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Note that

n~S",, '„.,(P, n) = iP~C'„'&.,(P, n),

thus satisfying Feynman's hypothesis. Equation (31) is just the result of Boulware and Deser" in momen-
tum space. Finally we wish to emphasize that what we have presented here is a simple derivation of the
propagator function of any two operators possessing properties (a)-(c). Hopefully, similar techniques
could be employed to study more complicated functions, e.g. , the time-ordered product of two operators
between nonvacuum states.
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On the basis of simple dimensional considerations, it is argued that equal-time commuta-
tors as calculated canonically are, in general, not sufficiently singular. This general result
is then verified in a number of examples of interest by computing the vacuum expectation
values of the commutators in perturbation theory. Specific cases discussed are the electro-
magnetic current in spinor, scalar, and Pauli electrodynamics and the "new, improved"
stress-energy tensor for a free scalar field.

I. INTRODUCTION

Equal-time commutators (ETC's) contain consid-
erable dynamical information. Symmetry princi-
ples provide some constraints on their form, ' but
the more singular parts of commutators have thus
far remained inaccessible to computation on gen-
eral grounds. In particular, it has long been
known that, in specific instances, the application
of the canonical formalism yields results which
are inconsistent with the general principles of
field theory. ' More recently, it has become popu-
lar to define ETC's via perturbation theory, ' ' the
justification being that the most convincing suc-
cesses of field theory have been in perturbative
calculations.

In Sec. II, it is argued on the basis of simple di-
mensional considerations that under very general
circumstances ETC's calculated canonically have

the wrong singularity structure. The exceptions
to this rule are catalogued. In Sec. III, it is veri-
fied explicitly in several examples of interest that
ETC's as defined by perturbation theory are in
fact more singular than those calculated canonical-
ly, An example is also given in which Schwinger
terms of a given singularity structure appear ca-
nonically, but in which noncanonical Schwinger
terms of the same structure must also appear.

II. GENERAL RESULT

Let T be any tensor of the form

(2.1)

~here M„ is a monomial in the canonical variables
(Qj and (mj and their spatial derivatives, the A„
are constants, and the superscripts denote Lor-
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entz indices. The dimension (measured in units
of mass) of each canonical variable satisfies

d(Q) &0, d(~) &0. (2.2)

This is always true canonically, i.e. , for a free
theory, because the form of the mass term im-
plies that d(Q) = 1 for bosons and —,

' for fermions
while the canonical commutation relations give
d(v@)=3 —d(Q). However, the dimensionality may
differ from the canonical value. ' We choose to
work with the canonical dimensionality because,
for our purposes, it is sufficient to deal in lowest-
order perturbation theory, where the fields may
be treated as free. That more singular terms
may occur in commutators in the exact solution
of the theory or even in higher orders in pertur-
bation theory merely serves to strengthen our
conclusions.

Dimensional analysis suggests that, barring can-
cellations, a term in T of the form ~M~ "~ will give
rise to a term in [T(' (x), T( (0)] which has the

singularity structure

s"P(x),

n = d(M(')) + d(M( ) —3 .
(2.3)

This implies that if T is j", the electromagnetic
current in spinor (or scalar) electrodynamics,
[j",j"] will contain 8'5 terms' 9 because j" has
dimension 3." Similarly, 9"', the stress-energy
tensor, has dimension 4, so that [e"',O'P] should

contain s'5 terms. " (Of course, symmetry con-
siderations will require that these terms vanish

for some sets of indices. ) We will demonstrate
in Sec. III that terms of this singularity structure
do arise in perturbation theory. If the M„which
appear in (2.1) do not all have the same dimension,
then the most singular term in the commutator
clearly comes from the M„with the largest dimen-

sion.
It must be emphasized that the conclusions

reached in perturbation theory are always subject
to the condition that cancellations do not occur.
It is difficult to imagine such caneellations taking
place in a. nonrenormalizable theory (where the
coupling constant has a negative dimension) be-
cause the singularity structure worsens with each
additional order. In fact, it is unlikely that the
commutators in such a theory exist in any meaning-
ful sense. These conclusions may have to be modi-
fied if the currents are not polynomials" in the
canonical variables, so we will restrict ourselves
to finite sums in (2.1). We will examine one non-

renormalizable theory, that of Pauli electrodynam-

ics, but only in lowest order. If cancellations

in a renormalizable theory do not follow from sym-
metry considerations, then they must be viewed

as "careful planning, " i.e. , as an eigenvalue con-
dition on the coupling constant. On the other hand,
cancellations can easily take place in super-renor-
malizable theories, i.e. , those in which the cou-
pling constant has a positive dimension, where
they may follow, for example, from the vanishing
of a finite number of integrals.

