisymmetric irreducible tensor of
the third rank of the group SO(4, 3).

It can now be shown, using Eqs. (3.21), (3.23),
and (3.27), that the sum of matrices M'+A com-
mutes with all generators $„, &.e.,

IS, ,M +A] = 0. (3.32)

This relation and Schur's lemma require that the
sum

M +A=m (3.33)

must be equal to a multiple of a unit matrix for
each irreducible representation of the group SO(4, 3).
Thus equation (3.33) implies that the mass-squared
matrix M' of the physical hadron states behaves as
a sum of two terms, m, ' -A, where m, ' is an in-
variant and A is a component of the 35-dimensional
totally antisymmetric irreducible tensor T„, of the
group SO(4, 3).

It must be emphasized that Eq. (3.33) is not an
approximation based on some assumption of weak
chiral-symmetry breaking (as it is in the Gell-
Mann-Oakes-Renner" model); rather it is an
exact consequence of our assumptions about the
commutators between axial charges and axial di-
vergences as expressed by Eqs. (1.6) and (1.7).
Therefore there is no reason to expect that the
term A which breaks the chiral symmetry will be
smaller than m, '.

Equation (3.33) is now used to determine the
, mass spectrum of hadrons. Each physical particle
state of definite spin s and isospin I and third com-
ponents s, and I, , respectively, can be written as
a sum of unitary irreducible representations of the
group SO(4, 3).

The unitary irreducible representations of the
group SO(4, 3) are specified by three eigenvalues
c] c2 and c, of the corresponding three Casimir
operators C] C2 and C„respectively, defined as

where

gr a ~abc&ef gS
bc de fg (3.34d)

The reduction-chain decomposition of SO(4, 3)
which is of physical interest in describing the had-
rons is

SO(4, 3) SU(2)I 3SL(2, C). (3.35)

This differs from the standard reduction chain,
and therefore the unitary irreducible representa-
tions of the groups SU(2), and SL(2, C) may occur
with multiplicity greater than 1 in the aforemen-
tioned decomposition. However, the following dis-
cussion is limited to the class of the so-called
degenerate unitary irreducible representations,
which are of multiplicity 1, of the group SO(4, 3).
Then a state within a single unitary irreducible
representation of SO(4, 3), specified by c„c„and
c3, will be labeled by six numbers I, I„s,s„j„
and A. , where j, and A. are connected with eigen-
values of the two Casimir operators of the group
SL(2, C). This state will be denoted by

Ic„c„c,, II„j,x s s,) -=I f'f.) (3.36)

where f signifies the set of the values c„c„c„
and f, is an abbreviation for the six numbers I, I„
j„A., s, and s, . A physical hadron state of def-
inite spin s and isospin I can now be written as

III„ss,& =Z@(f)If 'f,) (3.37)

IV. APPLICATIONS

where y(f) are the so-called mixing angles. In
the basis defined by Eq. (3.37) the matrix equation
(3.33) becomes

I

M'(I, S) =m, '- gq( )f c*(f') p(f, f')
Z Z Z

(3.38)

where the symbol (:::)stands for the Clebsch-
Gordan coefficient of the group SO(4, 3); I signifies
the tensorial character of the matrix A expressed
in terms of c„c„and c,; f, denotes the set of
values I =I,= s = s, =j,= 0, A. = 1; and p(f,f ') is a.

reduced matrix element. Thus the mass spectrum
of hadrons (3.38) as a, function of their spin s and
isospin I is entirely determined by the Clebsch-
Gordan coefficients of the group SO(4, 3).

The application of the results given by Eqs.
(3.38) and (3.18) to physical particle states will be
given in Sec. IV.

and

Sba
1 ab

C, =SabS 'S,q

(3.34a)

(3.34b)
The purpose of this section is to apply the de-

rived results to the mass spectrum of physical had-
ron states. A knowledge of the matrix elements of
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[S„,, X,]=i(g, Xq —g X,), (4.2)

[x„,x,] = -is„„ (4.3)

where X, =—X', . The algebra given by Eqs. (4.1)—
(4.3) is exactly the Lie algebra of the group
SO(3, 2), and so hadron states of fixed third com-
ponent of isospin with both positive and negative

parities must be assigned to unitary representa-
tions of the group SO(3, 2). Note that this group wa, s
proposed as a dynamical group by Barut eL al. ' to
calculate electromagnetic form factors and hadron
mass spectra on a phenomenological basis. It is
interesting to note that the same group occurs in

the framework of Majorana's and Bhabha's in-
finite-component wave equations.

