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Following our previous paper on the planar%-loop Veneziano amplitude, we derive the non-
planar N-loop formula in this paper. The calculation is performed by tracing over both the

multiply factorized tree and the Sciuto three-Reggeon vertex functions.

I. INTRODUCTION

This paper is the second of three articles de-
voted to calculating all multiloop amplitudes in
the dual-resonance model. In the first paper, ' we
presented the planar N-loop amplitude; we dis-
cussed at length the principal-axes method, the
infinite- cancellation technique, the Kikkawa-Sakita-
Virasoro interpretation, the Jacobian calculation,
and the range of integration. Because the planar
and nonplanar loop calculations are similar, we
present the nonplanar amplitudes in this paper
without many of these details. In the third paper,
we will present rules for writing down arbitrary

planar, nonplanar, overlapping, and nonorientable
loop amplitudes. '

The nonplanar amplitude differs from the planar
one in three major ways:

(a) The linear-dependence correction is (1 —X)'
for each loop, not (1 —X), where X is the multi-
plier of each projective transformation.

(b) The factors raised to the ,nP —1 power dif-—
fer slightly, to reflect the different quark topology
[see Eqs. (2.26) and (3.13) belowj.

(c) There are variables of integration which lie
between the invariant points of each projective
transformation.
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II. MULTIPLE-FACTORIZATION FORMULATION -OF NONPLANAR MULTIPLE LOOPS

As in the previous paper, ' we first consider the nonplanar single-loop~ .amplitude, expressed in a general
projective frame, and then apply the method with modification to the nonplanar multiloop diagrams.

A. Nonplanar Single-Loop Amplitude

Ne first write down the following doubly factorized tree formula for the amplitude corresponding to
Fig. 1;

S+1 S.+ 1

GI„'I(a, a )= lldy;[Y~„j exp Q (a IP„(i)Ik,)+ P (a IPR(i)Ik, )
i i=0 i=0—(i ~o.) (i &8)

+(a IP„(P)M P(n+1, P- l, n, P)M'P, (n)Ia') (2.1)

where

P (i) = P(n n + 1 n —1 i) =- ( — )(
(x...-x. ,)(x.-x;) '

(2.2a)

(2.5)

P()(i) =P(P, P —1, P+ 1, i) . (2.2b)
(2.6)

Applying the sewing prescriptions' on the excited
a, a~ legs and using the principal-axes technique, '

we obtain, from Eq. (2.1), the nonplanar single-
loop amplitude (Fig. 2); call it E„(1):

1 1 2
())=fd'k d)) ' " '() t)"

0

with

(2.7a)

where

x gdy, [Y „,)I,
i

(2.3)

s+i i k

IE)= Q PB n k

P+1 k, j
(i &o. , a)

(2.7b)

(2.7c)

a-I

t2

P ///////////r ///////7777i 0

S+I

FIG. 1. Doubly factorized tree diagram (nonplanar). FIG, 2. Nonplanar single-loop diagram.
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We then. calculate Eq. (2.4), order by order in the
[GH] matrix, by defining the projective operator P, (x)=

)
=I'(P i-, P, P+i, x),

1
X

(2.10a)

P '1( )
38-1 3R

1 —x(yR —y R+1)/(y R 1
—y R+ 1)

I~'")=I (t i)/t.
(2.8)

i-R'(x) =I -R'(I/x) .

(2.10b)

(2.10c)

and the projective operator corresponding to en-
circling the loop

RRa= RRnt —Pa'Q——PR, RR'„=-PR'Q '&„,

From Eq. (2.9), we have two identities,

RRn(yn) 3 R+11

RRa(yR) =3' +1.

(2.1 la)

(2.1 lb)

where

(2.9) These two identities, Eqs. (2.lla) and (2.11b), en-
able us to get the "invariant points" of Rg .'

