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The A, and A. quarks have I3Y value zero and so these ex-
pressions give us an overestimation, thus making the
bounds too weak.

There are several other inequalities that can be de-
rived from Eq. (3.20) but they do not give us new infor-
mation.

~Note that Eq. (2.4) has not been used in Sec. III C.
Only Eqs. (3.1), (3.4), (3.5), and (3.10) make use of the
assumption that the momentum distribution of the N
partons are symmetric.

We have found that this relation can also be derived
with the help of Eq. (3.7) and the following inequality:
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We study the model of nine scalar and nine pseudoscalar fields interacting by means of the
most general nonderivative chiral SU(3)&&SU(3) invariant and any particular symmetry-break-
ing term. Two basic "generating" equations which express the complete content of chiral
symmetry are derived. The masses and coupling constants of arbitrary order for this model
are simply found by differentiating the "generating" equations an arbitrary number of times
and using an equation which expresses the stability of the "ground" state. In this way, pre-
vious results on this model can be easily recaptured and a systematic framework for the in-
vestigation of different symmetry-breaking terms is provided. Numerical estimates are
made for scalar-meson widths, 7tg and 7' scattering lengths, and g' g2x. decays. The con-
sequences of imposing scale invariance on the invariant part of the interaction are also inves-
tigated by writing down a scale invariance "generating equation. " Finally, we discuss the re-
lation between our approach and the method of using the divergences of currents and trace of
the energy-momentum tensor.

1. INTRODUCTION

The subject of chiral SU(3)xSU(3) symmetry
breaking' has recently been one of the most active-
ly pursued branches of strong-interaction theory.
There is great interest in this field not only because
it searches for a way to estimate corrections to the
interesting "current-algebra" results but also be-
cause it is hoped that the answer to the symmetry-
breaking problem will elucidate some deep mys-
teries of elementary-particle structure.

Now, once we depart from the exact symmetry
limit of any theory, a large number of alternatives
usually present themselves. Therefore, in order
not to get lost in a maze of complications, it is
normally desirable to study a relatively simple mod-
el which contains (it is hoped) the key features of
the problem. For the case of SU(3)xSU(3) breaking,
the model which is generally taken as a prototype
is the so-called "SU(3) o model"' which contains

nine pseudoscalar and nine scalar fields transform-
ing linearly under the chiral SU(3)xSU(3) group of
transformations.

The advantage of the SU(3) o model over the quark-
model approach to symmetry breaking (as exempli-
fied by the recent work of Gell-Mann, Oakes, and
Renner' and its descendants) is that everything is
explicit in the case of the o model so that results
can be obtained relatively easily. Otherwise the
structure of the two models, as we shall illustrate,
is very similar. One example of the practical ad-
vantage of the o model lies in the specification of
the "ground state" or "vacuum state" of the system.
In the 0-model approach the symmetry breaking of
the "vacuum" is correlated to the choice of sym-
metry-breaking interaction by means of a "stabil-
ity" or "extremum" equation. On the other hand,
in the quark-model approach this physical condi-
tion is more difficult to enforce and often it is just
assumed that the "vacuum" has a certain symmetry
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property [e.g. , SU(3) invariance] which may or may
not be consistent.

One variation of the SU(3) c model suppresses the
scalar particles by essentially allowing their mass-
es to become infinite. The transformation proper-
ties of the pseudoscalars then become complicated
n0nlinem"'ones. Since this procedure was intro-
duced precisely to suppress reference to symme-
try-breaking efforts, it can be appreciated that
(while better for deriving the current-algebra
"theorems") it is less interesting for studying sym-
metry breaking.

Since, as pointed out above, the SU(3) omodel
is so well worth study, it has been investigated by
many authors. ' However, the structure of this mod-
el, though simple, is far from trivial and it would
seem that (except for the discussion of the mass
spectrum in paper I) a general approach has not
yet been given. In the present paper we propose
to do this, if we are permitted the freedom of call-
ing a treatment in the semiclassical framework a
general one.

Here we shall investigate the SU(3) o model with
the most general nonderivative chiral SU(3)&&SU(3)-
invariant interaction and some particular symme-
try-breaking terms. It is not necessary for us to
specify the detailed form of the invariant part of
the interaction. All our results are obtained from
the requirements of chiral invariance, together
with an extremum condition which implies the sta-
bility of the "ground state. "' We shall derive two
basic equations which are "generating" relations
in the sense that the formulas for masses and cou-
pling constants of any order can be derived essen-
tially by just differentiating these basic equations
any number of times.

