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The modification of the weak-interaction theory recently proposed by Okubo is com-
pared with the current-current weak-interaction theory generalized to include local scal-
ar or tensor interactions for K;, and K;; decays. In contrast to the latter, the existence
of Okubo’s tensor or scalar densities is difficult to verify from K;, and K;; experiments
unless one has a reliable theoretical model for the pure V —A vertices. In particular, we

discuss various possible explanations for the K,; parameters.

In a recent Letter,' Okubo proposed a simple way
of introducing second-class currents® by incorpo-
rating sources other than vector densities and pro-
vided an explanation on the K, parameters. The
effective weak-interaction Hamiltonian in his case
is given, in terms of a charged intermediate-vec-
tor-boson field W, by

H=g[h,(x)+1,(x)]W,(x) +H.c., (1)

where [,(x) is the leptonic current and &, (x) is the
effective hadronic current given by

By ()=, (1) +20,T 1, () =8, 8(x) . (2)

Here J,,(x) represents the usual hadronic current
and T, (x) and S(x) are antisymmetric-tensor and
scalar densities, respectively, which are of pure-
ly hadronic origin. The effective hadronic current
(2) is derived by adding the tensor and scalar inter-
actions involving the first-order derivative of

Wu('x) to the standard weak-interaction Hamiltonian
and by performing the Kelly equivalence process®
up to the g? order. The semileptonic interaction
Hamiltonian density in second order follows from

Heff(X)=ig2fd“v A (x =TGR (L),  (3)

where Az',, (x—y) is the propagator of the interme-
diate vector boson. In the limit m,* -~ « with the
usual replacement g2/m,?=G/v2, (3) coincides
with the current-current interaction density of the
Fermi theory.*
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In what follows, the predictions for K;, and K,
decays resulting from (3) in such a limit will be
compared, in particular, with those of a general-
ized current-current type of Hamiltonian

G .
Het=—75 D 3iliTi(1+y5p, +Hoc., (4)

where j; represents the operators caused by the
hadronic scalar, pseudoscalar, vector, axial-
vector, and tensor interactions, and the I are the
corresponding Dirac matrices. We will see later
that the second-class terms in (2) are intrinsically
different from the scalar, pseudoscalar, and ten-
sor densities in (4) so that such second-class cur-
rent effects are much more difficult to verify. We
remind the reader that the presence of terms other
than V-A in (4) can be measured directly from
experiments.’ Also we will show that there are
various ways of explaining the K,; parameters in
addition to the one provided by Okubo.

L. K;; DECAY

Only the strange axial-vector part A’J of J, and
the strange pseudoscalar part P of S contribute
to the K,, matrix element. From (3), if we use

I, = Zﬁt?’p(l +7’5)¢u, ,

we get the matrix element
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(17, | H .40) |K ~(p))
=201 AL LK) = 0| P(O) K™ (p)p, ]

Xy, (1+vs)u, sing

vy

= sindl(0]A%" (0)| K~ (9, (1 +2hu,

+i OIPO) K™ (P m,a, (L+vw, ], (5)

where the same Cabibbo angle 6 is assumed for
both the vector and scalar densities. Use of
Dirac’s equation is made in the second step of
(5). By setting

(OIA% ()| K™ (o) = +ifeby » (6a)
O[PO) K~ (p)) =1, , (6b)
the matrix element (5) reduces to

(17, |H ¢ (0) | K~ (0))
=\/_g~i(fl<+fp)mzﬁz(1+75)u,,,sin9, )

so that the ratio of K, , to K, is unchanged (as
Okubo makes it clear inhis Letter):

2 2 2\ 2

DK, o) mq (Mg =M Vg 58x 105,
T(Ky,) m,° \mg®-m,

Thus the pseudoscalar admixture introduced by

the Okubo second-class current has no measur-

able effect.

This is to be contrasted with the usual pseudo-
scalar admixture that has been tested by experi-
ments. Such a pseudoscalar density is convention-
ally introduced to the K;; matrix element from (4)
by®

(| Hess (0) [K™(p))
G . + - _
=-ﬁsm9{(OIA’,§ ) |K~(p) @, v, (1 +v5)u,,
+im 0| P'(0) | K~ (p))it, (1 +vg)uy}
G . - .
=Wz(fxmt +fymyg) i, (1 +75)uulsm9, (8)
where f} is defined similarly as in (6b) from the
matrix element of P’. It is well known that (8)

gives the decay ratio

P(Kez)_<mee +f)me)2<mK2_mez)2 (9)

T(Ky,) \fymy +fjmg) \mg® -m,®

which places an upper limit on the admixture of
pseudoscalar current |f} /fx|<2X107® from the
observed branching ratio® (1.0+0.6)x107%, Hence
the pseudoscalar current density coming from the
Okubo second-class current is different from the
conventionally defined pseudoscalar current den-
sity and its existence is much more difficult to de-
tect. The same is true in the K,; decay.