We find, after tedious calculation, the expression for I:

S+1 S+1 -k'i' k& -ki An

-=(„,
( ])„.rr n [y; — l'."'"(y,)]-" " rr

(i,& ~n, e) (i ~a, e)

„(y -yR) RR.'(y )-x, ""'"
(212)

(y —x,) RR„'(y ) —y,

We also separate out, in the factor fY'R+,) of Eq. (2.3), all factors containing y, yR, and combine them
with Eq. (2.12); we get, finally,

oo $+1 S+1
&F„,»=, ,[,] „.rr q [., -R;.'"'(y, )]-:" " rr

I

(i.P ~of, 8) (i &a, 8)
(n=o, i &g)

(y;-y;„)" '
i=0

(i &t3t, n-l, 8, 8-1)

y ~ -ki' k~

RR„'(y„)-x,
(y.—x,)[RR.'(y.) —yR]

(y. .-y.)(y.-y...)(yR, —yR)(yR-yR„)' "
(yn 1 3 a+1)(yR 1 yR+I)

((y ~1 3' n+1)(y R-1 y R+ 1)] (3'o y b)(y b yp)(yb —-yk) (2.13)

We now express our final answer in a projectively invariant form by transforming the set of variables
(t, y yR) into the new set of variables (X, x„x,). We first extract out all factors containing t, y, yR in Eq.
(2.3). From Eqs. (2.3) and (2.13), they are

l(kn) 1(1 t)ap 1 lkn
Xn Xe

R,'(y ) -x,
(y. —x1) [R R'.(y.) —y R]

X ya 1 3n 3n 3n+1 3 8 1 yR yR yR+1 [(y y )(y y )lnP 1(y y )(y y )(y y )
( — )( — )( — )( — )

ya-1 3'n+1 yR-1 yR+1

(2.14)

The Jacobian calculation is quite involved, and details can be found in the Appendix. We merely quote
the result here. In the frame x, = ~, x, = 0, the expression (2.14) is equal to

dx[dx, ](dx.](I -X)'X "'"' '((y. , -Xy R, )(y., -Xy —.)]"' '. (2.i5)
The unique projective generalization of the expression(2. 15) is exactly similar to that found in the pre-

vious paper'; it is
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~d d Z-)(..i-1(, Z}2(y.-y.)(y. -y.)(y. -y.) [y. 1-&R.(yR„)1(x,-y „)
(x, -x,) x, -RR.(y„,)

[y „-AR (y, ,)](x, -y, ,)
x, -itR„(yR, )

Now we are ready to write down the nonplanar single-loop formula. By combin1ng Eqs. (2,16}and
(2.13) with (2.3), we obtain the final form:

(2.16)

$+1
x , ()) .fd =). j'~x.x '"' -(( --x')' n

i=O
dy, dx, dx, [dy, ][dy,][dy, ]

( — )( — )( — )

1 2

(i~ n. 8, n. b, ~)

i=O

(i &o. , ct-&, 8

( )n()-1 [ya-1 ~ Ra(y 2+1}](XI y R+1} bn+1 ~ Rn(y R-l}](X1 y R-i}
x1-&R.(yR, .} x. -&R.(yR-1}

where

(i &~. 8)

[y fthm(n)(y )]-x', 2;. 21

n=O

(i, j&a, g) (n = O, i &g)

(2.17)

(det[~]) '"= ii (1-X")-'.
n=l

(2.18)

The ordering of y,. (i =0, 1, .. . , 5+1, i au, P) and x„x, will now be discussed. The variables of the multiply
factorized tree, before sewing, had the ordering

Xo ~ Xj. ~' ' ' ~ ~n-X ~ Xe ~ Xn+ a - ' ' ~ J 8-i ~ 7 8
~ X 8+&

~ ' ' ' -X$+i ~

It is sufficient to specialize to the frame x, =~, x, = 0, and consider the case 0 ~X& 1. After sewing, Eq.
(2.11) gives the relations