As detailed applications of this procedure we dis-
cuss the mass spectrum of the theory (which is
found by differentiating the basic equations once),
the trilinear coupling constants (which come from
differentiating twice), and the quadrilinear coupling
constants (differentiating three times). For the
simplest choice of a symmetry-breaking term, nu-
merical estimates are made of scalar-meson
widths, vv and wK scattering lengths, and g'- q2v
decay.

We stress that the present formalism provides a
systematic way of investigating different choices
of symmetry-breaking terms. The addition of other
particles than spin-0 mesons into the theory is
clearly a desirable future step; the present method
may also be extended in this direction.

It turns out that chiral symmetry alone is not
sufficient to relate all the masses and coupling con-
stants to each other. The masses of most scalar
mesons and the coupling constants for vertices in-
volving only isoscalar particles can be chosen free-

ly. On the other hand, it is possible to try to get
some information on these objects by imposing ad-
ditional symmetries on the chiral-invariant part
of the interaction. One promising choice which can
be tested is scale invariance. ' This subject is also
taken up here and we derive a generating relation
to express the consequences of scale invariance.
In this ease our generating relation is nothing but
Euler's formula for homogeneous functions. The
consequences of scale invariance on the scalar-
meson masses and trilinear coupling constants are
investigated in detail. Generally the predictions
seem to be reasonable, but they involve quantities
which are not well known experimentally.

In all of our treatment it is unnecessary to intro-
duce vector currents, axial-vector currents, or
the energy-momentum tensor of the system. How-

ever, alternative approaches to the subject of sym-
metry breaking deal with the current divergences'
and the trace of the energy-momentum tensor. '
For our model the present approach is far simpler.
Nevertheless, for the purposes of comparison and
going beyond the framework of the present model,
we also show how our relations can be derived from
these considerations.

The basic equations expressing the chiral sym-
metry of the problem are derived in Sec. II. Ap-
plication to the mass spectrum, trilinear couplings,
quadrilinear couplings, and arbitrary couplings
are given in Secs. III, IV, V, and Appendix B, re-
spectively. Scale invariance is treated in Secs. VI
and VII. Finally, the currents and energy-momen-
tum tensor are discussed in Appendices A and C.

II. BASIC EQUATIONS

We will consider a theory constructed out of nine
scalar fields, S', (a, b = 1,2, 3), and nine pseudoscalar
fields, Q', (a, b =1,2, 3). These fields will be allowed
to interact by means of the most general nonderiv-
ative chiral SU(3)&SU(3) terms as well as some
particular (but initially unspecified) symmetry-
breaking (SB) term.

The appropriate Lagrangian density is then, with
matrix notation for the fi.elds,

2 = ——,
'

Tr(8„/aqua)

——,
' Tr(B„SsqS)—V,

' —&~B .
(2.1)

(We are using the Dirac-Pauli metric. ) In (2.1)
V, stands for the most general chiral invariant
while Vs~ is the symmetry-breaking term. The
quantity V, may be considered to be an arbitrary
function of the following independent invariants:

I, = Tr(MM'),

I, =Tr(MM tMMi'),
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Is = Tr(MM~MMt MM" ),
I4 = 6(detM+detM t ), (2.2)

in any "small-oscillation" theory, we must first
find the "equilibrium point" (or "ground state") of
the system by imposing the extremum conditions

where the 3&3 matrices M and M~ are taken to
transform according to the (3,3*}and (3*,3) repre-
sentations of SU(3)xSU(3), respectively, and are re-
lated to S and Q by

M =S+iQ,
Mt =S —iQ.

A discussion of the invariants in (2.2) was given in
paper I, which treats the mass spectrum of this
model in great detail. Although we shall constantly
refer to paper I, an attempt is being made to keep
the present paper as self-contained as possible.