We now proceed to compare the singularity struc-
ture expected on dimensional grounds, Eq. (2.3),
with that derived by use of the canonical commuta-
tion relations. The most singular term in the ca-
nonical evaluation of [T('), T(~) ] occurs when the
M(') with the highest-order derivative (say, n, )

of some canonical coordinate P is commuted with

its "conjugate, " the M~)'& which has the highest-
order derivative (say, n, ) of n&. A singularity of
the form 3"&'"26 results. Because of condition (2.2)
and the fact that d(P) + d(v @)

= 3, it follows that

n, +n, &d(M(") )+d(M(~) ) —3.
Equality holds in (2.4) if and only if

(2.4 )

(2.5)

because the presence of any other P's or v's
serves to reduce n, +n, . But the right-hand side
of (2.4) characterizes the singularity structure as
computed by dimensional analysis, i.e. , Eq. (2.3).
Thus, the condition for agreement between the
form of the leading canonical and "dimensional"
singularities in the ETC of two monomials is that
they are linear functions of two canonically con-
jugate variables or of their derivatives. Here,
linear means that only one canonical variable ap-
pears and that it appears precisely once. For a
general tensor T, the requirement that the canoni-
cal result is sufficiently singular is simply that
among the terms in (2.1) with the largest dimen-
sion are a linear "conjugate" pair such as de-
scribed above. Under any other circumstances,
the canonical commutator will be less singular.

The electromagnetic current in spinor and sca-
lar electrodynamics, the hadron currents in the
quark model, and the stress-energy tensor for
any theory do not contain terms linear in the ca-
nonical variables, so me expect the canonical cal-
culations to be incorrect in all of these cases. The
correct singularity structure is obtained canoni-
cally for the currents of the algebra of fields and,
of course, for the canonical commutators them-
selves. The case of the algebra of fields is par-
ticularly amusing because d(V') = 3 and d(V') = 1,
so that the expected singularity is simply a single
derivative of a 6 function and this is provided by
the canonical commutation rules. Since the dynam-
ical theory of currents, " the so-called Sugawara
model, can be viewed as a limit of a Yang-Mills
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field, " its current commutators also have at
worst 85 singularities. The canonical structure
of this theory has been discussed by Deser. "

The argument that we have presented works
equally well in a space with an arbitrary number
of spatial dimensions. However, boson fields in
two-dimensional space-time satisfy d(&f&) =0 so
that condition (2.2) is violated (it remains valid
for fermions). In this case, canonical commuta, —

tors of tensors which are not linear functions of
(I& may have the correct structure. An example is
j"=i it& 8 &'(t& for a free scalar field; here, [j",j"]
has a 85 singularity structure both canonically and

dim ensionally.

III. PERTURBATION-THEORY RESULTS

A. Calculational Techniques

(ol [f&
j']lo) in fermion electrodynamics. Note

that even if B„j"to, the corrections to (3.4) will
not affect our conclusions regarding the leading
singularity, provided that cl„j" is of lower dimen-
sion than 8, j', the success of PCAC (pa, rtial con-
servation of axial-vector current) suggests that
this is the case for the axial-vector current. In
any case, we w'ill restrict our attention to the
(conserved) electromagnetic current. By calcu-
lating the right-hand side of (3.4) we can recover
D'(q, t) and hence the ETC because rotational in-
variance requires that D' cc q'.

Before proceeding to the evaluation of (3.4) in

specific examples, it should be pointed out that
(3.1) is by no means a unique way of defining
ETC's. A plausible alternative is to use the equal-
time limit of the commutator function:

Following Johnson and I.ow, ' we define the ETC
by

[A (x, 0), B(0)]= llm C (x, t),
t 0+

[A(x, o), B(0)]=lim D(x, t), (S.la)
C(x, t) =A(x, t) B(0) —B(0)A(x, t) .

(3.5)

where

D(x, t) = 2 [A(x, t)B(0) —B(0)A(x, —t)

+A(x, —t)B(0) —B(0)A(x, t)) . (S.lb)

D'(q. t) = (2&i)'Q cosE„ t[(0 I j ln(q)& (n(q) I j'lo)

+ (o I
j'ln(q)& &n(q) I j'lo&].

(3 3)

The combination q, D'(q, t) has a particularly sim-
ple representation when j" is divergence-free,
namely,

q, D'(q, t) = 2(27&)'QE„cosE„t I(0I j'ln(q)) I'.