70 =XX g+i
-1$8=X 3 a+1 gn+1

These two relations imply two inequalities similar to Eq. (2.43} of paper I:
~r 1

Vn-i ~8+i - 78+2- ~ ~ -7$+j. -VO- ~ ~ 3'e-j. &78+i ~

Xg+1 3 g-l 3 8-2 ' ' 3 a+1 X3 8-1'

(2.19a)

(2.19b}

(2,20a)

(2.20b)

Equations (2.20a) and (2.20b) force us to put x, between y R„and y R „and to put x, between y, and y „.
Therefore we conclude that the ordering is

3'O - 3'X - ' ' ' - 70. -X - &2 - 7 i ' ' ' - V H-j. - &i -7 8+ X
- ' ' - X $+ X

~ (2.20c)

Pne observes that the nonplanar single-loop formula, Eq. (2.17), is essentially the product of two planar
single-loop formulas, one with external legs outside the loop, and the other with external legs inside the
loop. The interpretation of various factors is exactly parallel to the interpretations discussed in paper I;
we will not repeat them here.

We see that the nonplanar single-loop formula, Eq. (2.17), is hardly different from the planar single-
loop formula in Ref. 1, and as we will see further, the nonplanar N-loop formula again is very similar to
the nonplanar single-loop formula.

B. The Nonplanar Ã-Loop Amplitude

In this subsection, we apply the techniques of the previous subsection to the nonplanar multiply factorized
tree diagram (Fig. 3). Each loop is labeled by two indices, e.g. , the (o(P) loop is obtained by sewing the

excited o. leg with the P leg. We adopt the convention that the first index (e.g. , n) of each loop [e.g. , the

(nP) loop] corresponds to the complex parameter (X*~.
%'e now write down' the 2Nth factorized tree amplitude corresponding to Fig. 3:
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S+1 $+1

G~„& (a", a;a&, a";.. . ; a', a") = gdy, (Y~„'iexp g P (a'lP„(i) lk, )+ g g (a lPB(i} lk,.}
GE{P.) f =0 . BE{~

(c &of) (i &B)

+~ p (a lP (y)M P(n+1, y+1, n, y)M P (n)la&}
o. , ye {&)

(n ~y)

+l Z (a'IPg(&)M-P(&-1, & 1, P-, &)~ 'P,-(P)la~}
B, S~{~&
(B~~)

+ Z (a lP (v)M P(n+1, v-1, n, v}~ 'P, (n)la'),
0., 6 c{~}

(2.21)

where

P (i) = P(n, n + 1, n —1, i),

P,(i) = P(P, P —1, P+ 1, i),

P, (i) = P(y, y +1,y -1,i),

P~(i) = P(5, 6 —1, 5+ 1, i) .

(2.22a)

(2.22b)

(2.22c)

(2.22d)

The sum Q(, } is over one index from each pair (np), (yg), . . . , (ag); the total number of pairs is ~.
will use 2* to denote the second index in the pair (nP).

The variable t B corresponds to the propagator which joins the z leg to the p leg. We first apply the
sewing prescriptions' simultaneously on the N pairs of excited legs a", a8, (nP) =(2j; then we use the
principal-axes technique; then we define the projective operator R8„responsible for circling the (np) loop;
then we use Eq. (2.11) to facilitate the infinite number of cancellations' leading to the invariant points x'8,
z'„'~& of Rz„, and finally we obtain the nonplanar iV-loop amplitude (Fig. 4):

(2.23)

I

\
'l

I
I
I

0
I

a+(
IJ

//r

S+(

FIG. 3. 2Nth factorized tree diagram. FIG. 4. Nonplanar N-loop diagram (rubber band).
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where

(0(8), ... ,(a &),

(ax)~() a)
(3~(Z ~,Zj)

(e 8).(y~) &$L:$
(ct 8)&(y6)