To find the experimental consequences of the ex-
pression (2.1), we shall adopt a semiclassical ap-
proach. That is to say, we first consider, C as rep-
resenting a classical system of coupled fields. As

(2.4a)

(2.4b)

s =s -(s)„
and expand the Lagrangian density as

(2.5b)

where the notation ( ), means that the enclosed ex-
pression is evaluated at the equilibrium point.
Next, the fields must be expanded about their equi-
librium values, so we introduce the "physical" ob-
jects

(2.5a}

2V 2V

38 V ~ V Pl+'f, ~
p

4t
a, y, c, fg, e,f a c e . 0 a, y, c,g, e, f g, g a c e g. Q

(2.6)

with

V=UO+ VgB . (2.7)
(2.8)

Equation (2, .6) is the one that will be quantized
and whose consequences wiQ be investigated in the
well-known tree approximation. We see from (2.6)
that the set of coefficients

for example, represents the matrix of pseudosca-
lar-meson squared masses. The terms involving
more derivatives of V are the coefficients of the
corresponding multilinear interaction vertices. We
have explicitly shown two of the interaction terms
which will be calculated here.

It will be seen that by proceeding along the line
suggested above, the usual "current-algebra" or
"phenomenological-Lagrangian" results can be
quickly recovered. The advantage of this approach
is that it permits us to easily and systematically
investigate different kinds of symmetry-breaking
terms as well as to obtain some insight into the
structure of the theory.

Parity invariance for this model requires that
the "equilibrium" value of pseudoscalar objects
vanish, i.e.,

Thus Q
= P, and (2.4a) is identically satisfied.

The "equilibrium" values of the scalar fields
need not vanish, of course, and it is just this fact
which gives theories of this type their unique as-
pect. A brief study of the extremum condition
(2.4b) (given in paper I) shows that if the 3x3 ma-
trix {&VsB/Bs,)o can be simultaneously diagonalized
with {S',)„we may choose

(S', ),=5,o. , (no sum), (2.9)

where 6', is the Kronecker 5 and the a, are three
real constants characterizing the "ground state" of
this model, Isotopic-spin invariance requires
ck j Q 2

=- n, and in this limit it is convenient to de-
fine a quantity'

(2.10)

whose deviation from unity expresses the amount
of SU(3) noninvariance of the "ground state."

The basic equations which give nontrivial exper-
imental information for this model follow directly
from the chiral SU(3)xSU(3) invariance of U, . Prom
a mathematical standpoint we consider transforma-
tions in two separate SU(3) groups —a "left-handed"
SU(3) and a "right-handed" SU(3). For our present
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6y =[E„y],

6S = [E„s],
(2.11)

where E~ is an arbitrary 3~3 infinitesimal matrix
sati sfylng

purposes it is somewhat easier to consider infini-
tesirnal transformations corresponding to the left-
plus-right (or vector} and left-minus-right (or ax-
ial-vector) transformations Explicitly, under a
"vector" transformation, the change in the fields
is given by

6y, =Tr -5 + 5S

(2.17)

where Ev is restricted by (2.12) but not (2.14).
Since F~ is a 3~3 matrix of complex numbers which
is restricted by nine conditions in (2.12), it re-
quires nine real numbers for its specification.
These nine real numbers may be chosen arbitrarily
so that (2.17) leads to the following nine equations:

(2.12) [y, a V,/ay]+ [S, a V,/aS] = 0. (2.18)

6y = -i[E„,s), ,

6s=i[E„,yj„
(2.13)

where E„again satisfies (2.12). We must point out
that the transformations (2.11) and (2.13) actually
correspond to the U(3)&& U(3) group rather than
SU(3)&&SU{3). For a unitary unimodular transfor-
mation the requirement that det(1+E) = 1 gives

[The requirement {2.12) comes from demanding
that I +Ev be unitary to first order in Ev.] The
change in the fields under an "axial-vector" trans-
formation is given by

For the case of the "axial-vector" transforma-
tions (2.13), V, will only be invariant when E„ is re-
stricted by (2.14) in addition to (2.12). However,
for technical purposes, it is more convenient to re-
lax the restriction (2.14) so that V, will not be in-
variant; its change will be determined by

(2.19)

since I, is the only quantity in (2.2) which is not in-
variant when (2.14) is relaxed. Substituting (2.16)
into (2.19) gives, as before,

