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The assumption that the Poincare generators are the space integrals of local conserved
currents is used to derive restrictions on the spectral function of certain vacuum expecta-
tion values. Then an argument is given that these restrictions and the vanishing of the trace
of the stress-energy tensor (conservation of dilation current) imply that all single-particle
states have zero mass, even when the conservation of the current is implemented by a Gold-
stone boson.

I. INTRODUCTION

The purpose of this paper is to study two conse-
quences of the existence of a local energy-momen-
tum tensor, 6~,(x), in a relativistic quantum field
theory. First, we study in what sense the infinites-
imal generators P„and M„, of the Poincare group
are given as space integrals of suitable components
and some particular first moments of 6„,(x). This
question is relevant. Normally one assumes that
P„ is the space integral of 8,„(x).' That this can-
not be true in the sense of operator convergence is
already known from the work of Reeh, ' who has
shown that, barring the trivial case 8„,(x) = 0, the
norm of the vector 6»(x) ~0) diverges as R, for R
large. It will be shown in this paper that P„and
M„, can be written as space integrals of correspon-
ding densities in the sense of equality of matrix
elements over a dense set of states. This can be
proved from the assumed properties of 8„,(x), pro-
vided no zero-mass particles are present in the
spectrum. If the latter are present, then for the
equality to be still true, a number of further re-
strictions, in addition to the properties of 8„,(x),
must be satisfied. These additional conditions are
given as restrictions on certain "spectral functions"
that occur in the representation of the vacuum ex-
pectation values of the commutator of 8~,(x) with
certain polynomials in the smeared fields. Second-
ly, we study the dilation symmetry, introduced
through a conserved dilation current [or, equiva, —

lently, via the tracelessness property of 8„,(x)]
and its spontaneous breaking. It is found that Gold-
stone's theorem is valid in this case. Spontaneous
breakdown of dilation implies existence of zero-
mass bosons. Arguments are then presented that
spontaneous breakdown of dilation does not admit
a situation in which some particle states remain
massive, provided that translational invariance is
not broken.

Recently there have been many discussions, for
internal symmetries, about the connection between

(global) "charge" operators and the space integral
of corresponding densities. ' ' A review of these
results is given by Swieca. ' We have found it pos-
sible to apply the techniques detailed in this last
reference, in toto, to the present investigation.

Let us now make some introductory remarks
concerning the nature of spontaneous breakdown of
internal (nongeometric) symmetries. One intro-
duces the symmetry through the local conservation
B~J (x) =0 of a, current J„(x). One now defines

and assumes there exists some local Wightman
polynomial A, such that

ljm (0
~ [Q~(xo),A]

~
0) =B.

R~~

It is easily proved that 8 is a constant. The broken-
symmetry condition is then B10."We should em-
phasize that one uses the displacement property of
J„(x),i.e. ,

J (x) =e' ~" J (0)e '""'
This generally is not the transformation property
of a current that generates geometrical transforma-
tions. It should also be noted that whenever a sym-
metry is spontaneously broken, the corresponding
"charge" is not a well-defined operator, i.e.,
lim„Q~ does not exist. '

In Sec. II we discuss the construction of Poincare-
group generators as space integrals of components
of an energy-momentum tensor and its suitable mo-
ments. In Sec. III we discuss dilation symmetry
and its breaking. In Sec. IV we make concluding
remarks.

II. ENERGY-MOMENTUM TENSOR AND

POINCARE-GROUP GENERATORS

In this section we consider the problem of con-
structing the infinitesimal generators of the Poin-
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care group P„and M„, as integrals over the com-
ponents of a local energy-momentum tensor and
its suitable moments. This problem will be dis-
cussed within the framework of a local field theory
satisfying the Wightman axioms. ' The postulates
of the latter theory include the existence of the op-
erators P„,M„,. What happens if we additionally
require that P„and M„, be given as integrals over
the components of an energy-momentum tensor
6„,(x) and its moments'? As we will see in the
following, a number of consistency conditions must
be satisfied in order that this be possible. In the
remainder of this section we will derive these con-
ditions.

The energy-momentum tensor 6„,(x) will be re-
quired to have the following properties:

(i) Symmetry: e„„(x)=6„„(x).

