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It is pointed out that there is just one exact form of the sum rule holding for specific tran-
sition amplitudes. The assumptions and approximations implicit in the various usual formu-
lations are analyzed on the basis of this result. The adequate description of the time depen-
dence is discussed.

The "unitarity sum rule" of Bell and Steinberger'
plays an important role in the analysis of the K'
system. It is related to the Weisskopf-Wigner
treatment' of this decay problem. Starting from a
phenomenological S matrix, further sum rules
have been obtained stating that the result is differ-
ent' or that the phase information agrees. ' Subse-
quently, several authors' ' have come to the con-
clusion that the rules should agree completely.
The recent effort spent on getting a satisfactory
description of the K' system also includes addi-
tional scattering treatments' "and an investiga-
tion" of the deviations from the Weisskopf-Wigner
equations caused by postulating the Bell -Steinberger
sum rule.

In the following, it is shown that the difficulties
indicated above disappear by using recent results
of the present author on specific time-dependent
probabilities" and on the detailed structure of re-
lated amplitudes. " In particular, the exact form
of the sum rule can be written down. Since the
various amplitudes of interest are properly speci-
fied and given explicitly, the assumptions implicit
in the usual scattering treatments as well as the
nature of the conventional Weisskopf-Wigner ap-
proach can be analyzed. The adequate description
of the time dependence is derived from first prin-
ciples.

First we review some general relations. "Defin-
ing

P=Z lx. &(x.l,

with (y~ ly„) = 6„„Q= I —P, and g(z) = (QHQ —z) ',
a biorthogonal basis with

(v (z)lu (z)) = 5

and

P =Z I&.(z)& ( ~.(z)l

is introduced which diagonalizes

P(H —HQg(z)H) P =&~.(z) I .(z)) ( .( ) l.

If the g, are (proper) eigenvectors of an "unper-
turbed Hamiltonian" H„, writing the total Hamil-
tonianH =H„+V„, one has

P(H —HQgH)P = PH„+ P(V„—V„QgV„)P.

We now put z = E+ i0 and introduce

E„(E)= Reh.„(E+ fO), I"„(E)= —2 Im A„(E + iO) .
Then the amplitude which turns out to be essential
for the description of decays, involving an outgoing
scattering state gz 8 (improper eigenvector of H),
gets the form

(q;, l~„& =&, „( -E„E-,' +r„f)-',
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As „——(Xs s i[V„—V„Qg(E +i0)V„]u„),

&'s' =&Vs",sl[V. —V~Qg(E+i0)V. ]V' ', )

8 „=(v„~[V, —V„Qg(E+i0)V, ]y~z~-)

Cs „=(ys s ~[V, —V,Qg(E + i0) V„]u„) .

(4)

(5)

(6)

(7)

The state Xs s occurring in (4) is introduced by the
isometric mapping

Xs, s
——[1+G„(E —i0)V„]Pz s

where G„(s) = (H„—z) '. This can be done since so
far only the discrete part of H„has been involved.

By (8), the physical meaning of E and P, originally
defined for ps s, is carried over also to Xs s. It is
to be noted that the use of H„may also be avoided
in deriving and applying Eqs. (1)-(3). To achieve
this, one has to replace V„by H in (6) and (7), and

to use the mapping

4s, s = [I +g(E —i0) (H —QH

Q)lies,

s,
which, instead of (4), gives the form As „
=(Qs s~Hu„). The operators V, and V, occurring
in (5)-(7) represent the scattering interactions
which need not be the same initially and finally for
arbitrary arrangement channel situations.
and y~' s are the corresponding free states (the no-
tation is such that a includes a and a).

In the case of K' decay, with a two-dimensional
P, the g, represent the states of K' and K, and

the u„are the K~ and K~ states. Incidentally, we

note that the properties of the mass matrix with

respect to discrete transformations of V„, which

usually are derived in special approximations,
can easily be obtained in a general way from

(X„~(V,—V„QgV„)X„). For the description of the
decay and for the discussion of different approach-
es, it will be of interest to consider the relations
which one gets from (1)-(3) by replacing the E
dependent quantities [except E itself in the reso-
nance denominators of (1) and (3)]by their values
at a fixed energy of about the kaon mass.