Tr(E) =0 (2.14) as', ay '

as a condition that must be satisfied in addition to
(2.12}. All four quantities listed in (2.2) are in-
variant under the "vector" transformation of (2.11)
with no restriction on Tr(E). However, in the case
of the "axial-vector" transformations of (2.13), the
quantity I, is invariant only when (2.14) is imposed.
In other words, I» I» and I. are invariant under
the full U(3)x U(3) group while I, is only invariant
under its SU(3)XSU(3) subgroup We m.ay easily
demonstrate this with the aid of the following ma-
trix identity:

6(detM) = {detM}Tr(M -'6M), (2.15)

6I, =6(detM Tr(M [E„,M] )

—detM~Tr(M~ '[E„,M ~],)]

= 12(TrE„)(detM -detM~),

which is clearly vanishing only when Tr(E„)=0. In
deriving (2.16), we of course used (2.3).

Now the invariance of Vo under the "vector"
transformation (2.11) is expressed by the equation

where I is some matrix. Thus under the transfor-
mation (2.13),

= 12 '(detM detM &—)Tr(E„).~~o (2.20)

Because E„ in (2.20) is restricted by nine rather
than ten conditions, we have the nine equations

aV, aV,

= -12i '(detM- detMt) x 1,. Btlo

dI~

(2.21)
where 1 is the 3~3 unit matrix.

Equations (2.18) and (2.21) are the basic ones for
our purposes. By differentiating them any number
of times with respect to the fields and evaluating
the resulting expressions at the "equilibrium" point
with the help of (2.4b), we will obtain a large num-
ber of relations between the particle masses and
interaction vertices of the theory. This will be il-
lustrated in detail in the following sections. It will
be seen that the relations are of the same form as
the "current-algebra" ones in the sense that n-
point vertices become related to (n —1)-point ver-
tices. However, in the present approach it is
straightforward to handle the effects of symmetry
breaking.

We stress that Vo may be a completely general
chiral invariant. The relations we obtain will be
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Vss = -2(A,S,'+AaS2+A, Sa), (2.22)

where A„A„A.3 are three real constants. In the

the ones that follow from chiral invariance togeth-
er with the extremum condition. It is not necessary
for us to specify the explicit form of V, in terms of

I~, I2, I3, and I4.
Until now the choice of V» has not been dis-

cussed. Clearly, the most interesting choices are
simple ones, since the whole model is constructed
on an SU(3)xSU(3)-invariant framework. The sim-
pl,est nontrivial one is

isotopic-spin limit, it is convenient to define'

A~-A2-go,
(2.23)

A3 = go+ g ~

The situation g=0, go&0 corresponds to the sym-
metry-breaking term retaining ordinary SU(3) while
the situation go = 0, g& 0 corresponds to the sym-
metry-breaking term retaining chiral SU(2)xSU(2).

The Lagrangian density (2.1) with V,~ given by
(2.22) has the same group-theoretical structure as
the following quark model of Gell-Mann ':

3
S(quark) = -Q q, y„&„q, + [nonderivative SU(3)xSU(3)-invariant interaction]

-m, q, q, -m, q, q, -m3q3q3 ~ (2.24)

In (2.24) q„q„and q, stand for the three quark
fields. The explicit correspondence between the
two theories is expressed by requiring

c
4 a eyc SSe 4c ega SSe a 8Sc eSe c SSa eSe

b f c f b f c f

A, =Kma,

(q 'q, )a=a'o, ,

(2.25)

~ =0.a BSe e BSa
b f

(3.1)

where the m, are the quark "masses" and K and K'

are constants of proportionality. The advantage of
this approach over the quark-model one is that it
is more explicit and we do not have to employ
roundabout means to suppress reference to the fer-
mionic quark fields.

It may be worthwhile to point out that when Vs& is
given by (2.22), the extremum condition (2.4b) can-
not be satisfied for ur = 1 [see (2.10)] and gee0. In

other words, the "vacuum" can not be exactly
SU(3)-invariant when the symmetry-breaking term
(2.22) violates SU(3). This result follows immedi-
ately upon inspection of Eq. (22) in paper I. How-

ever, if more complicated choices of V,& are made,
it is possible" to have an SU(3)-invariant vacuum.

Evaluating (3.1) at the "equilibrium" point with

the aid of (2.4b), (2.8), (2.9), and the assumed re-
lation

SB ya» (3.2)

gives the final result for (O'Va/sS; BS&)a:

(3.3)

The scalar-mass (squared) matrix which is to be
compared with experiment is just

III. MASS SPECTRUM

BSbBSf o BS BS o BSbB f 0
(3.4)

Although the pseudoscalar and scalar-meson
mass spectra were discussed in paper I, we shall
derive the same results here with a quicker meth-
od and point out some connection with other work.