Next the group SO(3, 2) is extended by the parity-
operator matrix P which represents the reflection
in the space 1, 2, 3. The commutation relations be-
tween the matrices S&„, X], , and P are the following;

i, k=1, 2, 3Sik~

PX P =X
k k &

PSpkP ' = -Spk,

(4.4a)

(4.4b)

(4.5a)

PXP '=-X. (4.5b)

From the above equations it is evident that the
matrices Spk and Xp change the parity of a state.
If only hadron states of fixed parity (positive or

the generators and of the Clebsch-Gordan coeffi-
cients of the group SO(4, .3) [in the reduction chain
3.35)] would enable one to determine all pion-hadron
transition processes and all hadron mass spectra, .
Unfortunately, neither matrix elements nor Clebsch-
Gordan coefficients of the group in question have

yet been studied in the literature. Explicit predic-
tions can only be made about physical hadron states
with the same third component of isospin and with
the same parity. It can be shown that hadron states
of this type transform as unitary representations
of a. group which is a. subgroup of the SO(4, 3) group,
and therefore it is possible to write the explicit
form of the mass spectrum for this restricted
class.

The restriction of hadron states to those of fixed
third component of isospin rules out all generators
of the group SO(4, 3) which can make a transforma-
tion between two states of different third component
of isospin, i.e. , matrices such as I', I', X'„, and
X', . lf these are ruled out, the algebra. (3.1)—(3.6)
reduces to the form

pv 'a] AtjP Pa gpgSgp AypSUa +APE vP) l

(4.1)

negative) are considered these matrices must be
ruled out. Thus, the algebraic relations (4.1)-
(4.3) become

[S,, S,.] = ie, ,„S,
[S;,X,] =it, ,~x~,

(4.6a)

(4.6b)

[X;,X„.] = ie, -&~Si„.

where

(4.6c)

(4.6d)

[x„[M',x, ]] = -5,„A, (4.7)

which can be used to calculate a hadron mass
spectrum.

In order to put this equation in group-theoretical
terms, use is made of definition (3.21):

[iaaf', x„]= -iz„
where

3=
k

Equation (4.7) becomes

[x,, z, ] = -i5,,A,

and use of Eq. (3.23) leads to the commutator

(4.8)

(4.9)

[x„,A] = -iz„. (4.10)

So the matrices A and Z, form a four-matrix I(,
(I;-=—A, I'—:-Z, ) which transforms exactly as a
four-vector under the iso-Lorentz group transfor-
mations. This result leads us to the conclusion
that the mass -squared matrix M', given by

m =m, '+r„2 (4.11)

Si = ei, kS,'.
The algebraic relations (4.6) are isomorphic to the
Lie algebra of the homogeneous Lorentz group
SO(3, 1)=SL(2, C). The physical implication of
these relations is that hadron states of fixed third
component of isospin, hypercharge, and parity
must be assigned to unitary representations of the
"Lorentz group" SO(3, 1), or to its covering group
SL(2, C). We have put quotation marks about
"Lorentz group" generated by the Lie algebra
(4.6), since that is a group in the 1, 2, 3, and 7

space and has no direct relation with the physical
Lorentz group in the 0, 1, 2, 3 of the Minkowski
space. To avoid any confusion, the group generated
by the Lie algebra (4.6) is referred to as the iso-
Lorentz group.

Now consider the constraints on the mass spectra
of hadrons assigned to unitary representations of
this iso-Lorentz group. The general equation (3.18)
becomes, when restricted to the case under con-
sideration,
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behaves as a sum of a scalar pn0' and the fourth
component I; of a four-vector I"„.

