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that g~~ff(q ) = Sf'(q ) =I"fjfpf(q ) will be a good approxi-
mation.

We write the Reggeized f contribution to the x7( arnpli-
tude, for instance, as

+fffI(s t) S(t)(+ + 2)I ( ) 00 ( T)

„- S(t)y (t)I"(e + 2)&
' tI'(o.' + 1)] s,

where G. = n(t) is the f trajectory, S(t) = 2(1+ e ' )/
sin7to. , P(t) =y„„(t)e(t)(p,q, )~, and p, =q, = 2(t -4@~ )
Note that on taking into account the correct threshold be-
havior of p(t), the dependence on p& and q& cancels out,
and there is no explicit mass dependence of the residue
functions, contrary to the results of Ref. 2. For con-
venience, we have written the amplitude here with the
Gell-Mann ghost-eliminating mechanism. However, the
results in the text are not sensitive to the mechanism
assumed.

E.g. , see the analysis of forward scattering by Barger
et al .; see V. Barger, review talk in Proceedings of the
ToPical Conference on High-Energy Collisions of Had-
~ons, CERN, 1968 (CERN, Geneva, 1968), and refer-

ences contained therein. In the analysis of Barger et al .,
the f lies on the P'.

Recently, the possibility that the f may be on the Pom-
eranchuk trajectory has been revived; e.g. , see Ref. 12
and references quoted therein.

2 G. Dass and S. Papageorgiou, Nuovo Cimento 64A, 36
(1970). Our definition of g(A&em) is half that of these au-
thors, and is the same as that in Ref. 15.

Alternatively, one may postulate that the universality
(31) holds in the infinite-momentum frame,

~3The subtraction terms would obey aT& =aT = ~ ~ and a~
=a& =a&, if they arise from a unitary singlet piece of the
stress tensor.

~4I is the isospin and J is the angular momentum. Note
that p dominance of the pion form factor gives a reason-
able picture at small q2.

E.g. , see H. Munczeket al. , Phys. Rev. 145, 1154
{1968).

See M. Gell-Mann, Ref. 6; P. Carruthers, Phys. Rev.
D 2, 2265 (1970); L, N. Chang and P. G. O. Freund, Ann.
Phys. (N.Y.) 61, 182 (1970).
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Using the results from electron-positron colliding-beam experiments, a phenomenological
analysis has been made by means of the continuous-dispersion sum rules for the pion elec-
tromagnetic form factor, Results such as I'p ——0.110 Gev, a&(~s) = 0.028p, , (E~(m&~)~ = 48.8,
r~ = 0.62 F, 6p (the pion mass difference) = 4.3 MeV have been obtained, and sum rules in-
volving amplitudes accessible to e+e —Vt+x and ~e ere processes tested.

In this note, we present a phenomenological
analysis for the electromagnetic form factor of
the pion, ' F,(s), by means of continuous-disper-
sion sum rules. '

By def inition, a phenomenological analysis makes
use of available experimental data only, without at-
tempting to understand the underlying dynamics.
For the dispersion approach, phenomenological
parametrizations in the experimentally unfeasible
regions, e.g. , nea.r threshold or at an unattainable
high energy, are also necessary.

We begin with the following sum rules for E„(s),
and its derivative with respect to s, at s=0:

sa~ ~ s —s i8
E'(0) = F (0) — ' ds

s(

x [cosvt) ImF, (s) + sinsP ReE, (s)] . (2')

Both Eqs. (1) and (2) are valid under the assump-
tion that E,(s)~,

~

„-0. If a definite asymptotic be-
havior like 1/s for E,(s) is used, as in Eq. (5') be-
low, we will be able to derive two more useful dis-
persion sum rules' (for 0&( & 1):

where 0 &P & 1, s, = 4p. ' (p, =pion mass). The sensi-
tive threshold factor 1/(s —s,)

s in Eq. (2) can be
avoided, if desired, by subtracting off the repre-
sentation for F,(0) in Eq. (1), yielding (for. 0 &P &1)

s s ""ds cpolsmsE, (s) si +pnRsE, e( )s
1T g~ S (s —s,) s J cossP ImF, (s) + sinvP ReF, (s)

(s —s,)s (3)

p s' " dsF.(0) = ——E.(0)+~
0 Sp

cosvpImF, (s) + sinvp ReE, (s)
X

(s —s,) 8 (2)

r sinvP ReE„(s)
[s(s —s,)]'

cossP ImF, (s) + sinsP ReF, (s)
J,, [s(s —s, )]a
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Numerical values for F,(s) in the time/ike re-
gion (s &0) can be measured either by the process'
mN-e+e N or by e'e -m+v .' At the moment, the
colliding-beam experiment' has been performed
and has yielded informative results. We there-
fore concentrate on the latter process.