(3.4)

A formalism which is virtually identical to this has
been applied by Chanowitz' "to the study of

For our purposes, it is more convenient to deal
with the spatial Fourier transform of the vacuum
expectation value of D(x, t), which we denote by

D(q, t):

D(i(t&=f2'. e ", '"((&(D( (&(0e&

= (»)'2 cosE.t [(oIA In(q)& (n(q) IBI0&
n

—(o IBln(-q) & (n(-q)
I
A

I o)],
(3 2)

where A -=A(0). Let us consider first the case in
which A and B are, respectively, the time and
space components of a vector current j". Then
use of parity invariance gives

B. Fermion Electrodynamics

To lowest order in e, the intermediate states
that contribute to (3.4) are electron-positron
pairs, i.e. ,

ln(q)) =
I
c (p), e'(q —p)) (3.6)

Using j"=&t&y" (t&, (3.4) becomes, after summing
over spins,

In the special case under consideration, i.e. ,
A= j', B=j', and R„j"=0, it is easily shown that
q;C' = q; D', so that (3.1) and (3.5) a,re equivalent
for our purposes. " This may be stated in another
way: If one defines the vacuum expectation value
of the ETC of components of a conserved current
via (3.5), one discovers that the Bjorken-Johnson-
Low' " (BJL) form for the commutator is valid,
because the latter follows from (3.1)." Chanowitz'
has used (3.5) in his work and has compared his
results to those obtained by yet another means of
evaluating ETC's, the method of point splitting.

It is important to note that the limit t-0 is tak-
en after the sum over intermediate states is com-
puted. Performing these operations in the oppo-
site order leads to incorrect results; see Ref. 7
for details. In fact, this way of proceeding would
lead to the standa. rd spectral (Kallen-Lehmann)
form" for the ETC's but computation of the spec-
tral functions in the examples below shows that
the spectral representation fails to converge.

In the following, we use Eq. (3.4) and its analog
for the case of the stress-energy tensor to evalu-
ate D' in several examples of interest.
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q; D'(q, t) =, d'p(cosq, t)2m' '
p q, -p,

was first reported by Brandt' and has since been
found by other authors. ' '

x[ p. (q. —2p. )+4.p],
(3.7)

where p, = (p'+m')'" and q, = (p'+m')'"
+((q —q)'+m')'". We are able to perform this
integration only in the massless case, i.e. , when
p'=0 and (q —p)'=0. It is easily verified that the
integrand is well defined over the whole range of
integration for all values of the mass and that the
large

~ p~ behavior of the integrand is mass-inde-
pendent; hence, the result for m =0 is a continu-
ous limit of the result in the massive case. In
fact, it is expected that the most singular terms
are mass-independent. ' In the massless case,
the integral becomes, upon converting to spheri-
cal coordinates with p, = cos(q p) and introducing
the va. riable j = q, /~ q ~

and the notation A =
~ j~t,

~4 OO

q,. D'(q, t) = d$ $(( —l)2(cos/A)
7f

C. Scalar Electrodynamics

q; D'(cl, t) = „d'p(cosq, t) ' (2p, —q, )'.277) po qo —po

(3.11)

In the limit m = 0, this integral (but not the inte-
grand) is precisely one-half the analogous expres-
sion in the fermion case. Thus

(0( [j (x),j'(0)][0)=, 8'V'6'(x)+-,'Wa'5 (x).

(3.12)

Canonically, the result is

[j '(x), j'(0)] = 2i P y(0)8' 6'(x) . (3.13)

D. Pauli Electrodynamics

To lowest order, j"=i/ 8" Q and the intermedi-
ate states are again two-particle states. One finds

1 —p.
'

"($—u)'

2~4 co

d$ ( cos(A.q

1

2q4 1—(cosX+ A. sink. —1)3(2v)' P
2P

+ „d$$ cosset. (3.8)

Canonical Schwinger terms also appear in spin-
or electrodynamics when a Pauli moment term is
added. To this end, we consider

2 = P(iy" 8„—e y "2„—m) g —,'F" 'F„, —+e~+" ' yF„, ,

(3.14)

where F"'= 8 "4' —O'A~, 0" = 'i [y", y ], and w is-

an arbitrary constant. " The electromagnetic cur-
rent is given by

j"=~ye~ —2

Recall that the ETC is obtained from the limit as t
-0 of this expression. The second term is singular
in t and is evaluated in the Appendix; the important
point for our considerations is that it behaves like
q' and hence corresponds to a 26 singularity in

(0~[j', j']~0). The factor in brackets is simply
&+O(t). Hence, we have

~4

q; D'(q, f) = -
3(2 ),

+@ x(function singular in t)+O(t) .

