3

starting with quantization in the noncovariant vec-
tor gauge, for which the timelike component b, of
the gauge field is set equal to zero. The Hamilton-
ian used does not appear to satisfy the Schwinger
covariance condition,
follows from the fact that a covariant prescription
is finally obtained. .
Quantization in the radiation gauge, with V- b=0

*Work done in part while a visitor at CERN, Geneva,
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and a time-independent constraint fixing &,, is
also possible, using the Hamiltonian of Schwinger,”
but is complicated by the presence of coincident
discontinuities and 6 functions at equal times.
These are related to the presence of the Schwinger
term £, and are not serious in themselves, but
make it difficult to relate to the standard form of
Sec. II.
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The present series of papers studies the problem
of localizability of elementary systems in relativis-
tic quantum mechanics. In partI,! Philips’s? re-
sults were discussed. In part II® (hereafter called

(Received 21 January 1971)

In parts II and III of the present series of papers, the localization problem was studied for
the relativistic nonzero-mass (spin 0 and 3) and zero-mass (spin 0, %, and 1) cases. With a
set of postulates of which the basic one was the imposition of Lorentz invariance of localiza-
tion (which is a self-consistency requirement), it was possible to define the position operator
uniquely (except for a constant for spin §, nonzero mass). However, the position operator
has unusual properties, e.g., non-Hermiticity. This does not preclude its having physical
meaning, but is such a strange result that in the present paper we test the validity of the pos-
tulates in the nonrelativistic case (spin 0 and 3) where the position operator is well known.
We use the same set of postulates, except that here we impose the Galilean invariance of lo-
calization. The result of the test is positive; the position operator found is the usual one.
Moreover, with our set of postulates, we restate the notion of localization in a more physi-
cal basis, giving a precise definition of it without imposing avoidable requirements.

I. INTRODUCTION The set of axioms which express the Lorentz in-
variance of localization for elementary systems in
the most general way was stated in II. These axi-
oms are restricted to such systems for which the

localization with respect to a % axis has sense in a
point.® In order not to introduce avoidable hypoth-
eses, some standard assumptions were neither

A. General

II), the general consequences of imposing Lorentz
invariance of localization (i.e., the physical con-
sistency of the description of the localization by
observers in different inertial frames) were derived
and applied to nonzero-mass systems of spin 0 and
3. In part III* (hereafter called III), the same pro-
cedure as in II was applied to zero-mass systems

of spin 0, 3, and 1.

used nor rejected. For example, it can be recalled®
that (a) Lorentz invariance of localization can be
achieved without imposing manifest formal covar-
iance (see II and the references there); (b) non-
Hermitian operators can have a legitimate use in
quantum mechanics®?; (c) the possibility that com-
ponents of the position do not commute cannot be
rejected in an absolute way (as for instance in the
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case of the angular momentum), so it is not neces-
sary to impose the existence of 3-localized states®
(i.e., simultaneous eigenstates of the three com-
ponents of position); instead, it is sufficient to
consider 1-localized states® (i.e., eigenstates of
only one component).

One of the results in II and III is that there is no
Hermitian position operator. This implies that it
is®** certain that one of the following statements is
the right one for the relativistic case:

(a) Position has no meaning at the quantum-
relativistic level.

(b) The description of localization from different
inertial frames is not self-consistent.

(c) Position is the only observable which cannot
be represented by an operator.

(d) The position operator exists, but it is non-
Hermitian.

(e) Some unusual interaction effects do not dis-
appear when the interaction is switched off.

If the possibility (d) is considered, then we have
in II as well as in III:

(i) The eigenvalues of the position operator are
real in spite of the non-Hermiticity of the operators
(see Secs. III-V of III and Refs. 22 and 24 of II).

(ii) The components of the position are compat-
ible with each other for spin 0 and incompatible for
spin 3 and 1.

(iii) The commutation relations of the position
and the linear momentum are the expected ones.

(iv) The velocity operator is Hermitian and
has the expected form.

Some of the consequences of the self-consistency
of localization in relativistic quantum mechanics
are rather unusual. It would be prudent to test this
method in that part of quantum mechanics where
the localization problem has a well-known solution,
i.e., in the nonrelativistic quantum mechanics of a
point particle.®® To do this is the basic purpose
of the present paper. As a by-product we shall ob-
tain what we expect is a better approach to the
nonrelativistic localization.