For s, ~ s &16'.', it is well known that E„(s)
=

~ E,(s) ~

e' &, where o, is the p-wave phase shift
of elastic zm scattering. Since the p-wave ~m scat-
tering is dominated by the p-meson resonance,
we write, even beyond 16',',

E () f(s)
s„—s —im „I'„(q/q„)'(m„/Ws), (5)

where m„(I'„) is the mass (width) of the p meson,
s„=m„', s = 4(q'+ p. '), and f (s) is an unknown real
function. To date, many different forms for E,(s)
have been proposed'; we find that Eq. (5) is simple
but satisfactory, for the following reasons:

(1) As far as the process e'e--7t'v- is con-
cerned, the point s= 0 lies outside the physical
region; hence, the factor 1/Ws does not generate
a singularity, nor is the normalization E, (0) =1 in
Eq. (5) necessary.

(2) The correct q' threshold behavior yields an
expression for the P-wave ~~ scattering length'
a, = s„l „/8q„', independent of the value of f(so).

(3) Even with the usual assumption that f(s) = con-
stant=C, we can extrapolate F,(s) to s=~ without
difficulty, with both ImE, (s) and HeE, (s) following
a I/s-type behavior [the constant C can be deter-
mined from the dispersion sum rules (1) and (2),
as will be done below]. The problem that E,(s)
has a distant singula. rity [for constant f(s)] at nega-
tive s is also not present.

Thus our phenomenological parametrization for
F,(s) in the range s, & s &~ is given by

CF,(s) =
(s, —s) —iy(s —so)(1 —so/s)

(5')

with y = s„l'„/(s„—s,)'", a dimensionless constant.
In the sPacelike region (s&0), the experiment

me-~e is just under way. ' The pion electroproduc-
tion experiment' did give a (model-dependent) pion
form factor of the form

E,(s) = 1/(1 —s/s v) (6)

for -0.4 (GeV/c)' ~ s ~0 and s v= 0.56' (GeV/c)'.
We shall adopt a similar form factor, namely,
E,(k') =1/(1+k'/m„'), where k'—= —s, but take into
account the connection between E,(k') and the pion
mass difference formula of Riazuddin, "

ia "d'k k'+4p. '
8m p, k k —2P k

~ d'k

which, after making a Wick rotation, reads"

(k2 ~ 4tt2)3/2

16' p.
3 k

—k' E,'(k'), (t)

or, following the Feynman method of symmetric
integration, becomes"

5p, = m„'[3+ —,'x —'; x' -3x(1+,'-x+3x')lnx],
8m p.

(8)

where n =+» and x= p, '/mv'.
%'e proceed with the phenomenological analysis

as follows. (We use the natural units I'= c= tt
= 0.140 GeV = 1.) First the p mass is fixed at
0.765 GeV." This permits us to plot several
graphs of ~E,(s) ~' from Eq. (5'), for several I'„
(ranging from 125 to 100 MeV) and C (from 29.0p, '
to 32.5tt'). A few graphs are obtained, compatible
with the data points of Orsay' and Novosibirsk, '
but differing in I'„and C among themselves.

To allow for further selection, we employ the
dispersion sum rules (1)-(3).

The superconvergent sum rule (3) is independent
of C. Numerical studies with Eq. (5') reveal that
in general the srnallex the zvidth, the better the
sum rule. In particular, for each I'„, although the
left-hand side always remains around zero as P-1,
it is not negligible at P= —, (where it becomes a
Gilbert-type sum rule). This may be an indication
that resonances other than the p meson are neces-
sary for the description of F, (s)

Ideally, the right-hand integral of Eq. (1) should,
for given I'„, be stationary as P is varied continu-
ously; the normalization F,(0) = 1 then determines
a value of C corresponding to that I'„. In practice,
C varies slightly with P. Thus when I„ is varied
over the allowed widths (from 125 to 100 MeV),
Eq. (1) leads to a band of adoptable C, lying be-
tween 29.0p, ' and 32.5p, '. This result has already
been used to plot those graphs of

~ F,(s) ~' men-
tioned earlier.

The inhomogeneous equations (2) and (2'), finally,
serve to determine C and F'(0) easily, because it
happens that these two sum rules are nearly in-
dependent of I'„[except for low P in Eq. (2')]. This
is due to the intrinsic property of Eq. (5') and to
the fact that the two integrals are highly conver-
gent. The right-hand sides of Eqs. (2) and (2')
would be the same if Eq. (5') were the true pion
electromagnetic form factor, which is not the case
here. Indeed, requiring the constancy of F', (0) as
a function of P, our best result from Eq. (2) is C
=29.Otal', E'(0) =0.031p, ', while from Eq. (2') we
obtain C=31.0p. ', F'(0) =0.033', '. The over-all
analysis therefore yields C=30.0tt' and E'(0)
=0.032p. ' as our best estimate.

With C=30.0p, ', we now go back to the graphs
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TABLE I. Test of the sum rule (4). On the right-hand
side (RHS), Eq. (5') with C =-30.0JL(, , I'„=0.110 GeV is
used. On the left-hand side (LHS), use is made of Eq.
(6), together with sv ——mv2, mv =-0.780 GeV (present
analysis), mv= 765 GeV (p-meson dominance), and mv
=0.560 GeV (pion electroproduction experiment).

