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A method is outlined for obtaining general relations governing the behavior of magneto-
fluids in general relativity. Several such relations are obtained for the case of infinite con-
ductivity, and their possible relevance to galactic cosmogony, gravitational collapse, and

pulsar theory is briefly discussed.

I. INTRODUCTION

In view of the frequent occurrence of magnetic
fields in astronomical systems (for instance,
stars, galaxies, and pulsars), it is clear that the
study of relativistic magnetohydrodynamics will be
important for the development of relativistic as-
trophysics. While classical magnetohydrodynam-
ics is rather well developed, not a great deal is
known about relativistic magnetohydrodynamics,
and (partly because of the usual subtleties in de-
fining physically meaningful frames of reference
in general relativity) one must be wary of applying
the classical results to systems with intense grav-
itational fields.

In his electrodynamics of moving bodies, Min-
kowski' has given a covariant decomposition of the
electromagnetic field which, if we can be permit-
ted to extend it to nonuniform motions in curved
space-times, is very well suited to the study of
magnetofluids in general relativity. This decom-
position has, in fact, already been used in relativ-
istic magnetohydrodynamics by Pham Mau Quan
and Lichnerowicz.?

We show below that the decomposition leads very
directly to three useful differential identities for
magnetofluids; from these identities one can ob-
tain a variety of general relations which govern
the behavior of relativistic magnetofluids.

Since it appears that relativistic generalizations
of magnetohydrodynamics are likely to be of phys-
ical interest in the realm of astrophysics, and
since it is usually an excellent approximation to
treat cosmic magnetofluids as infinitely conduct-
ing, we apply the differential identities to this
case, and find (1) an expression for the proper
electrical charge density in terms of the magnetic
field and the angular-velocity vector, (2) a relation
between the absolute derivative of the magnitude of
the magnetic field and the absolute derivative of the
nonmagnetic proper-energy density, and (3) an ex-
pression for the derivative along a magnetic field
line of the magnitude of the angular velocity in
terms of the curvature tensor.
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In the course of the discussion, we make a num-
ber of remarks (some rather speculative) about the
possible relevance of these results to various as-
trophysical problems. While our method is too
general to permit very definite conclusions to be
drawn from it, we do get good indications of the
possible significance of magnetic effects in galac-
tic cosmogony and gravitational collapse, and of a
gravitational effect in pulsar theory. The method
should be useful for estimating the significance of
other possible magnetohydrodynamic effects as
well.

Also, a knowledge of some general properties
of solutions should be helpful in attempts to find
explicit solutions of the complete magnetohydro-
dynamic equations.

Our space-time metric has signature +2. Latin
indices take the values 1, 2, 3, 4; Greek ones the
values 1, 2, 3. Covariant differentiation is de-
noted by a subscript preceded by a vertical line.

II. ELECTRODYNAMICS

For a body moving uniformly (that is, with a
uniform translation) in flat space-time, one can
generalize Maxwell’s electrodynamics as fol -
lows."® Let u be the four-velocity of the body.
(For a uniform translation in flat space-time, u is
the same at all points of the body.) We describe
the electromagnetic field by two skew-symmetric
tensors F®, H®, with their associated dual ten-
sors denoted by *F, *H®, Let

E,=F,u’,
_ X b
B,="F,u, (1)
D,=H, ",
H,=*H u°.
These satisfy
uE=uB=u*D=u-H=0,

and they fix F® and H® through the decomposition
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Fab =uaEb - ubEa _nabcduc Bd ,
*Fab =uaBb - ubBa +nabcducEd ,
Hab = uan _-ubDa _nabcduc Hd ,
*Hab = uaHb - ubHa +nabcduch ,

where 7 is the permutation tensor.