B. Outline of the Argument

In Sec. II we state the postulates and discuss
them in Sec. III. In Secs. IV and V the Galilean-
invariant localization problems for spin 0 and 3,
respectively, are solved. The results are dis~
cussed in Sec. VI.

C. Conventions and Scalar Product to be Used

The dimension of a quantity A will be indicated
by [A]. We shall only work in the p representation
and in the Heisenberg picture of time evolution,
and in the Schrodinger-type picture of spatial trans-
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lations and pure Galilean transformations'® of the
one-particle state. The scalar product will be the
Galilean-invariant one, which for any spin takes
the form (see, e.g., Ref. 11)

W, ¢>>=§) Ju'®, &) ¢ B, H)dp. (1.1)

As in II, we denote by §© the orbital-variable
space and by & the spin-variable space, so that
the state vector space is §=§P® 8",

1I. POSTULATES

We make the following assumptions:

(1) Position makes sense for a particle.

(2) Each component of 3-position is represented
by an operator X* whose eigenvalues are its pos-
sible values. An eigenvalue of this component of
position can be known with certainty if and only if
the vector that represents the state is an eigen-
function of X* corresponding to this eigenvalue.

(3) The set of the X* (k=1,2,3) is a 3-vector
operator.

(4) Localization'is Galilean-invariant in real
space-time® in the sense that if a particle looks
localized in a region ® of real space-time when
seen from an inertial frame of reference, and if
a homogeneous continous Galilean transformation
is made in such a way that ® is left invariant, then
the particle also looks localized in ® when seen
from the new inertial frame. A region of real
space-time is invariant under a homogeneous Gali-
lean transformation if the region is invariant under
the corresponding Galilean transformation of non-
quantum Galilean relativity.

(5) The space-translation operators transform
localized states into new localized states, but they
only translate the real part of position, leaving
invariant the pure imaginary part.

(6) For fixed P, the set of eigenfunctions of a
component X * of position at a given point a* +b*
contains a basis of 8§,

III. REMARKS AND AUXILIARY FORMULAS
(FOR SPIN 0 AND %)

The postulates stated in Sec. II are basically the
same as those stated in II. The unique difference
will be found in postulate (4), in which, here, we
do not impose the Lorentz-invariance of the local-
ized state but the Galilean invariance, as should be
done for the nonrelativistic case. The physical
discussion of the postulates is the same as in II
and we do not reproduce it here.

It must be noted that in the usual treatment of
nonrelativistic quantum mechanics, the notion of
localization is not defined on a sound physical basis.
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Further, one of the basic suppositions in that pre-
sentation, i.e., the commutation relation between
the components of the position operator, [X*,X*]
=0, has no a priori justification. There does not
exist experimental evidence, for small distances,
for this relation, ? and we know of 3-vectors whose
components do not commute, e.g., the angular mo-
mentum components; furthermore, in relativistic
quantum theories the position operators do not
always have commuting components.®***13717 With
our set of postulates, we restate the notion of local-
ization on a more physical basis, giving a precise
definition of it without imposing avoidable require-
ments.

Hamermesh'® defined the position operator for
nonrelativistic quantum mechanics in terms of cer-
tain transformation rules of mean values. He
imposed stronger requirements for the position
operator than those used in the present paper. He
found a solution, which is the same as the one we
obtained, but did not discuss its uniqueness.

Inéni and Wigner, *° using another set of postu-
lates for localization and the vectorial representa-
tions of the Galilei group, arrived at the conclusion
that the position operator does not exist for them,
and that the vectorial representations of the
Galilei group are not the physical representations.
Considering localization in regions, and using a
set of postulates similar to those of Indnili and
Wigner, together with the projective representa-
tions of the Galilei group, Wightman®® found that
the position operator exists for them and that it is
unique. In contrast with our work, Inonii and Wig-
ner assumed as did Wightman, that the components
of the position operator commute. One of the basic
axioms used in the Indnli-Wigner and Wightman
papers can be expressed as the requirement of
physical consistency of the description of local-
ization by observers in frames related by a three-
dimensional rotation. However, in a nonrelativis-
tic theory a similar requirement should be satis-
fied in all inertial frames, and that is the content
of our postulate (4).