I et us now consider the S-matrix treatments
which arrive at the Bell-Steinberger rule or which

are at least consistent with it. Comparing with the
general form (3) of resonance scattering amplitudes
and with the general sum rule (2), it turns out that

where, for the transition amplitudes As „(E), the
exact sum rule

2v+As As „——(u ~u„) [-i(E —E„)+ ', (F-+ F )]
8

(2)

holds. Similarly, the scattering amplitude can be
written

T,.(E)=r",.'+QCs „(E-E„+ iF„)-'H. „. (3)
n

The further quantities in Eqs. (1)-(3) are given by
QV„Q =0, (10a)

or also, of course, if only the lowest-order approx-
imation is considered. For (7), in addition to (10a),
the more serious assumptions

P(Vt, —V„)Q = 0, P y~~ ~s ——0 (lob)

are to be made to arrive at the form (9), which

then is obtained by using

X, , s=[1-G„(E-io)(V, —V„)]q,"';
and by noting that from (10a) one gets QG„=Qg. In
the language of radiation theory, (10) means that
V„does not interconnect unperturbed continuum
states (of either sort) while V, —V„does not con-
nect these states with the discrete ones. If no dis-
tinction is made between the interactions related
to scattering and to decay, as occurs in some ap-
proaches, '" (10b) is trivially satisfied. However,
V„and V„are clearly different for the present ap-
plication, and they are different things in gen-
eral. "'" A further consequence of (10) is that (5)
gets the form (Xs s ~V,y~~'I„-) . This amplitude would

describe scattering if V„could be switched off; this
agrees with the meaning ascribed to the background
term by perturbation-theoretic arguments" as well
as in a scattering treatment' based on the assump-
tions defined here by (10) and on V, = V, .

Actually, one cannot expect (10b) to be generally
realizable, since the free states of scattering ordi-
narily span the total Hilbert space and even show

overlap in general multichannel cases, quite apart
from further difficulties related to field theory.
Therefore, we now consider the difference between
(4) and (7) without making any assumptions. After
some calculations, using (11), QX& s= X& s, the
second resolvent equation for G„and g, and the
definitions of E„(E)and F„(E), one obtains

C „—A „=(E„—,'i „F- E)(—y~" ~su„) . (12)

From (12), it is seen that for small widths the dif-
ference may become negligible at the resonance
energy. Thus, within that approximation the S-
matrix approaches can be justified without further
assumptions. In reality, however, one is not con-
fronted with all these S-matrix problems since the
sum rule (2) holds for the amplitudes which are
actually involved in the K' decay probabilities as
is considered in detail below.

none of them distinguishes between the quantities
which correspond to (4) and (7) in the present for-
mulation. The explicit form, which is given in
some of these approaches, "' in our notation reads

(Xz, slV, u, ) . (9)

Thus, we have to look for the assumptions by which
(4) and (7) get the form (9). For (4), this holds if
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If a physical system is described by a (pure)
state P and the question asked in an experiment is
described by a, projection onto a vector Q, one gets
the time-dependent probability I(Q Ie

'"'
g) I2 with

t/) and Q both normalized to unity. According to the
specific situation, the amplitude (QIe '"'g)gets, ~

for example, for a scattering reaction the form

dE cs E 68 —2miT& E c'~E e ' ',
(13)

while for a decay process one has

dE CBE Eg Xp e (14)

Here c~' describes the "initial wave packet" and,
similarly, c(8 ~ and c8 depend on details of the ex-
perimental question. It is seen that for special
conditions, the time-independent probability of or-
dinary scattering or the (approximately) exponen-
tially decreasing one of ordinary decays may occur,
In general, however, (13) and (14) can lead to time
dependences which are considerably different from
each other as well as from the standard behav-
iors." In the case of Ko experiments, the events
are selected in such a way that (14) applies. Since
variations in the relative energy of the final parti-
cles are noticed at best in the MeV region, cs(E)
can certainly be regarded as slowly varying near
the resonances with widths smaller than 10 ' eV.
This holds for stable as well as for unstable decay
products because it is brought about by the proper-
ties of the relative motion [further details of the
structure of c8(E) due to giving up the sharp ener-
gies of the fragments can be worked out; however,
they do not matter in the present context]. Then,
introducing (1), (14) can be evaluated within the
usual type of approximations, taking the E-depen-
dent quantities (except E itself) at a fixed energy
of about the kaon mass and integrating E from

0 +~~ which gives~ fol posltlve

—2vigc8+AB „(v„I)(,) exp(-iE„i — I"„i). (15)
8 n

Qn the other hand, conventional perturbation ap-
proaches effectively start from probability densi-
ties « th«ype 1&4,.le '"'X.&l', ~~~~~ Xs,.be-
longs to some set of improper eigenvectors of II„.

dE E' -E -i0

x (q,-, ,I[V, —V„qg(E+io) V„]u„)

g (E E + ~~'F ) le i-Et-

Thls can be used to calculate

Xg' 8 Xp

which, in the same type of approximations applied
to get (15), for i & 0 gives

2vlZ &8..(v„Iq, ) exp(-iE„i - i„i)I2. (16)

Thus, for the case considered, one has the same
probability as one gets from (14) with special con-
dltlons.