In the rest frame of the body, that is a coordi-
nate system in which u?= 65 (the symbol £ means
that the equality holds only in a special coordinate
system), we have E,%B,2D,2H,20. If, in the
rest frame, we identify E,with the components of
the electric field, B,with the components of the
magnetic induction, D, with the components of the
electric displacement, and H, with the components
of the magnetic field, we can write Maxwell’s
equations for the rest frame as

*Fablbéo Hublbz"__Jb’

b

where J is the electric current. But these are
tensor equations, so we have in any coordinate
system

*Fablb=0! Hablsza. (3)

For a medium with conductivity o, the constitu-
tive relation J =¢E of Maxwellian electrodynamics
becomes

J*=€eu’+oE", (4)

where € is the proper electric-charge density.
We must also specify the constitutive relations D*
=AE® and B®= pH*, where X is the permittivity and
u is the permeability. Note that while o, A, and
u transform as scalars under coordinate transfor-
mations, they are nevertheless frame-dependent
in that the constitutive relations which define them
contain (implicitly) the four-velocity u.

Minkowski takes for the electromagnetic energy-
momentum tensor

Eab - Fachc _%gadeHcd .
Straightforward algebra, using Egs. (2), yields
E% = (u%® + %gab)(E.D +B-H)
—(E°D® + H*B®) + (u®S” + u"P"), (5)
where
S=n®E,H u, P*=n"“D,Bu,.
If one looks at S and P in the rest frame where u®
% 6%, one finds that S is the Poynting vector and P
is the electromagnetic momentum-density vector.
Minkowski’s energy-momentum tensor [Eq. (5)]
is, in general, asymmetric. This has given rise
to a long discussion in the literature, the upshot

of which seems to be that Minkowski’s E® is gen-
erally regarded as being “correct,” despite its

asymmetry.?

The formalism that we have been describing, let
us recall, applies to bodies which are moving uni-
formly in a flat space-time. We shall want to con-
sider electromagnetic fields in fluids which are
moving nonuniformly in curved space-times. Let
u(x) be the four-velocity of the fluid element at the
point x (we define u more precisely below). We
shall assume that the above formalism still ap-
plies, with « in all the above equations replaced
by the fluid four-velocity field u(x).*

In a curved space-time, the quantities defined
in Egs. (1) are to be interpreted as follows. Let
AG) be an orthonormal tetrad with Af) =u®. Then,
for instance, the physical components of E, de-
fined by Ey, =2()E, , are the physical components
of the electric field, as seen by a hypothetical ob-
server with local Minkowski frame A§,.° It should
be remembered that with respect to whatever co-
ordinate system we express the tensor components
E® of E, it always represents the field “seen” by
an observer with four-velocity #. One interprets
B, D, H, S, and P similarly.

In classical magnetohydrodynamics, there is
never any question about the meaning of one’s
electromagnetic field variables. One simply works
always in a fixed global inertial frame. In general
relativity, this is a luxury we must do without®;
the components of F* and H* have in general no
direct physical meaning. By writing things down
in terms of the variables defined in Egs. (1), we
can retain the use of an arbitrary coordinate sys-
tem without losing sight of the physical meaning of
our electromagnetic field variables.

III. MAGNETOHYDRODYNAMICS

We consider charged fluids (which may be plas-
mas that we are treating in the magnetohydrody-
namic approximation). We shall assume that the
energy-momentum tensor of the system has the
form 7°°=M®+ E®, where E® is the above elec-
tromagnetic energy-momentum tensor, and where
the “material” energy-momentum tensor M“ has
the form

ab — a, b ab
M®=pu'u’ -S?,

with #,S® =5%u,=0. The four-vector u, which is
taken to be a timelike, future-oriented unit vector,
is an eigenvector of M®, This eigenvector we de-
fine to be “the four-velocity field of the fluid,” re-
ferred to above. Its eigenvalue p is the proper
energy density of the matter. Since E® is in gen-
eral asymmetric, so is the material stress tensor
S%, The energy-momentum tensor is required to
satisfy T,°,=0, which can be written as
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plbuaub + pit, lbub + puaub{b - Sab jo = €Ea
—E-Eou,+ nubchbuch - %(E'E}\h +H-Hu l")
+(P? - S"u,, = 0. (6)