Let X be the position three-vector and @, a 1-
localized state,

X320 = (®+ib%p.,, a=d®, b=b° (T11.1)

where a and b are real numbers and v stands for
the remaining degeneracy; in order to work in a
more general case we assume complex eigenval-
ues.?€:21723 Agin II, all 1-localized states can be
obtained from ¢,,, by the action of the Galilei
group, so it is sufficient to find @, .

In IT it was shown that the components of the
three-vector operator X can be written®*

X*=(ind, +R*), (I11.2)
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where R is a three-vector which only depends on
P, and on the matrices of the theory - that is,
ﬁ=§(§,f), where the components of T' are zero
for the spin-0 case and the Pauli matrices for the
spin-3 case; R can also depend on the constants
of the theory.

As regards real space-time, ? the original state
Qopy is localized in the two-dimensional plane ®
specified by making the third spatial coordinate
and the time equal to zero. By postulate (4), ®
remains invariant under the pure Galilean trans-
formation

X'=%-%¢, t'=t. (I11.3)

Using the physical, i.e., the projective representa-
tions of the Galilei group, ! we know how the local-
ized state @, (D, &) transforms under Eqs. (III.3)%!
into another localized state in the same region ®,
that is,

(I11.4)

where m is the mass of the system. Then, postu-
late (2) implies

Povw (ﬁ, 5) = @ovy (ﬁ*‘mvy E)s

Xs(pobu (ﬁ*"ﬂ’l?’, ‘E) = (0 + ib)\s)q)obu (ﬁ+m—‘;; ‘E)
(I11.5)
X is a real parameter; b,°%is such a function of
X that b,°=b with A=x(¥). By Egs. (III.2) and
(I11.5), and calling G=m¥V, we have
[iﬁa:; +R3(—f)9 f:)](poby (5 +ﬁ, ‘E) = ib)\swobu (5 + ﬁ’ g)'
(I11.6)
A

We now premultiply Eq. (III.6) by e~ ; since

Pon B+8, H=e" T 9q,, ©, 8),
the equation is converted into
e~ %% [R5, T) = 16,100 (B+8, £)
+il 3,04y, (D, £)=0. (I11.7)

Taking Eq. (III.7) and combining it with its partic-
ularization for 1=0, we obtain

[R*®,T) = ib,%+ib> = R3D + 8, 1) ooy, D+, £) = 0.
(II1.8)

A solution of the form ¢,,,=5(...) for Eq. (III.8)
is not allowed because ¢,,, is independent of U;
this implies

R3®,T) - ib\®+ib° = R%H+1, T') =0. (I11.9)

All that has been said above is valid for spin 0 and
1

3.
Let us consider separately the spin-3 case. We
have then two vectors V(i) , i=1,2, that form the
maximal set of linearly independent three-vectors
which are functions of p and of the matrices of the
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theory, i.e., p and §><i"; then we can prove, as
in III, that
R= nc, b2V, [c,]=1, i=1,2.
i
(I11.10)

Equation (II1.10) is also valid for spin 0 because
then Vi,) =pX T =0.

IV. SPIN ZERO

In this case, we have by Eq. (III.10)
R=cr|pl-%; [C]=1.
Substituting Eq. (IV.1) into Eq. (II1.9), we obtain
ECIDI=2p = HC D+ "2(p® +uP) =D, ® = ib°.
(Iv.2)

(Iv.1)

By differentiating Eq. (IV.2) with respect to p!, we
find

Cl@ +u)P*+u®) B+ =pp%|B[~*]=0.  (V.3)
By choosing p®=-u%, we deduce that
C =0. (Iv.4)

Then, the components of the position operator are

uniquely defined and are the standard ones
X*=ino,. (Iv.5)

This operator is Hermitian with respect to the sca-
lar product (I.1); then

b2=b=0. (IV.6)