The constraints on the scalar-meson mass spec-
trum which follow from chiral symmetry are ob-
tained immediately by differentiating the basic
equation (2.18) with respect to the scalar field.
[For this purpose it is convenient to write (2.18)
with the SU(3) tensor indices on the fields explic-
itly displayed. ] Thus we find

Bya Bye B a Bye Bya By8
(3.5)

and the quantity

(' ";).

so that once V~]3 is specified a certain number of the

squared masses of the scalar mesons can be read
off immediately from (3.3) and (3.4).

The matrix of pseudoscalar-meson squared
masses is
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is evaluated as in the scalar case by differentiating
(2.21) with respect to the pseudoscalar field. This
gives the result" pic use g g g e

-24V~6, 5~ n,n2n~/n„(3. 6)

(3 7)

Again, once V~~ is specified, the pseudoscalar-
meson squared masses can be read off immediately
from (3.5) and (3.6).

Now we Rre in a position where it is easy to see
what the characteristic mass spectrum of this mod-
el looks like. An amusing situation is the so-called
"spontaneous breakdown" case where Vs~=0. Equa-
tions (3.3) and (3.6) then show that, depending on
the choice of the n, 's there will be some pseudo-
scalar or scalar mesons with zero mass (Goldstone
bosons). Hence this case is clearly unrealistic.
%e shall not give details here since a complete
chart of the spontaneous break-down spectrum was
presented 1Il pRper I. OQe po1nt worth emphasizingp
though, is that in this type of model the symmetry
is in general broken even though Vs&= 0. Thus in
this cRse lt 18 Qot 1Il geQel'Rl correct to DlRke sym-
metry" transformations on the theory and expect to
reach a physically equivalent situation. '3

As previously indicated, one very interesting
choice of V~~ is that of (2.22). Here

so the formulas become rather simple. %e desig-
nate the nonet of pseudoscalar mesons as usual by
the symbols (w, K, q, g') and the eoxxesponding nonet
of scalar mesons by the symbols (e, z, o, o'). (Note
that we are using the symbol. e to stand for the iso-
vecfox scalar particle. ) For convenience we shall
also consider the particle symbol to stand for its
mass. Then the squared masses of the pseudo-
scalar particles with nonzero internal quantum
numbers are found from (3.6) to be

A, +AS
+ O.s

A, +A.3
0

Of2 + Qs

(3.8)

A, -As
K+

CZ j —Qs

A, -A,
Ko

Q2 —Qs

(3.9)

Finally (3.6}shows that the squared masses of the
7t', g, and q' particles correspond to the roots of
the secular equation for the following matrix whose
(ab) element is (O'V, /8$; 8$',)0:

while the squared masses of the corresponding sca-
lar particles are found from (3.3) to be

-12' a3

-12V~ n2

-12V4 n,

2A, /n, —12V~ n, n, /n,

-12V4 n 2A, ia, —1Rv, n, a, ie.)

On the other hand, we see from (3.3) that no infor-
mation is given on

so that the e', 0, and c' masses are not determined
by the chiral invariance of Vo.

The structure of the preceding mass formulas
are such that all masses are related to each other
except for the e, o, and o'. If we impose isotopic-

spin 1QVRr1Rnce oIl the theolyq Qj =cv2:Q Rnd A.1=A2
so the expression for e,' in (3.9) becomes undefined.
In this (usual) case the masses of the pseudoscalar
nonet and the K are related to each other while the
masses of o, o', and e are undetermined. Thus,
information about some of the poorly observed sca-
lar particles tends to be suppressed in this model.
%e recall that one reason' for introducing nonlinear
transformations of the pseudoscalar mesons in
models of this type is just to suppress this informa-
tion. Evidently the introduction of nonlinear trans-
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formations is not absolutely required on this ac-
count.

If the interaction term V, is restricted with addi-
tional symmetries, then some of the presently un-
related scalar masses get related. This will be
illustrated in a later section, where scale invari-
anee wiU be imposed on Vo.