The field equations for the system are then
Einstein’s field equations

Gab S KTab s (7)

along with the Maxwell equations (3), which can be
written in terms of the decomposition (2) as

u",B® +u’B®), —u’,B* —u’B?,

+nab0d(“clea+ucEalb) =0, (8)
u®, D" + u"D"U, - D" —ubDal,,
=0 ugpHy +uHy)) = €u’ +0E® . (9)

Plainly, to actually solve the field equations (7)-
(9) for any realistic problem (even in the case of
infinite conductivity, which is much simpler than
finite conductivity) is a formidable task. One
might wonder, however, what sort of general
properties might be possessed by solutions of
these equations. Certainly, if we had a solution
before us it would satisfy Eqgs. (6), (8), and (9)
identically —and this would be so, of course, for
any solution. We may, therefore, regard Egs. (6),
(8), and (9) as differential identities which embody
certain general properties of relativistic magneto-
fluids.

We shall not make any explicit use of Eq. (7). It
is, however, always lurking in the background, in
that the covariant derivative that we use is as-
sumed to be taken with respect to a metric for
which (7) is satisfied.

IV. INFINITE CONDUCTIVITY

We shall demonstrate this use of Egs. (6), (8),
and (9) for the case of infinite conductivity, which
is the most interesting case from the point of view
of astrophysics. By infinite conductivity one
means, of course, a conductivity which:is so large
that it can be regarded as infinite.” Then Eq. (4)
implies that E® is negligible, unless p is also ex-
tremely large. Leaving aside for the moment the
possibility of infinite p, we find that Eqgs. (6), (8),
and (9) reduce to

u®pB® +u’B”, —u®, B4~ u’B%, =0, (10)
T]ade(ucled+ucHdlb)= -eu’, (11)
PpU’tty+ Pltg)stt” + pUl g = S;%)y = SH-HW, =0. (12)

From these we can, by taking various contractions
or by covariantly differentiating and then taking
contractions, generate many identities, some of
which have a useful physical interpretation and

some of which do not.

The interpretation of these identities is facilitat-
ed by the use of the following kinematical parame-
ters® for a timelike unit vector field u:

Wap = Upqg|p) + Apolhp) »
Oap = Ulp) + Qg Upy — 3 0(gg +ugu),
0= uala )

where the parentheses on indices denote symme -
trization, square brackets denote antisymmetriza-
tion, and aaEuabub is the acceleration vector. We
have '

w(ab):o, uawnb=0’
Oy =0, u%0,4=0, o%=0.

The tensor o,, gives the shear of the fluid world-
line congruence, and 6 gives its expansion. As-
sociated with the angular-velocity tensor w,, we
have the angular-velocity vector w®=3n"“u,u,;
it points along the axis of rotation. Let us recall
exactly which angular velocity w represents: If
an orthonormal frame is Fermi-propagated along
a fluid-element world line, the physical compo-
nents of w give the angular velocity of neighboring
fluid elements relative to the Fermi-propagated
frame.® That is, w gives the local rotation of the
fluid relative to a local inertial frame. It is well
to bear in mind that this may be quite different
from one’s intuitive notion of the rotation of a
fluid, which is based upon the Newtonian concept
of global inertial frame.®

Now we are ready to find some consequences of
(10)-(12). If we contract (11) with u,, we obtain

€=2wH.

In a region where the charge density is zero, the
magnetic field lines are orthogonal to the rotation
vector, and in any region where these two vectors
are not orthogonal, there must be a nonzero
charge density.