(y -y~)(ys-y ) -l"~'"~
(y8-y, )(y -y„)

x . D
&8'(y ) -48'(yH) &8 (y )-R8 (y8)(

~(.,),(, l y -&8.(yg) yg-&8„'(y. )

Again, separating out all Koba-Nielsen variables y, y 8(nP) E(g)in ( F~„}in Eq. (2.23) and combining it
with I of Eq. (2.24), we get

(aN, ... ,(a), ),{yh) cfz$
(a), ) ~() 6)

(es),(n'8'), .. . ,(oz), (ys)~Pf ~=0 ~~ L"-" ~8 ~', &a~ &~ "~8 L" ~a'~'. ~~& qz&

(08)~(e' 8'): (&&) «ya)

E

&8'.(y.) -ff ~'.(ys) &..(y.) -&..(y~)

y. -fly (ys) y8-&8.(y.)

(0.8}e$z J:
(y -1 -y.)(y - y , )(y R- y R)(y R

- y-8, 1)

(y.-.—y.,i)(yB-i -ys, i)

[(y~-x -ye, i) (y 8-i - y 8,i)1" '(v. - y,) (y, - y, )(y, - y.) .
(ng) ~(s)

(2.25)

We note that the factors in the last brace in Eq. (2.25) are not identical to the analogous factors in the
nonplanar single-loop case, Eq. (2.13). However, in the frame x~„'~& =~, x~~z -—0, in which As„reduces to
its multiplier X'„8, they are fortunately identical, and this is enough for our purpose. Vfe can transform
the set of variables [t„8,y, yz, (oP)G(Z)]into the new set of variables [X„&,x~'~&, x~~&', (nP)E[gHby perform-
ing the same calculation as 1n the one-loop case, l.e., Eqs. (2.14) (2.15), Rlld (2.16). Each time we pick
out a particular frame x~„'~ =~, x~~8 =0, we find a linear dependence factor (1-X z)' for the (nP) loop, and

obtain an expression similar to (2.16). We then repeat the calculation for the (y5) loop, etc. Therefore,
on combining Eqs. (2.25), (2.23), and (2.16), we finally obtain the projectively invariant nonplanar N-loop
formula:
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F„(N)= t II d k II dX X " (I-X,)'II[I-X-]
as(&) (ns) F (»:$ {R)

xj»»
(i&{a,z*,a. o, c))

d;[d, ][d,][d,] II d ' d'
& s»,-('&

" " g [x.",' —x»')]'
( e).{'j

S+y

i=o
i»I{&+,Z -1;Z, & -1)

b.-, -&s.(vs. ,»1*".»-&s„»I" '

[&""s—&sa(y s.»)]

[y + II as( ys- )»l[ xt»~ s ys-»]

[~'s —&s (ys-»))

S+z

II II & (y; —[R ]" (y )]i.z =0 (a8), ... ,(yh)~ {&) m=0

(teJ»I {g ig))

i=o «S).".,(fy&), (y ~)
(y, -[&']'."I (',l) (

"'
" ' ] y»

- [&']'s".', ~(x'„'s») ]

(2.26)

(nR) &(n'8');(o M &(yh)

where

(det[a]) '"=Q (1 —Xs) '.
{z)

(2.2V)

(2.28)

The ordering of y;, x,,', x,'. can be seen in Eqs.
(2.19) and (2.20), and the result is shown in Fig. 5

or Fig. 6.
The region of integration and periodicities are

fully explained in Sec. III [see Eq. (3.16) below].
We see that the nonplanar N-loop formula is

little different from the product of planar loop for-
mulas. ' The interpretation of various factors in
Eq. (2.26) is again parallel to paper I.'