1L K;; DECAY

Because of parity considerations, the K;; had-
ronic matrix element contains only the scalar,
vector, and antisymmetric-tensor interaction
terms from (4). Thus by considering only such
interaction terms in (3), one gets the K;; matrix
element

(n1°(k)17,; [Hese (0) | K™ (p))
=TG_2—-sine<fr°(k )I[VE*(0)+20, T, (0)

-3, SONK (a7, (1 +x)u,, . (10)
Then by setting

BV E ()| K™(0)) = 3[(p + DS () + a, F-()],

(11a)
(m(R) Ty, (0) | K™ (p))
=zi[(p+R)yqy = (0 +R)y 9, 1G(P) , (11b)
(m°(k)|S(0) | K™ (p)) =i H(q?) , (11c)
with ¢=p - &, (10) becomes
(7%(k) 17, |Het (0) | K™ (p))
= sindl(p+ 1), (¢) + 4, F. ()]
Xayy (1 +yshuy, (12)
where
F() =1, () +24°6(d"), (13a)

F_(q*) =f(a?) = 2(my” =m )G(q®) - 2H (¢?) . (13b)

On the other hand, the conventional scalar and
tensor interactions are introduced through®"’

(TR 17, Hegs 0) [ K™(p)) =5 siniCa®(R) |8 (0) | K™ (0D 1+,

+{(1°(R) | VET (0) [ K~ (o)) 7,7, (1 +yshuy, +H(1(R) [ T4y (O) | K™ (B)) B0y, (1+75)u, }

=2—3—2— sin6{-2m g f s (¢*)7, (1 +Yg)y, + [£ (@ P+R)y +f-(gP)qulr, (1 +y5)uy,

+—7:Z{[(P +k)pqy - (p +k)vqﬂ]fT(qz)ﬁ10UV(1 +7’5)uu,} ’

(14)
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where the form factors fs(¢?), fr(q?), and f, (¢%) are
similarly defined as in (11). By making use of
Dirac equations, (14) is reduced to the form of
(12) in which

E =1,(6) 221, (152)
K
2y _2 2 *(2p; - 2
F 1) -2l - 2P = D),
(15b)

where p, is the lepton momentum.

Notice that (15) is basically different from (13);
while it is not possible to predict the admixture
of scalar or tensor currents in (13) from experi-
ments, such admixtures in (15) can be tested from
the branching-ratio experiment of I'(K,3)/T(K,s),
from the polarization, or from the Dalitz-plot
analysis because of dependence of (15) on the lep-
ton mass and energies. The latter type of admix-
ture has been investigated, but available data are
consistent with pure vector coupling in (14).® We
note that there have also been some theoretical
attempts® to understand the K;, parameters within
the context of (15) but usually with fr=0.

To examine various possible ways to confront
the experimental situation for K, decay, we define
the K,, parameters from (13) by the relations

"22) : (16)

my

F+(q2>=m<0)<1+A+

£ =F_(0)/F,(0). 1)

In addition, we define A, from the scalar form fac-
tor

D(q2)=(mxz_mw2)F+ (0)(1 +A07322), (18)

which is related to the matrix element for the di-
vergence of the effective hadronic current by

(k) [8,h %" (0) | K~ ()
= = 3i{my® = m O, (@) + L) - 2 ()]}

=-1iD(¢%). (19)

We will denote the corresponding parameters with
f.(q?) only as x,, &, and X,, respectively. These
two sets of parameters are related through *°

A, =X, +2G(0)m,*/f,(0), (20)
No=2xo = 2H(0)m /[ £, (0)(my® = m %], 21
C 2m-m )G(0) 2H(0)
A O B A )
Mo ma” g, (22)

3y

Since the parameters A, and &, (or A, and A,)
can be determined from experiment, speculations
about the values of H and G are sensitive not only
to the data used for A, and A, but also to the theo-
retical models used for A, and A,. In order to es-
timate the contributions from the second-class
currents G(¢®) and H(4?) in (13) to the measured
form factors F,(¢?), however, we must depend on
some theoretical models to calculate the pure vec-
tor form factors f,(¢*). Thus it is clear that there
are a number of possible ways to explain almost
any given values of the K,, parameters.

Okubo has in effect focused his attention on (20).
By using X, =m ,%/m +* as given by a standard K*-
dominance model (here Okubo has assumed that
Ay=2,=0 in addition to H =0), he concludes that a
significant contribution from G(¢?) is needed to
give a large A, of order 0.06-0.08 and a corre-
sponding large negative (. The experimental sit-
uation for A, is far from conclusive; a recent anal-
ysis™ ! gives A, =0.017+0,008 for K° decays and
A,=0.030+0.007 for K* decays, both of which are
consistent with K* dominance and G(0)=0. Thus
there will be no improvement for the correspond-
ing £y value unless Ay=X1,#0 or H #0.

If A, turns out to be of order 0.04-0.05, the use
of a dipole form for £,(¢%), in analogy to the elec-
tromagnetic form factors of nucleons, would give
a good fit without the need for introducing an addi-
tional contribution from G(4%). On the other hand,*®
if A,=0.06-0.08, then use of the Callan-Treiman
relation for the on-mass-shell form factors,

f+(mK2) +f_(mK2) :fK/fw ’ (23)

together with phenomenological result fy/[ f.f.(0)]
= 1,28, can easily give &, = - 0.65 even if H(¢%)
=G(g*) =0.