A partially ionized protogalactic gas cloud would
have, to a very good approximation, infinite con-
ductivity, and would be unlikely to have any large
concentrations of charge. Thus, in a rotating
disk, the field lines would lie in the (proto-) galac-
tic plane. If the present field in our galaxy were
of primordial origin, one would then expect the
field lines to be oriented parallel to the galactic
plane. There are some indications that this is the
case.® This lends some support to the hypothesis
of a primordial origin for the galactic field.'® It
is not, however, any sort of compelling argument
for this hypothesis. For one thing, the empirical
data on the orientation of the field lines is rather
sparse, ° and even if the field lines really are ori-
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ented parallel to the galactic plane, there could be
other ways of explaining it. Furthermore, it
could be that at some point in the contraction of the
cloud and formation of condensations (protostars),
the assumption of infinite conductivity might fail,
so that the magnetic field might not remain “fro-
zen in” (though this may not have much effect on
the large-scale, general configuration of the field).
Now contract Eq. (10) with B,, yielding

B°B%0,, - 20B-B - 3D,(B*B) =0,

where D, denotes the absolute derivative with re-
spect to u. If we contract (12) with »,, we find

D, p+0p -S%0,, —168%, + SH-HD, 1 =0.
Combining these last two equations,
:Du p= Subcab + %H'H:Duu

+3(p = 38%)B*B’0,, - 39,(B- B)|/B- B =0.
(13)
Since for infinite conductivity, E% , hence S%, is
symmetric, we may consider the possibility that
S® is well approximated by the perfect-fluid form

S = —plusu®+ go).

Also, for the sake of discussion, it is entirely
reasonable to take p constant. Then we can write
(13) as

D,0=5(p + PAD,(B-B) - B*B0,,)/B-B.

This indicates that the growth of small density
inhomogeneities is strongly influenced by the mag-
netic field (even if that field is initially rather
weak). The density will tend to grow faster in re-
gions where the field is growing faster, and a
shear along the field lines (as opposed to one or-
thogonal to the field lines) will affect the growth of
p. This may be relevant to the “density-wave”
theory of spiral structure in galaxies.'* That
theory seems quite successful in describing the
structure of spiral arms, but it leaves open the
question of how the spiral arms, that is, the den-
sity waves, originate. According to the preceding
discussion, magnetic fields should play an impor-
tant role here.

There has been some discussion of the possibility
that, in gravitational collapse, an initially weak
magnetic field may ultimately come to dominate
all other forms of energy.'* Since the total proper
energy density is

uu, T =p +3B-H,

the ratio R = 3(B-H)/p provides a measure of the
relative importance of magnetic and nonmagnetic
effects. We can study the evolution of R by the use
of Eq. (13), which can be written in the form

D, R =%[B-H(p+ $*)D,0l/[0*(p - 55%)
- 2B-HS%0,,/p(p = 3S°)+ B*H' ,,/p
+(2p)EB-H/(p = 35°,) = UH HD, 1.

Again it is reasonable to set D,u =0. Taking the
perfect-fluid form for the material stress tensor,
we have

D,k = 5[B-H(p - 3p) /0*(p + p)| Dyp + BH'0 43/p.

Suppose that the fluid is collapsing, so that D,p
is always positive. Consider first an isotropic
collapse: o, =0. Certainly in the early stages of
collapse, p>3p, so that R increases. Whether
this tendency is halted or not depends entirely
upon the equation of state for very large densities.
Most people would have been inclined to suppose
until recently that it would always be true that
p>3p. In this case, R would never cease growing,
so that eventually the magnetic field would domi-
nate all other considerations. However, it now ap-
pears that one could have p < 3p in extremely dense
matter, !* in which case p might level off at some
constant (though still possibly large) value, or
even decrease in the latter stages of collapse, so
that the nonmagnetic energy would finally domi-
nate.

For a nonisotropic collapse, we see that a shear
in the direction of the magnetic field lines could
augment the dominance of magnetic energy, but
this still could, of course, be overcome by an ex-
tremely large asymptotic pressure.

Thus an initial magnetic field, no malter how
weak, could become the dominant factor in the
final stages of gravitational collapse, if the fluid
may be considered as infinitely conducting through-
out the collapse, as concluded also by Cocke.'®
However, recall our caveal at the beginning of this
section. Even extremely large values of ¢ cannot
be considered infinite if p is of the order of ¢. In
a gravitational collapse there should come a point
(at which R may already be quite large) when elec-
tric fields, too, are important. Since magnetic
fields are rather pervasive in nature (it is com-
monly speculated, for example, that all stars must
have some magnetic field), this question clearly
deserves further study.