(ii) Divergenceless: a "6„,(x) = 0.
(iii) 6„,(x) is local with respect to the (local)

basic fields 4;(x): [6„,(x), 4;(y)] =0, (x —y)'&0.
I et us consider a local Wightman polynomial A

associated with a finite space-time region 0:

&&4;,(x,)" 4; (x„)d'x,d'x, " d'x„,

where f„(x„..., x„) are infinitely differentiable
functions of compact support with support in O.
The assumed locality of 6„,(x) relative to 4, (x)
enables us to use a representation due to Araki,
Hepp, and Buelle" for the vacuum expectation val-
ue of the commutator

&0 l [e„(x),A] l 0& = d p,
' d'ya(x —y, x„p')p„(p', y) + dp'd, 'y a(x —y, x„p,')p„(g', y). (2)

In Eq. (2}, b. (x, x„p') is the Pauli-Jordan function
for a scalar field of mass p, , and p» and p» are
measures in p' having compact support in y as a
consequence of local commutativity. Following
Ezawa and Swieca" we write

9
p,.(~', y) = p,.(p')5'(y)+ „ol„((', y),

i=1, 2, 3 (3)
p..(p', y) = p..(p')5'(y)+, o.', (~', y),

where 0,', and 0,', are also functions of compact
support in y and repeated indices imply summation.
The divergenceless condition S "6„,(x) = 0 implies

6»(x). First, let

+„(f )=J&„(*)f(*)&'

with fR(x) a smooth function satisfying

f,(x)=1, lxl&Z

fa(x) = 0, l
x

l
)?f + e.

(8)

In which sense now is P„=—lim~ „6»(fa)'? Fol-
lowing the argument discussed by Swieca, ' one can
define an operator P„over a dense set of states
obtained by applying A on vacuum by means of the
relation

0 d x60, x,A 0 =0
P„&lo&=-[e,„(f ),a]lo&, »ft. . (9)

for?t ) some A, . (4}

In order that P„defined above be identifiable with
the energy-momentum operator, it is necessary
that the following condition be satisfied:

From Eqs. (2), (3}, and (4) we get lim(ole, „(f )& 10) =o. (10)

d p, 'p„(p') cos(x, p) = 0,
0

dp'p„(p')p sin(x, p) =0,
0

(5a)

(5b)

To see the validity of the above statement in more
detail, we note first that Eq. (10) implies

lim&0l[60„(fa), A] lo) =0,
R~~

which implies

Pi, (p') =0, P.,(~') =&.5(p'). (6)

No further restrictions follow from the assumed
properties of 6„,(x).

We are now in a position to investigate the prob-
lem stated in the beginning of this section. We
start with the problem of constructing P„out of

&o lee„(f,)x I o& = &o la[6„,(f„),A] l o&

= - &0laI „x lo& (12)

which is, in view of Eq. (9), an obvious require-
ment (displacement invariance of vacuum) on the
energy-momentum operator Secondly. , Eqs. (9)
a,nd (10) imply
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for arbitrary local polynomials A and B. Thus the
equality

P„=— lim 8»(f~)

lim(0~[6„(f ), A] ~0)

d x dp 5(p, ) 6(x, x, p, 2)

is true in the sense of matrix elements taken be-
tween states formed by the application of local
polynomials on vacuum (local states). When can
Eq. (10) be true'? First we note from Eqs. (2), (6),
and (8) that

dp 6 p, cosx, p, =A, (13)

Hence, Eq. (11), which is a consequence of Eq.
(10), requires that

x, =0. (14)

Further, from. Eqs. (2), (10), and (14) it now follows that

(15)f oo oo

d'x d p,
' d'y b."(x—y, „xp')s, o, '„(g', y) + d'x di(,

' d'y 2'(x —y, x„ i(,')s;o2, (p.', y) =0.
0 0 XQ

In Eq. (15), b(')(x, x„p,') is the positive-frequency part of the Pauli-Jordan function. By partial integra-
tion Eq. (15) can be reduced to

Introducing the Fourier transform of o,', (p.', y),

(16)

( ),re" '"v.'.(v, ', y)d'y=v', .(p, ', 0), =1, 2

Eq. (16) can be written a.s

(17)

f

dic,

' d k k,. &3(k)o,', (p,
' k), dkoe'"o'o0(ko)5(ko2 —~k ~' —g )

0 OQ

+i dp, d Ak 6'ko' p.
' k dk, e"o"ok, 9(ko) 5(k,' —

~

k
~

' —p, ') = 0. (18)