In order to compare (21) with experiment, one
can either use the Callan-Treiman relation or «
dominance for the pure vector vertex. Such con-
ventional models® give a small X, of order 0.02-
0.03. If A, is as large as 0.06-0.08, then from
(21) and (22) one can still get a large negative val-
ue of {5 even if H=0. However, an average of
world data’ gives A,= —0.24+0.020, so that the
presence of a contribution from H(¢®) is needed to
make this compatible with the conventional models
for A,. Then the corresponding £ value can be
made of order - 0.6 even if G=0 and A, is given
by K* dominance.™

Finally we remark that the difficulty encountered
here of distinguishing the form factors of the sec-
ond-class currents may generally be true for any
strangeness-changing processes, '* as there areno
strict principles like G conjugation or time-rever-
sal invariance that serve to eliminate form factors
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allowed by Lorentz invariance.
We would like to thank Professor David Feldman,

Professor Herbert Fried, and Professor Howard
Schnitzer for their interest and discussions.

*Supported in part by the U, S. Atomic Energy Com-
mission (Report No. NYO-2262TA-263).

's. Okubo, Phys. Rev. Letters 25, 1593 (1970).

’The notion of the second-class currents was first
given by S. Weinberg, Phys. Rev. 112, 1375 (1958), to
the currents with wrong G -parity transformation in the
strangeness-conserving weak interactions.

SE. J. Kelly, Phys. Rev, 79, 399 (1950).

‘R. E. Marshak, Riazuddin, and C. P. Ryan, Theory
of Weak Intevactions in Particle Physics (Wiley, New
York, 1969).

SSee, for example, C. Rubbia in Proceedings of the
Topical Confervence on Weak Intevactions (CERN, Geneva,
1969).

éparticle Data Group, Phys, Letters 33B, 1 (1970).

™. K. Gaillard and L. M. Chounet, CERN Report No.
70-14 (unpublished).

8The experimental upper limits on the scalar and ten-,
sor terms are summarized in Ref, 7; |f,/f.| <0.18 and
|f7/f4l <0.58 in K5, and |f,/f,] <0.15 and |f/f,| <0.22
in Kj,.

9B. G. Kenny, Phys. Rev, Letters 20, 1217 (1968);

S. L. Marateck and S. P, Rosen, Phys. Letters 19B, 497
(1969).

Note from (13) that £, (0) = F, (0).

¢, Rubbia reported also A, =0.016 for neutral K decay
at the Austin Meeting of the American Physical Society,
Division of Particles and Fields, 1970 (unpublished), in
contrast to A, = 0.08+ 0,01 of C.-Y, Chien ef al., Phys.
Letters 33B, 627 (1970).

12y, J. Schnitzer (private communication),

Byvarious conventional theoretical models as well as
their predictions of the K,; parameters are summarized
in R. Olshansky and K. Kang, Phys. Rev. D 3, 2094
(1971).

UThis is in agreement with the more recent experi-
ment D. Haidt ef al., X2 Collaboration, Phys. Rev. D
3, 10 (1971).

5See, for example, J. Bernstein, Elementary Pavti-
cles and theiv Currents (Freeman, San Francisco, 1968),
p. 265,

PHYSICAL REVIEW D

VOLUME 3, NUMBER 11

1 JUNE 1971

Comments on Hadronic Helicity Conservation in Inelastic Lepton-Nucleon Reactions*

M. Elitzurfi and A. Pais
Rockefeller University, New York, New York 10021
(Received 16 February 1971)

If and where inelastic lepton-nucleon reactions satisfy hadronic helicity conservation in an
arbitrary hadronic frame, isotropy is shown to follow with respect to an azimuthal angle,
properly defined. For all instances other than s-channel helicity conservation, another dy-
namical variable must be made to vary in order to observe this azimuthal independence at a
given incoming laboratory energy of the leptons. The discrimination between different had-
ronic frames with regard to possible helicity conservation demands some care, since such
conservation can lead to approximately the same isotropy effect in certain specified kine -

matic regions.

I. INTRODUCTION

Some implications of hadronic helicity conserva-
tion have recently been discussed® for electropro-
duction and neutrino-production reactions of the
type

I+N—~I+N+X, (1)

where [=lepton, N=nucleon, and X is a hadronic
complex. These reactions are inclusive to the ex-
tent that integrations are performed over all rela-
tive momentum variables related to X. Thus X is
characterized by its over-all four-momentum only.

The lepton coupling is assumed to be local. Then
s-channel helicity conservation implies that the
differential cross section is isotropic with respect
to the azimuthal angle ¢ between the leptonic and
the hadronic plane, taken in the laboratory system.
In these reactions, helicity conservation can there-
fore be tested without recourse to polarization in-
formation of beams, targets, or final products.
The same will be true for what follows. The pur-
pose of this comment is twofold.

(a) The isotropy in ¢ is independent of the values
of the other dynamical variables which may be
taken as follows. (Lepton masses are neglected