III. THE N-LOOP AMPLITUDE IN THE
FORMULATION OF SCIUTO

The nonplanar N-loop amplitude can also be cal-
culated with the three-Reggeon vertex introduced
by Sciuto. These vertex functions are inserted in
a scalar multiperipheral tree, as shown in Fig. 7.
We insert a complete set of intermediate states

~
X s)(A.„s ~

in the upper portion of each loop:

a-I

Si[ 0 t

FIG. 5. Ordering of the S+2 variables y;, i =0, 1, . . . ,
S+I, i »E {2,2}, and x~s, x„s, (»». P) E(2}.

FlG. 6. Ordering of the external legs y; relative to the
loops. There is no y; between any two adjacent loops.
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Ve(D) = II f»'k (OI VD ~ V.- ''' Vs ~ Ds L sD V,— "' V D'V'IO).
ne(&3

where

I
D;'=- dx, x,"' ""1' '(1 —x;) ',

0

L s -=(0loil's'D'sDel's-1" i '+kD'+P'n'I0)ks

Ws' =—exp (at Ike) exp(at, b)+ exp(alke) exp(a, b) exp(b I-7(s+,) s

V; -=exp(k; lat) exp(k, la),
W" =- exp(at Ik„)exp(at, bt) exp(alk ) exp(a, bt), exp(bt lv„),

D (s
It du u B(ns()kn)-1(1 u )

D-
0

(3.1)

I
Notice that, for the moment, we have omitted the linear-dependence correction factor and the (1 —z) fac-

tor a,ssociated with the Sciuto vertex. j
%e will use the identities

1

«Ib&'s'&' sin&. s) = «nsune "" ' '(1 —u ) '«p(a
I ke+M. unsane)exp(alks+M u s& e)exp(-&s+klu e&ne)

0

(3.2)

(&.el~". l»k=exP(a'Ik. +M &.* e) exP(alk. +M, &.* s) exP(~. I&.* )e

Using the techniques given in Ref. 1, we now contract over a oscillators and find

(3.3)

(ks)=J II » k f II "" s Jl II»x'f II " )» )
Sx, s

"1" '(1 —x, s) 'x; ' '' '(1 —x) 'exp g(k, (x,.„,. (k, )I$0)

xezp A. A.*+~* Q A. +A. B ~*+~* D g*+~ g ~+~~P+gg 3.4

where

&ns, „s=uneM+ysye 'M u, s («»&P& y«)
= 0 (otherwise),

T -I
C~B yg= M ygy~ M u~g ((x & p & y & 6)

or (b=P and y=o. )

Y+t

(2)
X~p

= 0 (otherwise),

Bns &s u„sM, yzys 'M, ——(c(& P & y&5)

= 0 (otherwise),

(2)
XaP

)x'"

D„s „,=Mry~y 'M, (a & P& y«)
=0 (otherwise),

IZ. e) = g u. ,M'y, y, 'Ik,).-
s+t o

S
+ Z unsM+y»ye Ik») —u sskk»ks

j=s+1 FIG. 7. Nonplanar configuration via Sciuto vertex.
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IF.8) = gM, yny, -'Ik, )+ g M'y, y. 'I-k, )+ Iz.)

(n & P always) (y& 5 always). We shall symmetrize as follows:

[A]=[A]+[A], [D]=[D]+[D], [C]=[C]+[B]

We now perform the integration over A.. Then we get
1 S 1

F„,(N)= Q d„'(1— )' Q dk g d;; "" '(1 —,)'
(ae)~&~& O a=(&) x=1 O

x(oct[& ]y( exp
I
'-', r, (z((e'[ [a(t]"' .=o

—— I&)

where we have used

0 [1]i
[Gl-=([(] o I,

i[A] I.C]'
I],[c] [Dl

(3.5)

(3.6)

(3.7)

[~]=[G)-[ff].
At this point, we will find it useful to introduce the following projective operator:

1
Rg~ =y~pe

y eyn
t -tet„'(t —e„)).