Finally, we consider the behavior of the angular
velocity in a steady-state magnetofluid. By
“steady-state” we mean that =0, ¢,,=0, D,B°=0,
D,w, =0. First, contract Eq. (10) with »,, which
yields

B*,=2a'B=-2u’D,B,=0. (14)
Now covariantly differentiate (10) with respect to

x°, and contract the resulting equation with w®,
taking (14) into account. After some manipulation,
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one finds
(wz)laBa :%ua wchdRabcd ]

where w?= w®w,, is the magnitude of the angular
velocity and R, is the curvature tensor. This is
a generalization of Ferraro’s theorem of isorota-
tion'*; when gravitational effects are negligible, it
says that the magnitude of the angular velocity is
constant along a field line. Ferraro’s theorem is
used, for example, in discussing the corotation of
a plasma surrounding a magnetic star. We see
that if the star has an intense gravitational field,

this corotation phenomenon could be significantly
altered. This could be important for understand-
ing pulsars, which are thought by some to be
rapidly rotating, magnetic neutron stars, with the
pulses originating in a corotating plasma “mag-
netosphere.”®

ACKNOWLEDGMENTS

I should like to thank Professor J. L. Synge for
some very helpful discussions, and the Dublin In-
stitute for Advanced Studies for its hospitality.

'H, Minkowski, Nachr, Ges. Wiss. Gottingen, 53
(1908); Math, Ann. 68, 472 (1910).

?Pham Mau Quan, Compt. Rend. 240, 598 (1955); 240,
733 (1955); 242, 465 (1956); 245, 1782 (1957); 246, 707
(1958); 246, 2734 (1958); A. Lichnerowicz, Relativistic
Hydvodynamics and Magnetohydvodynamics (Benjamin,
New York, 1967).

SFor further details, see C. Mgller, The Theory of
Relativity (Oxford, New York, 1952), and W. Pauli, The-
ory of Relativity (Pergamon, London, 1958).

‘H, Weyl, in Space-Time-Matter (Dover, New York,
1950), maintains that the formalism applies also to non-
uniform motions, but does not advance any arguments to
support this.

5J. L. Synge, Relativity, the Geneval Theory (North-
Holland, Amsterdam, 1960).

éFor very interesting discussions of this point, see
F. A. E. Pirani, Acta Phys. Polon. 15, 389 (1956);
B. Bertotti, D, Brill, and R. Krotkov, in Gravitation,
An Introduction to Cuvrent Research, edited by L. Witten
(Wiley, New York, 1962).

"See, for instance, H. Alfvén and C.-G. Filthammar,

Cosmical Electvodynamics (Oxford, New York, 1963).
8J. Ehlers, in the Infeld Festschrift, Recent Develop-
ments in Geneval Relativity (Pergamon, London, 1962).

L. Woltjer, in The Structure and Evolution of Galaxies
(Interscience, London, 1965).

For another point of view on the origin of the galactic
field, see E. N, Parker, Astrophys. J. 157, 1129 (1969).

¢, c. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155,
721 (1969), and references quoted therein,

R2For instance, V. L. Ginsburg, Dokl. Acad. Nauk SSSR
156, 43 (1964) [Soviet Phys. Doklady 9, 329 (1964)]; W, J.
Cocke, Phys, Rev. 145, 1000 (1966).

3Ya. B. Zel’dovich, Zh. Eksperim, i Teor. Fiz. 41,
1609 (1961) [Soviet Phys. JETP 14, 1143 (1962)]; B. K.
Harrison, K. S. Thorne, M. Wakano, and J. A, Wheeler,
Gravitation Theory and Grvavitational Collapse (Univ.
Chicago Press, Chicago, 1965).

4y, c.A. Ferraro, Monthly Notices Roy. Astron. Soc.
97, 458 (1937). See also Ref, 7.

’See, for instance, B. Bertotti, Riv. Nuovo Cimento 2,
102 (1970), which contains many references. -