Ca.rrying out the k, integration, Eq. (18) becomes

dp. ' d'k k;oI, (i(,', k)5'(k), -„»?2exp[ixo( ~k ~'+ g')' ']
0 +4

di), ' d'k k, a,'„(i),', )k'(5)ekx[ip(x~ok ~'+ p, ')' '] = 0.
0

(19)

The second term on the left-hand side of Eq. (19)
is clearly zero, while the first term behaves as

6„,(x) are not sufficient to guarantee Eq. (12) and
one now further needs the restrictions

A., =p, o'„(p.', p)=p. (20a)

The expression inside the square bracket is zero
for p, c 0, but not necessarily so otherwise. Hence
from Eqs. (2), (6), and Eqs. (S)-(19)we conclude
the following: (1) If there are no zero-mass neu-
tral particles present in the theory, then Eq. (10)
is automatically satisfied due to properties of

8„„(x), and consequently P~ can be constructed as
space integral of -6»(x) in the sense of Eq. (12).
(2) If zero-ma. ss neutral particles are present in

the spectrum, then the assumed properties of

o,', (y.', 0) = 0, j = 1, 2, 3 (20b)

which must be treated as an additional postulate of
the theory.

Let us now consider the homogeneous Lorentz-
group operators. Start with space-rotation

However, it will be proved later that oI, (p, ', 0) =0
irrespective of the presence of zero-mass neutral
particles [see Eq. (33) below]. Thus, in case zero-
mass neutral particles are present, one need only
to assume
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operators and let

df;;(f„)=f (xjj„(x)—x jj,;(x)]f (*)d'x, ', j=(, 3, 3

(21)

&0I[M;(f„),A]I0) =0, g )R,.
Xp

Equation (31), in conjunction with Eqs. (2) and (6),
yields

From the properties of e„,(x) we have

&0 I [M;, (ff(), A] I 0) = 0, 8 & If, .
Xp

(22)

j dp, 'aIO(p, ', 0) cos(x, p. ) =0,
0

J dpi'o,', p, sin(x, p, ) =0.
0

(32a)

(32b)

Using Eqs. (2), (6), (20a), and (22), we get

J dp, 'sin(x, ji) ii[o,', (ii', 0) —a,';(y, ', 0)]= 0. (23)
0

The solution of the above equation is

From the above we get

(J,', (p', 0) =0,

a,'.(p', o) =d'5(u').

(33)

(34)

a2, (p', o) = fi,', (V') + a,'5(p'), P2, (V') = i'(3;(u')

As before, we define

M, , A
I

o& = [M, ,(f,), A] I o&. (25)

Repeating the argument of the previous paragraphs,
we can now establish from Eqs. (23) and (24) that,
in the absence of zero-mass particles in the spec-
trum,

&~IM;, l~& = »m &C IM j(f~) I+&
R~~

for I43& and lk& arbitrary local states. If zero-
mass particles are present, then in order for Eq.
(26) to be true one needs, in addition, the following
conditions:

&4 IM„ I4& = Iim &4 IM„(f„)I4& (36)

for arbitrary local states IC) and IC&. If zero-
mass particles are present, then for Eq. (36) to be
true, one needs the following additional restric-
tions:

d'=0, (37)

Thus we have seen that Eq. (33) is true, irrespec-
tive of any requirement on the spectrum, as was
asserted before. We now define, as before,

M„.A I0) =[M;(f ),A] Io&, It ) It, . (35)

Once again we see from Eqs. (2), (6), (33), and

(34) that, in the absence of zero-mass neutral par-
ticles in the theory,

C =C ~ (27)
lima,'o(p, 3 k)- If", n&1

p

(38)

lim [a,', (p. ', k) —a'„(p.', 0)] —0", n&1,
0

sa'„(ii', k)
aA k =0

(38)

(28)

M„(x) = x,e„(x)—x; 8„(x)
and let M„(fj3) denote

(28)

Turning our attention now to the remaining HLG
operators, let us first define

To summarize: We have proved that the gener-
ators of the Poincare group can be written as
space integrals of corresponding densities in the
sense of equality of matrix elements between a
dense set of local states, in the absence of zero-
mass neutral particles. If the latter are present,
one needs additional restrictions. Three of these,
namely Eqs. (14), (27), and (37), guarantee that