Recently, Mathur and Okubo'4 have studied the

spectral functions of the scalar and pseudosealar
densities in the quark model of (2.24). From gen-
eral positivity requirements they determined the
allowed ranges of the Iluark "mass" ratio m, /m,
and a quantity which is analogous to zo defined in

(2.10). We note that exactly the same results
emerge" in a transparent way from our model
when we make the identification (2.25) and reIIuire
that the squared masses as computed above be pos-
itive. This would seem to strengthen the similarity
between the quark model and the present one with

V~, given by (2.22).
The question also arises as to how well the Eqs.

(3.8)-(3.10) agree with experiment in the isotopic-
spin invariant limit. It was shown in paper I that
there i.s surprisingly reasonable agreement for
such a, simple model. Analysis of these equations
shows that q" can be predicted in terms of Tt', K',

( q) (cos0p -sin0p) (14)

'g sln6p eos Hp 'go

(3.12)

where q and q' stand here for the corresponding
physical fields and 'ge and 'go are the mathematical
objects transforming as an SU(3) octet and singlet,
respectively. In the tensor notation we are using,

q', and IIt. (III is not a completely free parameter
since it is expected by the usual weak-interaction
theory" to be around 1.5e.) Exact agreement for
q" was found for u = 1.7, which is not bad. For
the purpose of making further numerical estimates,
we shall adopt the following set of values which
satisfy the above equations:

X' =13.6, g' =16.5, g" = 50.4,
(3.11)

I(:2 =49.6, u = 1.7.
The value of x' above is also a theoretical predic-
tion. %'e are using a system of units where the z'
mass is unity.

Now it is convenient to record for future use our
conventions about q-q' mixing. %e define the mix-
ing angle (9p in such a way that

cos0p- &2sin0p

l
e

slnep+ 2 cos 8p

cos0p —v2 sin0p

ve

s1110p+ 0 2 cos0p

We

—(SII18p + W2 cos 8p)

/3

cos8p —V2 s1110p

Ws

(3.13)

In terms of the mixing angle, the relations between the matrix elements (6'V/6$; 6$,'), and the physical
Blasses al'e glveII by (ill 'tile isotopic-splII lilni't)

= 2 II '+ -'(cos0, —V2 sin0p)'q'+ -'(sin8, + ~~2cosop)'II",

~~
2

= — II,'+ ,' (cos 0p &2—Sin0p) '—q '+ —,
' (sin 6, + &2cos 8p) 'II ",

8$16$2 o

(cos0p —v2 isn0)p( is n0p+v 2 cos0p)(I)' —q"),~~ ~~

41 43 0 642 As, "0

(3.14)

= v(sln0p+W2cos0p) |I + v(cos0p —92 slI18p) 'g~~

43 43 0

Exactly analogous formulas hold for mixing in the o-0' system when we use 8, instead of 8p and replace all
the pseudoscalar fields by their scalar analogs.

The mixing angle 0p corresponding to the situation described in (3.11) is, of course, also predicted. "
It turns out to be extremely small: Op= 0.3'. Thus the q and j' seem to be essentially unmixed in the mod-

el where VSB is given by (2.22).
To end this section we note that mass formulas of the type we have obtained can also be derived by re-

lating the divergences of the currents for this model to Vs, and V~. This approach is less direct than the

present one since it requires us to fi.rst introduce currents and then get rid of them. However, a discus-
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sion of this method is given in Appendix A.

IV. Syg COUPLING CONSTANTS

The computation of the SQ@ coupling constants mill enable us to estimate the scalar-meson widths as
well as to calculate processes like IIII II-II, IIK- IIK, and q'- q2II, all of which involve Spp vertices.
These coupling constants in our approach are to be determined from the expression

(4.1)

The restrictions from chiral invariance of V, on the first term on the right-hand side above may be found

by differentiating the basic equation (2.21) once with respect to the pseudoscalar field and once more with

respect to the scalar field, This gives when evaluated at the "equilibrium" point as before:

'~(ss;s» s»;, = ' ss;ss;, ' ' ss;ss;, l s»;s'S;, ' s»;s»; .
+ 12i6,', , '(detM —detM I)88 a BItIy sl»

(4.2)

We see from (4.2) that if the indices tI and fI are unequal, "the trilinear coupling becomes related to the
scalar and pseudoscalar masses. These relations are of the same form as the so-called generalized Gold-
berger-Treiman relations (see Appendix A), but in the present approach we can easily see how these equa-
tions get modified for different choices of V».