With this projective operator, we can reexpress all matrices as follows:

(3.8)

S+I
I& 8)= g KP8.y. 'y;Ik;),

S+1
IF-.)= ZK 'y.» 'Ik, ),

j=0

8+1 (k
8I —QK '(P ]

)
''

enyn

s+z (k

&X(x

Aa8, yB KPBnyn yyPby K(

C =K' 1
n8, y& -1 P-I [K( )]

-1

1
a8, ys & Kya yy

C n8, ys =KP8aya yyK

where K(z) =1 —1/z, K '(z) =1/(1 —z), K ' x 1/K. Notice that we have assumed momentum conservation in
order to derive projective relations for A, D, and C. When expressed in this fashion, all K's in [GH]"
neatly cancel. (Also: yo—=~, y, —= 1, ys+, =—0.)

If we assume momentum conservation among the k's, then we can contract over harmonic-oscillator
states and projectively manipulate these expressions:

—:(Fl~)=P P [;-~,.y,]-t",
i, j n8&f~)

l(F I[~]'I&)=II II'.j «s), (y~) & ')

etc.

(3.10)

Notice that we have imposed conservation of momentum everywhere, which allows us to ignore "residue"
terms which arise from binomial contractions, i.e., (M,)„x = 1/(1 —x)" —1. One disturbing fact is that
y and y8 are not the invariant points of It 8 (as was found earlier). When the binomial "residue terms"
are added in, we get an infinite set of cancellations, which replaces y~ and y& with the invariant points of
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R„6. (The cancellation is exactly as in the planar case, and hence is not presented here. ) We merely
state the result:

exp Q(~; lx;„,; l~, ) exp ((g (~ I) [&1 ' l@)

)j

i, j=Q
i & c(, g;j ~ X., o

ivej if nO

[ (gt)(n) ] -ik&A&

a Xnx(x(2) y ) ~20~2-( (s)
y

)-1&8~ ~ +la~2 g (
i)j

(3.11)

x 8=-8"q(z, ),(2)

x"', =-Z ",(z, ),

,fi)~y ~~e8 s

z, ~x'„",

w, =—y, if if[2},
gg~ = x~ g

= 1nvRr1Rnt point~

'NB =—X'~g = 1QVRr1Rnt point.

Now that we have all the tools to derive the answer, we are ready to put in all (1 —z) factors (appearing
in each Sciuto vertex) and the linear-dependence correction,

(
(1 —x„)u,x „x~,
(1 —x „)(1—x~, )

(3.12)

The linear-dependence correction to nonplanar and overlapping loops is a simple c number. The planar
loops, however, have modified propagators. We have

8

( d'a du„,u, - " '-'(1 —u, )-'(1 —x ) '""' P dx,.x,-""'
(n8)~ (&) ~ o i=2 Q

x(1 x.)-'(1-u ) "8+" 1- "' "" ' ' exP Q(~;lx, , i, ;l~, ) exP —2((@(&l)[&] '/+1, t j 2 p)

S+I

Q d'k g g dgo;(dsu, dry, dw, ) 'dX„BX q
'"' '(1 —X 8)' Q (1-X-„) '

(0, 8)&(~f i=0

i=0 g(i~(~, z-z, ~, ~

S+1
x g g g [u, - (ft')',".' ,.y, ] "'~(u , -u ,)(u , - u ,)(u , -u .)

n =0 i j=0 (Ot 6) ~ ~ (g X) g (& )i&et, 8

(gg,. gg, „)"0-'

(p) „r) )-. . (d."~-w„,)fM. , -ss.(ws„)I(x'."s-~s,)I~.„-&s.(MB,)II" '

(-8):&') [x."l -&8.(~8, )][x."s'-&8.(~8- )]
(3.13)

where me have

x~g =% 8 =By~(zy)p zg + x~8

x'„",-=u „-=Jt,„"(z,),

X ~=—multiplier of Rq =-,'[4„g' —2+@„8(@8' —4) '1,

rvhere
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Tr(R8„)' [det(R,.)]'" '