M„(f,) fM„(x)f,(x)d*x. = (3o) &ol[&,„(f ), A]Io&=o, &ol[M„.(f ),A]Io&=o

(4o)
Now

&Ol[Mo;(f )»] lo&=2&oI[e.;(f ), A] Io&

—0 Rx x,op,. x d3X, A 0

=2&ol[e„(f,), A]lo&, It &It,.
Hence, if we assume Eq. (14), then

and hence are very reasonable from physical view-
points. They merely state that the Poincard-group
symmetry is no/ being spontaneously broken. The
remaining restrictions, viz. , Eqs. (20b), (28), (38),
and (39) are more technical in nature In fact, .we
cannot be absolutely sure at this stage that these
latter can always be consistently imposed. In any
case, one can now extend the validity of the above
results for local states given by Eqs. (12), (26),
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and (36) to more general states formed by the ap-
plication of quasilocal Wightman polynomials to
vacuum (quasilocal states). Let us consider quasi-
local polynomials, i.e., those of the form

tion will be devoted to answering this question.
Equation (48}, together with Eqs. (2), (6), and (20a),
yields

m

P=Q g„(x„... , x„)4;,(x, ) "4;„(x„)d'x, "d'x„,
n=p

f
dic'o2,

(if.', 0)g sin(x, g) = 0.
a

Hence,

(49)

where g„(x„..., x„) are infinitely differentiable
functions which, together with their derivatives,
approach zero at infinity faster than any power of
the Euclidean distance (s-class functions). Since
for any P there exists an AR such that, for any N,

o",, (p, ', 0) = c 5(p, '). (5o)

In the above, repeated indices imply summation:
o,';=a,', +o',, +o,', . From Eqs. (2), (6), (20a), and
(50) we see that

(41) lim (0 I [zo(fz), A I I o& = c.
R ~ oo

(51)

and since it is further known' that

lie. ,(f ) I»Il& J3R'"

as R-~, it follows that

»m(OI(P-&s)eo, (fz) Io) =0.
R~~

Hence, from Eq. (10) it follows that

(42)

(43)

lim (0 I
Pe „(f ) I 0) = 0. (44)

R ~((o

From Eq. (44} it follows, by a repetition of the
argument made earlier for local polynomials, that
Eq. (12) is true for quasilocal states. In an analo-
gous manner one proves the same for Eqs. (26)
a,nd (36).

III. DILATION INVARIANCE AND ITS SPONTANEOUS
BREAKDOWN

8 "Z„(x)=O, d„(x)=x'e„,(x). (45)

We can formulate dilation invariance in terms of
a local conservation law, ""

Thus if c 00, then (0
I [do(ff(), A] lo) 40 for R &Ro,

and we have a spontaneous breakdown of dilation
symmetry. Equation (50) now is the statement of
the Goldstone theorem for dilation breakdown. In
other words, if we have spontaneous breakdown of
dilation c 10, then zero-mass particles are neces-
sarily present in the spectrum and the current J„(x)
connects these particles to the vacuum. ' It has
been stated in the literature that the Goldstone bo-
son corresponding to dilation breakdown is mas-
sive. " This last statement is false in a relativis-
tic field theory with local commutativity. " We also
note that because of c ~0, the method used in the
previous section to construct global operators as
space integrals of corresponding operator densities
will not work. In fact, in the present case the limit
of J,(ff() as R-~ does not exist even between local
states. Hence a global dilation operator does not
exist at all.

Denoting hereafter J,(ff() by Df(, we will now

prove that even when dilation is spontaneously bro-
ken (c @ 0), the following commutation relation,

Obviously Eq. (45) implies the further restriction
that the energy-momentum tensor be traceless,

lim [D„,P„]= i P„,R~~
(52)

Let

e„~(x)= o.

&.(fd.ff (*)&(*)d'~

(ol[&.(f ),&]lo)=0, R)R,.
Xp

Then it follows from Eq. (45) that

(47)

(48)
[e,.(x), P„]= fe„e„(x),

it follows that

(53)

is true, in the sense of equality of matrix elements
evaluated between quasilocal states. The limit
R-~ on the left-hand side of Eq. (52) is to be tak-
en after taking the commutator. To derive Eq. (52)
we proceed as follows. Because of the displace-
ment property of e„(x),

What can we say about spontaneous breakdown of
dilation invariance if we assume Eq. (10), i.e.,
that P„can be written as space integral of corre-
sponding densities over local states? This sec-

[x"e„(x),P„]= fx'a„e„(x)
= f s „(x'e„(x))—te, „(x).