The masses of the hadrons, classified according
to unitary representations of the iso-Lorentz group,
can now be written a.s functions of their spins. This
calculation will first be done by utilizing the final
result given by Eq. (4.11). This approach exempli-
fies the group-theoretical method and is generally
described in Sec. III B. Alternatively Eq. (4.7)
can be used to derive a system of difference equa-
tions for the hadron mass spectrum. The latter
calculation is the more direct one and is discussed
in Sec. III A. Needless to say, both approaches
are entirely equivalent.

A. Group -Theoretical Calculation

8xlj„»=j,~lj„». (4.12b)

Here j, may be any integer or half-integer while X

is an arbitrary real number (the principal series},
or jp:0 and A. is a pure imaginarynumber fulfilling
the restriction ll. l~ 1 (the supplementary series). ""

A state within a unitary irreducible representation
is denoted by l j„A.; SS,), where S and S, denote the
spin and its third component, respectively, a hadron
state belonging to the representation characterized
by j0 and A. . The normalization of the states is
given by

(j,', ~', s s, lj„~ , Ss, ) = 6„ 6., , 5, , .5(~ - A
' )(~' j,') -'.

(4.13)

The spin S and its third component S, can have the
following discrete values:

S=jo jo+& ".»
(4.14}

-S ~S, ~S.

This simply implies that the particle states accom-
modated in a single unitary irreducible representa-
ton of the iso-Lorentz group form an infinite tower
of spins, starting with the lowest spin value S = j0
and going up in integral steps to infinity for each
set of intrinsic quantum numbers such as third com-
ponent of isospin, hypercharge, and parity.

Recall that the final result given by Eq. (4.11)
specifies the mass-squared matrix ~' as the sum
of the scalar m0' and the fourth component I 0 of
the four-vector I'„. It is a well-known fact that on
the unitary representations of SO(3, 1) =SL(2, C) one

Unitary irreducible representations of the iso-
Lorentz group generated by the Lie algebra, (4.6)
are specified by two numbers j0 and A. which are
given by eigenvalue equations of the following form:

(s'-x')ljo»=(jo2-~'-»ljo» (412a}

and

can define a unique algebraic four-vector I'„ for
only three different classes of the representations
of the group in question. "'4 Therefore the re-
quirement that a nondegenerate mass spectrum of
hadrons exists restricts the physically interesting
representations of the iso-Lorentz group to the fol-
lowing types:

(1) j, =O, ~=f-,',
which is suitable for accommodating mesons;

(2) j,=-,', x=o,

which can be used for fermions; and

(4.15)

(4.16)

(3) j, = —'„A = arbitrary real number, (4.17a)

where the states withinthis class of the representa-
tions must be defined as

l~;ss, +) =-',&2(l-'„~;ss,) ~ l-,', -~;ss,&) (4.17b)

r, li,~;ss, ) =(s+-', )p(j„»lj„~;ss.) (4.18)

for the unitary irreducible representations of the
classes described by (4.15) and (4.16). The symbol

p(jo, X) stands for a reduced matrix element. The
form of the matrix l, for the unitary reducible
representations of the third class (4.17) is given
by20 24 25

r, l~;ss, ~) =~(s+-,')p(~)l~;ss, ~), (4.19)

where p(A) is again the reduced matrix element.
Equations (4.11) and (4.18) imply that hadron states
accommodated in the unitary irreducible represen-
tations (4.15) and (4.16) of the iso-Lorentzgroup
must have a mass spectrum linear in spin, namely

M'(s} = m, '+ (s+ —', }p(j„~). (4.20)

However, as has been mentioned above, the had-
ron states of fixed third component of isospin,
hypercharge, and parity, but with various spins,
may. also be accommodated in unitary reducible
representations of the iso-Lorentz group. These
hadron states can be formed out of the representa-
tions belonging to the class (4.17). So, a physical
fermion particle state lS, S,) of definite spin S and
third component S, can be written as a sum of the
representations (4.17),

and are obviously suitable for fermions. The rep-
resentations of the first and second class (4.15)
and (4.16), respectively, are irreducible, while
the representations belonging to the third class are
reducible.