%g+g =ZU0q

so, se, , and m, =fixed points,
j1) pa[ ~ q y 1(1 —x )DS( ya+1~ yn+ai & y8-u ~a 8& ~a 8& ~' a8)

S(x„,x „,",x8, u 8) y 'y, (1 —t 8)'t„8 '

where

Dn8—= 1 —t„8[1—un8(1 —x„)] and y8/ya =tn8(1 —t„8)Da8 ',

(3.14)

3'BXn

-ya. '[t —M. ,O-x„)])'
-I

&8 =-X I'e Xn

(3.15)

Notice that P8 changes by a factor of 1 —x when the (I -z) Sciuto factor is correctly inserted; notice
also that t z is defined implicitly:

(I)
&n8 En&no~

(a3 -I
+n 8 ~6tn8

When the calculation is actually performed, the region of integration is actually larger than what was found
earlier (e.g. , the multiplier ranges from 0 to ~). As in the planar case, we take the branch where the
multiplier is between zero and one. (When the multiplier is equal to one, the invariant points are equal to
each other. )

We recover the usual single-loop nonplanar amplitude if we let

a Xng Vp +n8 ~c u) g
='N g+ I = 1~

U1 =(x'n8= +& &W8 1 W8 1
& "' wa~1 &x'a8 =0 &Wa 1

''' W1 wo W8q1 ''' 'W8q2 W8~1=1 '& Oa =xn8).=x'"=
Conveniently, we find that the cyclic ordering of the Koba-Nielsen variables mimics the ordering in Fig. 3
if we let zo and so& be the invariant points.

We are free to move external lines past loops, as required by rubber-band duality, because

w8~[ &W8 & ''' &wa W8 & '''Wn &R8(aW~8)1

see &se; & ~ ~ ~ &zv &se -u; & ~ ~ ~ &so &3; &u); & &u8-1 n+ I n

Notice that variables trapped between se„and zv & always remain trapped, while variables located between
the invariant points of different, adjacent loops are free to move past these points.

(In the planar case, no variables are allowed between w and w8. )
In studying these periodicity properties, we will find it convenient to move these latter lines completely

away from the region occupied by the invariant points. A simple renumbering yields

se &u " &se &ze &ze "&se &so- & ~ ~ &ui &zv &n S+I I 0 1 g 8 n+ I ni

[Notice that the factors in the braces in (3.13) change slightly, depending on the quark topology. ]
Since the operator R8 flips these latter lines across the (np) loop, the operator (R8 ".Rz, ) flips these

lines completely around the diagram. The regions occupied by these "rotated" lines are disjoint from pre-
viously rotated lines. As we rotate these lines an infinite number of times, they asymptotically approach
the invariant points x" and x" of (R8 ".R~ ) '. These points x" and x[" separate the region occupied by
the invariant points from the region occupied by these rotated lines. Likewise, the lines lying between u
and so8 are rotated by the action of Rz . We summarize these statements as follows:

U, =[x &R8 ."R~,(w, ) &W8„&W8 &" &w, &x &w~ &w~, &."&w„, &Rz,(wz, ) &w, &" &w~ &w8(I) x'"

&W 8 1
«"' Wa~1 &R8n(W 8 1) &Wa & X ], (3.16)

We subtract out periodicities by constraining one variable in each set to lie between y, and R(y, ), where
y0 is arbitrary, i.e.,
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[ffaa "'ffxa(yo) 0 - yo

( 8 - ye -~ s-r - &Bn(y 8-i)~

for each (op) in (2}. Notice the complete symme-
try between the R&„'s and (B~s .A~, ) ', meaning
that the distinction between outer and inner quark
loops disappears. In each case, external lines be-
longing to each quark loop are confined to lie be-
tween the invariant points of that loop. (In the
planar case, we only have outer quark lines, i.e. ,
the lines between w8 and w„are missing. )