From Eq. (54), we get the double commutator

(55)
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but because x'e, „(x) is the 0th component of a conserved vector current and e„(x) is local relative to the
basic fields, the first term on the right-hand side of Eq. (55) is zero, for R greater than (some) R,. Thus
Eq. (55) reduces to

[[D,P„],A] = —2[8 „(f ), A], R)R,.

From Eq. (56) we obtain, for'arbitrary local polynomials B and C,

(O fB[[D„P„],Ci f
O) =- f«IB[e.„(fe),C] IO)

= f(ofBP„cfo).

Hence

(o fB[DR, P„]cfo) =f(0 fBP„cfo)+(ofBc[DR, P„]f o),

(56)

(57)

(58)

Thus Eq. (52) will be true in the sense of equality of matrix elements between local states, obtained by the
application of B and C on vacuum, provided the second term on the right-hand side of Eq. (58) vanishes in
the limit R-~. Thus, to complete the proof of Eq. (52) it remains for us to show that

lim (0 f [De, P„]A f 0) = O.

We will prove Eq. (58) by direct calculation. From Eqs. (2), (6), (14), (45), (47), and (53) we get

(59)

00 9
lim(of[De P„I]A fo)=i d xx' dg d y 8" (x —y, xo, p') oI,(g, y)

g~ao 0 P

220 () () 2 9
d g 6 x —px, p, 0' (60)

By partial integration and using the explicit representation of 6' (x, xo, p, '), we cast Eq. (60) into the
form

» (O((D„P„IAIO)=x(2 ) dVfd'22 OO ,'(V', 2„)e'"', " O(2)O'(2)O(2 —12('-2')
R~~ 0

+ j dp,
' d kA„k;k, o2, p, ', k e'"o'o8 k, O' 4 6 4,' — k ' —p,

'
0

;(2 )' d»'f d'22„2,2,, (»*, 2)e 'O(2 )O(2'*-l«l.'-O, ''), 2, 2'(2)
0

+2 dg d kk„k, koo2, (g'., fz)e'. " 8(ko)5(ko —fk f
—p ),5 (0)

0

The term multiplying x, in Eq. (61) vanishes without further ado, as it behaves, at worst, as

dg' d'A k, k,.oI, (p, ', k) 5(k),-„»~,e xp[ix, ( fk'f+p') '].
0

M 2 Ik)2 212
d

The vanishing of the remaining terms on the right-hand side of Eq. (61) is guaranteed by Eqs. (50) and
(20a), which is a, consequence of Eq. (10). Consider, for instance, the case in which the space-time index
p =0. The right-hand side of Eq. (61) now behaves as

dp. ' „, [k((y2, (i(,', A)exp[ixo( fk f'+g')' '])(-, , +i dp' [A;( fk f'+ p'}'~'o,', (p', A).exp[fxo( fk, f'+ g')2~'])k,
0 0

oI;(g', 0}e'"()"dp + 2 p, o,', (g', 0)e'"'"dIJ.' (62).
0 0

The above vanishes as a result of Eqs. (20a) and (50). For the case p, =n = 1, 2, 3, the corresponding term
behaves as
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dg', k, f„,,
-„„„,exp[ix, (~k ~'+ p, ')'~'] o'„(p,', k)

+i dg' „, [u, t„exp[fx,( ~k ~'+ p, ')'~'] o,', (p', &)] P=,Bk'

, ,„,„o'„(p,', A)k„+5,'„(p', k)A; o'„(p,', k)k;k, k„
([P'+ p, '3'+ ([P'+ p.')'"

The above vanishes due to Eq. (20a). Proof of Eq. (59) is now complete. Hence, Eq. (52) is established
for local states. Proceeding exactly as in Sec. II, it is now straightforward to extend this result to quasi-
local states.

We now discuss a possible implication of Eq. (52). Although proved for a, dense set of states, it is not

clear whether Eq. (52) is valid in the sense of equality of matrix elements evaluated between single-parti-
cle states. This is because only in theories with a mass gap is it known that single-particle states are
quasilocal. " However, if Eq. (52) is true also for single-particle states, then there cannot exist single-
particle states of finite mass. To see this, denote by ~M ) a normalized single-particle state of mass I
and consider the matrix element

»m &I'
i [Ds, P„'1 IM') = »m (&I'

I [Ds, &„]p"IM') + &I'
I
P"[Ds, &„]IM')). (64)

The left-hand side of the above is clearly zero, while the right-hand side is 2iM . This is possible only if
M is zero. Thus spontaneous breakdown of dilation symmetry does not admit the possibility in which some
particle states remain massive. Although not rigorously proved, there are strong reasons to believe that
this result is indeed true. " |I''e have seen that there is a gap in the argument only because we are not sure
if Eq. (52) is valid between single-particle states. But exactly the same problem is present even when di-
lation is not spontaneously broken. Looking back, we notice that for the vanishing of Eq. (61) it is irrele-
vant whether the constant c [in Eq. (50)] is zero or not. But then how does one understand the result that
in a theory in which dilation symmetry is good and the (global) dilation operator is built as lims DR all
single-particle masses must be zero, unless the same is true even when the symmetry is spontaneously
broken?