(3.9)

2 M+2 NM~ (3.15)

Q„(x), tJrz(0)j 5„853(x)=,

(3.16a)

the subscripts M and NM denoting, respectively,
the minimal and nonminimal contributions. In
Coulomb gauge, the canonical commutation rela-
tions are conveniently summarized by

This corresponds to

(0~[j'(x),j '(0)]~0)=, 6' V'5'(x)+AB'6(x),

[P(x), F„(0)]= 2ie~y, (P(x),

[P (x), F„(0)]= 2ieaq y, 5'(x), —
(3.16b)

(3.10)

where A is a divergent constant. This is the sin-
gularity structure expected from the arguments
given in Sec. II and is to be compared with the
(vanishing) canonical commutator. This result

where (3.16b) shows the effect of the Pauli interac-
tion on the canonical structure. The use of Cou-
lomb gauge is for convenience only; we are inter-
ested in [j",j'] and j" is gauge-invariant. To fa-
cilitate the computation of ETC's involving j", we
use the field equations to rewrite (3.15) as
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»~&,(( y"0),

j ' = gy'g +2i v(f 8'g)

2K-g(2eA'+ 2my' —eeI cr" ",y' )F»)g.
One then finds

[jM, jM]=ljM, j',M]=0,

[ jM(x), jqM(0)] = [jNM(x), jM(0)]

= 41 KtJJ((0)8 5 (x),

(3.17)

(3.18)

In fact, Geren" has shown that the matrix element
of [j', j"] between single-particle states calculated
to order e via the BJL procedure does agree com-
pletely with Eq. (3.19). It is not surprising that
the canonical and BJL calculations agree because
there are no (even superficially) divergent dia. —

grams to this order and hence one can take the
limit q, —~ inside the momentum integrals.

To lowest order in a, j"has dimension 4 because
z has the dimension of a length. " Thus we expect
[j', j'] to have 8'5 singularities in this order. Us-
ing the perturbation theory techniques that we have
discussed gives (lb.

—= ~q ~t)

[jNM(x), j NM(0)] =8i~'8„(&to "g)(0)2,5'(x),

[ j„'M(x), jNM(0)] =8/P(([ y (8'+ 2ieA')+2im7)"

+ 2i e ~( rt'o" 'F-„,
+ 2o' ~ F' ~)]g j(0)8, 6'(x) .

4q'g'
q;D'(q, t) =3(2 )

2q4

3(2w)'

2q2

3(2v)'

—[(-2X'+6)cosX+ 6A. sink-A. '-6]

1

A.

—(cosx+zsi z —1)I

(1 —2z'q') J) d$ $

cosset

0

Collecting terms gives

[ j'(x), j'(o)] = 8i~ [8&(P'o"0)](0)&, &'(x),
+2K' ( d$ PcosktI .

0
(3.21)

[j'(x), j'(0)] = 8i zgt/r(0) 8'5'(x)

-8tP g[y~( 2'+ 2i eA') + 2imq

+ 2ie~( q"o~'F„-,+2o' F'~)]P] (0)

x 8,.6'(x). (3.19)

The occurrence of a Schwinger term in [j', j'] is
of some interest. Note that it may be rewritten in
the form

[j'(x), j'(0)] = Y'P(x)+ e, ,„8'X'(0)8'5'(x), (3.20}

with Y'=0 and X"=4iK'e" g o, g. Equation (3.20)
has been shown by Gross and Jackiw" to be a nec-
essary and sufficient condition for the validity of
Feynman's conjecture in a given theory, viz. , that
it is possible to choose a seagull term consistent
with the constraints imposed by Lorentz invari-
ance such that the Schwinger terms and the diver-
gence of the seagull cancel in the derivation of the
Ward-Takahashi identities. It is perhaps amusing
to note that if one generates a current algebra us-
ing for the neutral currents the j"of this theory
and for the charged currents operators of the
quark type, i.e. , V"= g,y"g„ then Eq. (3.20) is
not satisfied for [ jo, V ]; for here the Schwinger
term has the form zg, y;P, 8'5 Such a theo. ry would
thus not be a useful current algebra because low-
energy theorems would involve the Schwinger
terms.

Since we have been arguing that canonical reason-
ing fails to give the most singular terms in the
commutator, one may well ask whether the Schwing-
er terms that we have found have any significance.