V. SPIN 3

In this case, we have by Eq. (III.10)
R=1C,|D| %D+ kC,ID| 2B x5). (v.1)
Substituting Eq. (V.1) into Eq. (II.9), we obtain
HC,|D|72pP - ik 2 +ib® = HC B+ 2(p® +u)
+HC[|B]72p" = [D+T[ 72" +ul)] 0
- BC,[IB]72p" - [B+T|72(p* +u)] 0" = 0.
(v.2)

Setting
A=HC|D|72p* = iby 2 +ib® = HC, [P+ 2(p* +ud),

B =NHC,[[p]™2p - D+ 2(p* +uP)], i=1,2  (V.3)

we multiply Eq. (V.2) by the operator (A - B,¢?
+B,o'), and obtain

A =i(312+322)1/2 . (V.4)

By differentiation of Eq. (V.4) with respect to p?,
and making then p®=4*=0, p?>=u?=0, we find by
choosing u!=p* that

C,=0. (V.5)

Equation (V.2) is the same as for the spin-0 case
and we have

C,=0. (v.6)

Thus, the components of the position operator are
again uniquely defined as

Xk =ino,. (V.7
Again it follows by the Hermiticity of X* that
b,3=0v°=0. (V.8)

VI. CONCLUSIONS

Using the consistency of the description of local-
ization from different inertial frames in relativis-
tic quantum mechanics as the only basic assump-
tion, unusual properties of the position operators
have been found, ®* e.g., their non-Hermiticities
and their noncommuting components for certain
spins. Here we have found that, with the corre-
sponding basic assumption in the nonrelativistic
case, the position operator is uniquely defined for
the spin-0 and spin-3 cases and that this is the
usual Hermitian, commuting-components operator
of the nonrelativistic quantum theory. Further-
more, in contrast with the usual treatments, we
have, with the postulates stated in Sec. II, a phys-
ical, precise definition of localization which avoids
the standard hypothesis.
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We demonstrate how a careful derivation of the Lehmann-K#11én representation for the
propagator function of any two operators, each with an arbitrary number of Lorentz indices,
naturally gives rise to frame-dependent pieces. We verify (a) that the Bjorken limit is sat-
isfied, (b) that a previously proposed partial differential equation connecting the seagull and
Schwinger terms is also satisfied, and (c) that covariantized propagator functions may be
defined such that Feynman’s hypothesis is satisfied. Finally, we give some concrete exam-

ples.

Since the original observations'™® that the time-
ordered product of two currents is not, in general,
a covariant object, there have been many papers
devoted to the construction of covariantized time-
ordered products of several operators, together
with the associated “seagull” and Schwinger terms.
The investigations of some authors*~® have dealt
with this problem from the field-theoretic stand-
point. In this approach one constructs time-
ordered products by considering the response of
the system to perturbations of an external gauge
field. On the other hand, Dashen and Lee” have
constructed time-ordered products for any number
of conserved currents without appeal to a gauge
principle. More general studies® have also been
carried out, for example, for the case of noncon-
served currents.’

In this paper we consider the vacuum expecta-
tion value of the time-ordered product of any two
Hermitian operators A(x) and B(x), each carrying
an arbitrary number of Lorentz indices. We as-
sume that both A(x) and B(x) may be obtained from
some operator O(x) by taking divergences with re-
spect to a subset of Lorentz indices and contract-
ing over another disjoint subset. The advantage of

this latter restriction, by virtue of the positive-
definite spectral functions arising in the propaga-
tor function of ©, lies in the fact that the seagull
and Schwinger terms we find are necessarily non-
zero.'®

By inserting a complete set of intermediate
states into the time-ordered product, we see how
the frame-dependent seagull terms arise naturally,
for essentially kinematical reasons.® The situa-
tion is reminiscent of the ambiguity involved in
approximating form factors by sums over interme-
diate single-particle states, where the approxima-
tion obtained by means of a dispersion relation
differs from that obtained by Feynman diagram
methods by nonpole terms. Such nonpole terms
correspond exactly to the seagull terms arising in
propagator functions.

The analysis allows us, given the spectral repre-
sentation of either the time-ordered product or one
of its covariantized versions, to construct the sea-
gull and Schwinger terms for operators A(x) and
B(x) and their timelike derivatives. We should
make clear at this point that, for convenience, we
sometimes refer to the whole of the commutator
of two operators as a Schwinger term. The piece