These constraints are enough to determine U,
uniquely. (All multipliers range from 0 to 1, but
now they are no longer independent. )

We understand that Lovelace and Alessandrini
have obtained similar results. '

(1 —a)= l(1 —X '),

ys —ay8„, ——l(x, -X 'x, ),

(A2c)

(A2d)

~yn+ i yn = I(x2X xx)~ (A2e)

y~ys —y~+ gy s+ qQ = lxqx2(1 —X ),

~(y. —y.„)(ys„-ye)
- i/2

X '(x, -x, )' (A2g)

From Eqs. (A2d) and (A2e), we can derive the
identity

y~+y„(x, -X-'x, )/(x, X '-x, )

y8+y +y~+y(x2 X xy)/(x2X x$)

On comparison of Eq. (Al) with the standard form
in paper I, we find the set of identities
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APPENDIX: THE JACOBIAN CALCULATION
ft-I I h y n+ 1(xR xIX ) xi'(I X )

~ i( )
~(ys ~ye i) (y y8 y +De)&)

z(1 —a)+(ay„„—y )
(Al)

VYe show how the variables I,, y, y& in the expres-
sion (2.14) are eliminated and transformed into the
variables X, x» x, in Eq. (2.15). We first find a, set
of identities that relate t, y„, y& to X, x„x~. Using
Eqs. (2.8). (2.9), (2.10), and (2.2), we can express
the projective operator RB'„, defined in Eq. (2.9) as

(A3c)

z(x, -X'x, ) —x„x,(1-X')
z(1 —X )+x,X —x,

(ASd)

As„(z) —x, , z —x,
As (z) —x, z —x,

' (ASe)

Rs'„(y )-x, Rs (y8) —x,
(y. -x,Nfl' 8'.(y.) —ysj b. If (8y )j(8ys--x.) '

a
t —1 ' -d'

(y. -y. ,)(y8-y8 i)
(ya+ 1 ya 1)(y 8+ 1 y 8-1)

(A2a)

(A2b) one then can show that the expression (2.14) is
equal to

l.&e'(y )-x&1l&s (y8) —x.l '" '
(y. -y.)(»-y.)(y. -y.)

(y. -x, )(ys -x.) (y., i —y.)(y8.i- y8)

(A4)

Now we specialize to the frame x, =, x, =0. Then B~„-X', and y~ =x» y, =1, y, =x» so that
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a-1

(A5)

Hence the expression (A4) reduces to

dX[dx, ][dx,][d] [(y, -Xys„)(y„„-Xys,)] ' 'X (A6)

The calculation of the Jacobian factor

B(t, y„, ys)
B(X, x,x, )

is rather complicated. Fortunately, it gives

d X '(ys+, —y„~,X ')
(a —d)' (ys„+y „X ')

Bya/Bx& By~/BX2
X

By,/Bx, By,/Bx,
' (A10)

l'd (1 —X)'
(a —d)' X' (A8)

Proof: From Eq (A2a), taking derivatives of t
with respect to X, x„x, and using Eq. (A2b), we

get

We then calculate, from Eqs. (A3b) and (A3c), the
derivatives of y„, y& with respect to x„x, (evaluate
in the frame x, =~, x, =0); we finally get

d (1-X)' ' (ys„-X 'y „)'
(a —d)'

B(a y ys)
(a —d)' B(X, x„x,)

(A9) (1-X)'
(a —d)' X' Q.E.D. (A11)

In deriving Eq. (A9), we have used the theorem that
the determinant vanishes when two rows are identi-
cal. We now use Eq. (A3a) to take derivatives of a
with respect to X, x„x, and evaluate in the frame
x, =~, x, =0; we get

Substituting Eq. (All) in Eq. (A6), we obtain the
expression (2.15):

dx[dx, ] [dx,](1-X)'X '"~' '

x[(y~, -Xys„)(y„„—Xys, )] o '.
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