Now, from (15) as well as from (16), it is seen
that the time-dependent amplitude

+AS „(v„Iy„)exp(-iE„i —,'I„t)—(17)

is the one occurring in the decay probability. The
quantities appearing in (17) are those obtained by
taking the corresponding E-dependent ones at a
fixed energy of about the kaon mass (i.e., inter-
mediate between the KL and K~ masses which are
related to the E„). From Eq. (2) at this energy,
one has the sum rule of practical interest. It seems
worthwhile to emphasize that, according to (4), the
structure of Ae „ is rather different from that of a
T-matrix element in scattering. It is further to be
noted that (17) may also be regarded as being re-
lated to the Weisskopf-Wigner-type state vector

Pu„(v„ Iy.) exp(- iE„t ——,'I'„i) .

Since they ask for orthogonal states instead of ask-
ing directly for those of the decay products, the
time derivative is needed to arrive at what is mea-
sured. Instead of the usual Weisskopf-Wigner pro-
cedures, we can use our formalism" to get a gen-
eral evaluation. In doing this, we employ the set
of ys 8, whose physical meaning is specified by (6).
From the relations given previously, '4 for I; &0 one
obtains

2wx(g@ 8Ie Q )
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The results of Pande for g-X mixing in broken chiral SU(3}(3SU(3}symmetry are ex-
amined, Since there is strong evidence for three I = g=-0 pseudoscalar mesons, the model
is extended to describe mixing of the pure octet member and two SU(3) singlets. Here, there
are two parameters, whose values are determined by using the X {958) and E(1422) masses
as input. One then obtains a prediction for the mass of the g, in very good agreement with
the experiment. The mixing parameters, both magnitude and sign, are also obtained.

Recently, the dynamical model of Gell-Mann,
Oakes, and Renner' for breaking of chiral SU(3)
@SU(3) symmetry has been used to describe q-X'
mixing. ' The Hamiltonian of the model is

H =X()+H'(c),

where H, is invariant under SU(3) Cn SU(3), while

the symmetry-breaking part takes the simple form

c = —2v 2 (m»' —m, ')/(m, '+ 2m»') . (5)

Similar considerations at c = @2, combined with

further investigation of the symmetries at c = 0
and c = 2&2, lead to the following results'.

H'(c) = —U, —cU, . (2)
(6)

U~ and V„ form a scalar and a pseudoscalar nonet,
respectively, belonging to the representation
(3*,3) 6 (3, 3*), and c is a parameter whose physi-
cal value is approximately -v2. From this sym-
metry-breaking Hamiltonian follows the partial
conservation of the vector and axial-vector cur-
rent octets V'„and A'„, associated with the sym-
metry, according to'

P ~i8»» ~

aqua'q
= -w, (c)6;» V» —(—,)'~ c6;,Vo,

where i=1, . . . , 8, k=0, 1, . . . , 8, and

(v 2 + c)/&3, i = 1, 2, 3

w, (c)= (v 2 ——,'c)/V3, i=4, 5, 6, 7

(v 2 —c)/v 3, i = 6 .
(4)

Pande uses the Goldstone character of some of
the pseudoscalar mesons in certain symmetry
limits, corresponding to certain values of the pa-
rameter c. For c= —v2, one has SU(2)ISI SU(2)
symmetry and mass-0 pions, and mass-0 kaons
appear at c= 2&2. Also, at c=0, one has SU(3)
symmetry. From this, one obtains the physical
value of c,' '

2 2 5 2m„=M + —.

where q, and q, are the two unmixed I= K= 0 pseu-
doscalar mesons, m, is the degenerate mass of
the pseudoscalar meson octet in the SU(3) sym-
metry limit, and M is the nonzero mass of the g,
in the limit of chiral SU(3)8 SU(3). The mass ma-
trix is diagonalized to give the observed masses
of the X' and q. Using the experimental mass of
the q, one obtains the value of the unknown param-
eter M, as well as a prediction for Mxo and the
mixing angle 0.

The predicted value for M~0 is very sensitive to
the values chosen for m„and m~, which are the
degenerate masses in the limit of SU(2) invariance.
For neutral masses for m„and m~, the results
are

M=620 MeV,

Mxo = 914 MeV,

6= 12.0'.
If charged masses for m, and m~ are used, we

obtain