In order to determine the mass spectrum of had-
rons it is sufficient to know the explicit form of
the matrix I, and this is given in the literature"""
as
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Iss, &
= (s)(s;ss, ) f sss(s)(s;ss, -),

(4.21)
G' =(—))''(4 )

G' (4.28)

The unitarity of the representations requires that

where o, ()).) and P(A) are mixing angles. The nor-
malization of the states (S'S,'ISS, ) = 5~, 5»
quires the restriction

(4&'+1) '[Io.(&) I'+ lP(&) I']d + = l (4.22)

on the mixing angles o. (A) and P(A). Making use of

Eqs. (4.11), (4.19), and (4.21) the mass-squared
matrix M' for the hadron states (4.21) can be writ-
ten as follows:

where G means complex conjugate of G. The
matrices G, . for the unitary irreducible represen-
tations of the Lorentz group can be found in the
literature. '

The mass spectrum condition (4.26) can now be
written down in terms of the hadron masses M'(s)
and matrices G, . By taking the matrix element in
the s'th row and sth column of the matrix (4.26)
one obtains, using the orthogonality properties of
the Clebsch-Gordan coefficients and their relations
to the 6-j symbols" of the group SU(2), the equation

M (S)=m, +k(S+ —"),

where k is a constant defined by

k =4 (4~'+1) '(In(x) I' —IP(x) I'Jp(x)dz.

(4.23)
~1 1 2

Q G' G'[2M'(8) VI (s—) —M (s')](24+ l)(-1)

(4.29)

(4.24)

B. Algebraic Approach

Consider the matrix relation (4.7). It can be
written down in a spherical basis as follows:

[X„[M',X„]]= R3
110

(4.25)

where X, are the generator matrices of the iso-
Lorentz group (4.6) written in the spherical basis,
a, k=+, —,0, and the symbol (:::)stands for the
Clebsch-Gordan coefficient of the group SU(2).
Multiplying Eq. (4.25) by the Clebsch-Gordan coef-
ficient

and summing over the range of the a and 5 indices
gives

Q( )[x., (ss'x, l(=o. ,

The matrix G;. is now defined as follows:

(4.26)

This result implies that the mass squared of had-
rons of fixed intrinsic quantum numbers must be a
linear function of spin. This form of mass spectrum
has been phenomenologically assumed in the re-
cent Regge phenomenology associated with the cele-
brated Veneziano model. " It has been shown here
that this result is an exact consequence of the de-
rived algebraic relations. This same result is now

obtained using the "algebraic approach. "

The most general solution to the above difference
equation is

M'(s) =m, '+k(s+-,'), (4.31)

where rn, ' and k are integration constants.
This last equation implies that the mass squared

M'(s) is a linear function of spin irrespective of
the representations of the group under consideration.
The same result was obtained in the previous sub-
section on the basis of group theory. It can also be
verified easily that the application of Eq. (4.29) for
the remaining set of values s' and s places a strong
restriction on the representations for which mass
splitting is allowed. In fact, inserting the known

expressions for the G, matrices, ' along with
the permissible mass spectrum (4.31), in Eq. (4.29)
gives a mass spectrum of hadrons which is not de-
generate if and only if hadron states are associated
with the unitary representations of the iso-Lorentz
group defined by (4.15)-(4.17) and by (4.21). It is
also interesting to note that only these representa-
tions allow the hadron states to couple to the electro-
magnetic field, as was pointed out by Barut and

Kleinert in Ref. 18.

V. CONCLUDING REMARKS

where (',' f'] is the 6-j symbol of the group SU(2).
Consider the transition s - s —1 and s' - s + 1 in Eq.
(4.29). The summation range over,J is then re-
duced to only one term with 4= s and (4.29) becomes

G;+'G', '[2M'(s) -M'(s +1) -M'(s —1)] = 0.

(4.30)

1(s's,'Ix, Iss, ) = G;
s, as, (4.27)

Recently Capps has derived certain consistency
conditions, which the hadron-hadron coupling
matrices must satisfy, by saturating forward dis-
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persion-relation sum rules with single-particle
states, "or by utilizing the Veneziano formula. '
The form of these consistency conditions leads to
the conclusion that hadron states must be regarded
as unitary representations of certain Lie groups.
However, this scheme does not determine the mass
spectrum of the hadrons.