40

RHS LHS

mv = 0.780 mv = 0.765 rnv ——0.560

35
LL

30

25

1.0 0.79
0.9 1.18
0.8 1.50
0.7 1.93
0.6 2.60
0.5 3.70

0.79
1,15
1.48
1.91
2.57
3.65

0.79
1.15
1.47
1.90
2.56
3.61
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1.78
2.30
3.08
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FIG. 1. A plot of
i F~(s)i2 for Eq. (5'), with C =30.0u~,

I'„=0.110 GeV. Experimental data points (Ref. 5) are
compared.

we had plotted earlier and obtain I'„=110 MeV."
This width gives a, =0.028', . The diagram for

i E,(s) ~' is shown in Fig. 1, and is compared with

the data, points of Ref. 5. Other relevant quantities
a.re iF, (m ) i

= (C/m„r„)'=48. 8, E„(s,) =C/(s„—s, )
= 1.16.

The slope F', (0) =0.032p, ', on the other hand,
yields a mass m„= 0.780 GeV in Eq. (6), and gives
r, = 0.62 F, 6p, = 4.3 MeV from both Eqs. (7) and

(8). The experimental pion mass difference 5p.

=4.6 MeV required ~,=0.60 I', mv= 0.810 GeV,
E', (0) =0.030p, '.

Combining both timelike parameters C = 30.0 p, ',

I'„=0.110 GeV [Eq. (5')], and the spacelike s„
=mv' = (0.810 GeV)' [Eq. (6)], we are ready to test
the sum rule (4). The result is satisfactory, as
shown in Table I. Also shown in Table I are the
results from using the p-meson dominance (m„
=0.765 GeV) and the pion electroproduction experi-
ment (m~=0. 580 GeV) in the spacelike region. It
is worth remarking that no knowledge of E,(s) in
the range 0& s& s, is involved. This energy region
is unphysical for both e'e -m'm and me-me, but
it can, at least in principle, be explored by the
reaction mN-e'e N. '

In conclusion, we have studied the pion electro-
magnetic form factor by means of experimental
data and dispersion sum rules. " Our analysis
leads to the well-known result" I'„=0.110 GeV and

C = rn„', although the machinery used is complete-
ly different. We look forwa, rd to the high-energy
colliding-beam experiment" and direct ~e scatter-
ing' now under way for a better understanding of
F,(s), in view of its connection with many interest-
ing physical quantities.
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It is pointed out that there is just one exact form of the sum rule holding for specific tran-
sition amplitudes. The assumptions and approximations implicit in the various usual formu-
lations are analyzed on the basis of this result. The adequate description of the time depen-
dence is discussed.

The "unitarity sum rule" of Bell and Steinberger'
plays an important role in the analysis of the K'
system. It is related to the Weisskopf-Wigner
treatment' of this decay problem. Starting from a
phenomenological S matrix, further sum rules
have been obtained stating that the result is differ-
ent' or that the phase information agrees. ' Subse-
quently, several authors' ' have come to the con-
clusion that the rules should agree completely.
The recent effort spent on getting a satisfactory
description of the K' system also includes addi-
tional scattering treatments' "and an investiga-
tion" of the deviations from the Weisskopf-Wigner
equations caused by postulating the Bell -Steinberger
sum rule.

In the following, it is shown that the difficulties
indicated above disappear by using recent results
of the present author on specific time-dependent
probabilities" and on the detailed structure of re-
lated amplitudes. " In particular, the exact form
of the sum rule can be written down. Since the
various amplitudes of interest are properly speci-
fied and given explicitly, the assumptions implicit
in the usual scattering treatments as well as the
nature of the conventional Weisskopf-Wigner ap-
proach can be analyzed. The adequate description
of the time dependence is derived from first prin-
ciples.

First we review some general relations. "Defin-
ing

P=Z lx. &(x.l,

with (y~ ly„) = 6„„Q= I —P, and g(z) = (QHQ —z) ',
a biorthogonal basis with

(v (z)lu (z)) = 5

and

P =Z I&.(z)& ( ~.(z)l

is introduced which diagonalizes

P(H —HQg(z)H) P =&~.(z) I .(z)) ( .( ) l.

If the g, are (proper) eigenvectors of an "unper-
turbed Hamiltonian" H„, writing the total Hamil-
tonianH =H„+V„, one has

P(H —HQgH)P = PH„+ P(V„—V„QgV„)P.

We now put z = E+ i0 and introduce

E„(E)= Reh.„(E+ fO), I"„(E)= —2 Im A„(E + iO) .
Then the amplitude which turns out to be essential
for the description of decays, involving an outgoing
scattering state gz 8 (improper eigenvector of H),
gets the form

(q;, l~„& =&, „( -E„E-,' +r„f)-',