The expressions in brackets equal —,'+O(t) and
—,'+O(t), respectively. The first term then gener-
ates a term in (0~ [j ',j']~0) of the form

E. "New, Improved" Energy-Momentum Tensor

Callan, Coleman, and Jackiw" (CCJ) have de-
fined the stress-energy tensor for a free scalar
field to be

(3.22a, )

where

T„,= a„ya„y+ ,'q„„(m2y' —a-ya.y},
~„,= (a„a,—q„a)@'. (3.22b)

The standard definition of e„,as the response of
the action to a. change in the metric gives e„,=r„„

-'L K

3(2v)'
8&(g 2)263( )

The last term has only q' and q' contributions and
hence corresponds to less singular commutator
structures. The integrals appearing in (3.21) are
discussed in the Appendix. Setting v=0 in (3.21)
simply reproduces the result for fermion electro-
dynamics, as it must. Thus it is seen that the co-
efficient of 8'5 in (0~ [j ', j']

~
0) has a v-independent

part as well as I(.-dependent part. This is to be
compared with the canonical result, which ha, s no
~-independent part. Thus, even when canonical
Schwinger terms appear, they may not be the only
ones of that structure.
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+ less singular terms. (3.23)

No 3'6 terms appear canonically in any renormal-
izable theory when the standard stress-energy ten-
sor is used. However, we concluded in Sec. II that,
in general, there should be 8'5 terms in such a.

commutator. We next proceed to use the tech-
niques of Sec. IlIA to calculate this commutator. "

We adopt as our conserved current O'". Then,
defining

e'( t) = ~t d'x e-" ' "

i.e. , A. =O. However, the generators of the Poin-
care group are integrals or first moments of 6„,
and are hence independent of A. ; thus for nongravi-
tational phenomena, all 8„,of the form (3.22) are
equivalent. In the generalization of (3.22) to (re-
normalizable) interacting theories, it is possible
to choose a A. such that matrix elements of 6„,are
well defined, at least to low orders in perturbation
theory. Furthermore, this "new, improved" e„,
is related to the transformation properties of the
theory under scale and conformal transforma-
tions. '~" The significant point for our consider-
ations is the observation of CCJ that use of the
canonical commutation relations gives rise to a
3'5 term in [e-,e"], the presence of which is re-
quired" by general principles of field theory. In
fa,ct,

[e'"(x),e"(o)] = 4t~'@'(o) 6' v '6'(x)

to the canonical 8'5 term of CCJ and that the ap-
pearance of such a term is not an a,rgument in fa-
vor of the use of the "new, improved" e„,.
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APPENDIX

We examine here certain integrals which arise
in the perturbation-theory calculations, namely,

I„(t)= d( ("cosset.
0

In order to legitimize the mathematical operations
which we perform, it is necessary to smear I„with
a, test function in t (to be consistent, this should
have been done throughout all the derivations in
Sec. III):

(..„(f) «f(()f d=k('""Lo~((
~ oo 0

= (-1)"'' dtf '"''~ (t) d$ sing't
OQ 0

= (-I)- jt dtf &2-).)

we have

x (o
~

-,' [e-(x, t)e" (o) -8"(o)8"(x, -l)

+ e-(x, -t)e"(o) —e"(o)e-(x, t)]
~
o),

(3.24)

where

f' '(t) -=dt f(t)

xIm lim d( e"'""
b~0 0

(A2)

q,.e'(q, t) =—,q'+f(X)q'+g(Z)q'. (3.26)

This disagrees with the canonical calculation not
only in the appearance of a 8'5 term but also in the
form of the 8'5 singularity. For, we find that
f(A) = ah. '+ bt(+c with a, b, and c nonvanishing (in
fact, all are singular in the limit t - 0) whereas
the canonical procedure gave only a A2 term. It is
easy to see that there must be a A. -independent 8'5
term, for it follows from Ref. 28 that

[T-,T"]=. [8--~e" 8"-~e"] (3.27)

must have a (by necessity X-independent) 3'5 term.
We conclude that no significance can be attributed

q, e'(q, /) = 2(2v)'ZZ. cosE.tl &Ol 8"In) I'. (3 2~)
n

The evaluation of this is tedious, even in the mass-
less case, so we merely schematically indicate
the result":

Then we have

(2n+ X) tI,„„(f) = (-1)""P dt (A3)

2&

f() —Q —,f' '(o) ~ ()I"
m=0

(A4)

The remainder term R(t) vanishes at t =0 and
hence does not contribute to the commutator.
With the understanding that such terms are to be
dropped, we tabulate the integrals that appear in
See. III:

where P denotes the principal part. Taking f to be
a function of compact support and expanding it in
a power series leads to

f)=(- ()()2 +)1!)'f d!I!
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I,(f) = P-) dt

"~t f(t) -f(o) —r t'f" (())
t4

(A5)

Equation (A3) is a more compact way of express-
ing the result.
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