We end this section with the following technical remark. We found that Eq. (10)—or what amounts to the
same thing, Eqs. (14) and (20a) —was essential in proving Eq. (52). However, it is interesting to note that
if we do not assume Eq. (20a) but only Eq. (14), then Eq. (45) yields, in addition to Eq. (50), also the rela-
tion o'„.(p,', 0) =0. This last relation, however, is not sufficient to prove Eq. (52).

In the preceding sections we have studied two

distinct but related questions. First, we consid-
ered the problem of constructing the infinitesimal
generators of the Poincard group as space inte-
grals of corresponding densities built out of a local
energy-momentum tensor. %e have seen that this
is possible over a dense set of states. If zero-
mass neutral particles are present in the spectrum,
then certain conditions, in addition to the assumed
properties of the energy-momentum tensor, must
be fulfilled. These conditions have been derived.
Secondly, we have studied dilation symmetry and
its spontaneous breakdown. The Goldstone theorem
for this case has been proved, and arguments have
been presented that a spontaneous breaking of di-
lation does not admit single-particle states of finite
mass. The reader will notice that we have re-
frained from discussing spontaneous breakdown of
Poincare invariance. Although there seems to be
some interest in this subject, ' ' it is not clear to

us how to treat it within the framework of Wight-
man's field theory, which includes relativistic in-
variance as one of its basic postulates. In particu-
lar, the vacuum state is defined as the invariant
state under the Poincard group. An important prob-
lem not discussed in this paper is the commutation
rules of Poincar6-group generators constructed as
space integrals of corresponding densities. Does
the requirement that the genexators so constructed
have the correct commutation properties lead to
any further restrictions? This question is being
investigated. While this paper was being written,
we received a preprint by Beeh~' where a perhaps
more rigorous discussion of dilation breaking is
given. The Goldstone theorem for dilati. on is
proved and an example given of spontaneous break-
ing of dilation in a relativistic field theory.
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An explicit demonstration is given of the invariance under propagator gauge transforma-
tions of the Feynman-graph prescription obtained by several authors for a non-Abelian gauge
field; the role of the anomalous closed-loop vertices of that prescription is thereby clarified.
This invariance property permits a derivation of the covariant prescription starting with
canonical quantization in a noncovariant gauge without unphysical degrees of freedom.

I. INTRODUCTION

A variety of different quantization procedures' '
has been used to derive the Feynman-graph pre-
scription for the massless non-Abelian gauge field.
It is the purpose of this note to investigate in

graphical terms the explicit equivalence of the pre-
scriptions corresponding to different gauges; that
is, the formal invariance of the prescription under
propagator gauge transformations. This demon-
strates in explicit terms the general invariance
shown by DeWitt, ' and permits a derivation of the
covariant prescription which starts with canonical
quantization in a noncovariant gauge, without un-
physical degrees of freedom, in close analogy with
the corresponding procedure in quantum electro-
dynamics. The anomalous closed-loop vertices
characteristic of the non-Abelian gauge field pre-
scription are found, not surprisingly, to be essen-
tial for the gauge invariance of the prescription.

We restrict our attention to transformations
which leave the prescription explicitly translation-
invariant, since these are considerably easier to
handle, and are the only ones normally encountered.
The general case is treated by DeWitt, who makes
use of a functional integral formulation.

II. PRELIMINARIES

We denote the gauge field by b„, with ~ the
group index and n the space-time index (@=0, 1, 2,

gQO ~p gpss g22 g33 ~ x and p are the usual
contravariant coordinate and momentum compo-
nents). We deal with the case in which the gauge
field is coupled to a spin--, field g;„(x is the spinor
index) belonging to a particular representation,
(T,);,, of the Lie algebra:

( &. &.j = &c..~ T~

where c„„are the structure constants, taken as