Another algebraic approach to meson-hadron
dynamics is that of Sugawara. " In this scheme
consistency conditions relating the meson-hadron
coupling matrices and the hadron masses are de-
rived by saturating unsubtracted dispersion rela-
tions of meson-hadron form factors with one-
particle states. However, a unique solution to
these conditions is hard to find.

More recently, the most attractive scheme for
determining pion-hadron transition amplitudes and
hadron ma, ss spectra has been that of steinberg. '
An attempt has been made here to further this
work. It has been shown, under fairly general
assumptions, that the dependence of the axial-
vector coupling matrices is entirely determined
by the Lie algebra of the group SO(4, 3) and, fur-
thermore, that the mass-squared value of hadrons
of fixed intrinsic quantum numbers must be a linear
function of spin.

Other models"" do lead to linear spin depen-
dence for the hadron mass spectra. However, these
use somewhat broader assumptions than have been
used here.

It hardly needs to be emphasized that the group-
theoretical properties of the physical observables
encountered here have not been hypothesized —either
on the basis of a quark model, or by a free a,ct of
intuition as is common in the consideration of dy-
namical groups —but have been derived from the
usually accepted assumptions about the equal-time
commutator algebra of axial charges and axial
divergences.

tensorial character of the mass-squared matrix
M'. Consider the matrix relation (3.22), which is
of the form

[X„,Z', ] = is "g„A+ie"'»'„,. (Al)

The matrices A and A~, are now rewritten in terms
of X„and g8, and the following results are ob-
tained:

A = ——,', ig"'[x„",z„") (A2)

Carrying out the algebraic reduction using the
commutation relations (3.1)-(3.6), the following
intermediate results are obtained:

and

11[X'„A]= -SiZ', + e'"~g""[X„,A~„] (A6)

2[X'p, A'„,] = ie'&"(g,„Z",-gp, Z„+g„,Z, -g„Z „)

+ [X~)A.~p, ] —5~ [X~,A~,]. (A7)

The above equation (A7) is then used to determine
the second term on the right-hand side of Eq. (A6).
This yields the result

e'&g"'[X",W7 ] = -2iz', +4[XS,A], (A8)

which, when inserted into Eq. (A6), gives the final
form for the commutator in question, namely

at„= ,'is--'&[x„,z„'] (A3)

The commutators [X~&,A~, ] can then be written down

by making use of the Jacobi identity as

[x'p, A] = ,',ig""[[z—„,[x8p, x„"]]+[x"„[z"„x',]]}

(A4)
and

[x'„w&.] = -', i~"'&[[z'„[x'„x„]]+[x"„,[z'„x',]]}.
(As}
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[xp, A."„,] = -[x"„,A„],
which implies that a matrix p», defined by

ft,„,-=——.'i[x"„A„,]

(A10)

(Al 1)

behaves as an isoscalar, totally antisymmetric
Lorentz tensor of the third rank. Making use of
the definition (All) along with the relation (A7),
the commutator [X8„,A~~„] is calculated to give

Summing over P and y indices in Eq. (A7), the fol-
lowing relation is obtained:

APPENDIX

The purpose of this appendix is to prove the + [x'p, a~„] —3is'&it, „,. (A12)
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Inserting this into Eq. (A7) yields the result (3.29b), and result is

[X'., Itp„,] = - i[XB,[X"„., A"„„]] (A14)

can now be evaluated by using the Jacobi identity
for the double commutator and Eqs. (3.1)—(3.6) and

(A13)

which has been used in Sec. IIIB. The value of
the commutator

[XB,R&„„]= -i(g A&„—g &A 8, +g„A s). (A15)

The commutators (Al), (A9), (A13), and (A15)
have been used in Sec. IIIB to prove that the 35
matrices A, Z„,A„„and A~„, transform as com-
ponents of the 35-dimensional totally antisymmet-
ric tensor of the third rank under the group SO(4, 3)
transf ormations.
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