If the indices a and fI are equal in (4.2), additional a priori unknown quantities

V —
8~,81, ,

enter into the picture. A little thought shows that these additional quantities will arise only when we are
calculating the coupling constants for vertices involving three isoscala~ objects. Thus, as in the case of
the scalar masses, only a certain number of coupling constants get related by the chiral invariance of Vp.
The others can be chosen freely or alternatively can get related when Vp ls x'estxlcted with another sym-
metx'y like scale lnvar1ance. This situation continues to vel'tlces of higher ordex' ~

Now let us give the explicit relations. The SgsP part of Z may be written as

Z{Syy)=a,(Spy)+Z, (SItIy),
where

-SI(Span) =[(-,')' 'g„II,Kr vis+ g„r~KIIIi+g„r„Keg'+H. c.]+(-,)' ' ,grrKT&K+ g„„e IIIi+g„„e wq'~

(4.2)

+ 2g «Tt ~ TI o+-,g;,„n ~ n 0'+g«gKKO+g, .~~a'KK (4.4)

=1 1 1&2(844) = 2gaa q&9Ii+ a'g a'qq~' W+ 2g'aq n' II'9 '0''+'aR'a'a'a' II'9'9'+blasty' II'iI) '+ ga'qq &'Vg' ~' (4.5)

In the above we have used the usual isospin notation and each particle symbol stands for the corresponding
field. The g's are the coupling constants. RI(SQQ) contains those vertices which do get related by chiral
sy111111etl'y of Va a11d g2(Span) coI1tallls 'tllo'se vertices wllicll do llot.

As an example of using (4.1) and (4.2), consider the ~KII coupling constant g„„,. By identifying this with
the appropriate term in (2.6), we find

8938 ~B 2 8$38$~8 ~ +(y BS 88 BQ 8$

If V~, is linear in the fields as is the case for (2.22), this expression simplifies to

g,». = (Ir, + n, ) '(~ '- II') . (4.6)

Equation (4.6) can also be derived by using the partial conservation of either the II-type axial-vector cur-
rent, the K-type axial-vector current, or the Is-type vector current (see Appendix A).

Proceeding as above, we may find the following list of the coupling constants in i;I(SsPsP)s when we adopt
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the symmetry-breaking term of (2.22):

g„».= —(»' —»'), g,»„= (cos6, +2&2si n8, )(q' —»'),1

g, »„,= ~ (2v 2 cos8, —sin 8,)(»' -q'),
K

g = (& K ) g „„=~ (cos8 —W2sln8p)(E' —'g ),

g„„,= (sin6~+ icos 6p)(e' —q"),46F
(4.7)

g„,= — (cos8, —W2sin8, )(v' —»'), g„,„= (sin8, +W2cos8, )(v" —»'),& ft' 7I q6

g,»» = (cos8, +2v2 sin8, )(K' —v'), g, »» = ~ (2&2cos6, —sin, )(v" -K'),
v6 F~ K

where we set"

F„=2n, Fg =Q +03. (4.5)

[To see how the mixing angles enter into (4.7) we note that, for example,

63V spa
SKAT) gspg g g

where &Q;/aq is computed from the transposed matrix in (3.13). The use of (3.14) and its scalar analog is
also required for some of (4.7).]

With (4.7), some of the scalar widths may be estimated. Unfortunately the experimental situation is not
well established for these mesons. Using the prediction for the» mass in (3.11) allows us to calculate
I'(»- K») = 500 MeV. The calculation of the v and v widths is seen from (4.7) to require knowledge of their
masses and the scalar mixing angle 0, . At present we do not have enough information to do this, but in a
later section we will see that the imposition of scale invariance on Vo gives us this needed information.
With this extra assumption it again turns out that a and 0' are extremely broad. Finally for the case of the
e meson, only its mass is needed to calculate the widths from (4.7). There are two conceivable experimen-
tal candidates for the e: one is the 5(962) and the other is the»„(1016). For the former case we predict
from (4.7), I"(e-q») = 180 MeV, while for the latter case we predict I'(e-q»)= 250 MeV and I'(e-KK)
= 80 MeV. These widths are all much larger than the experimental widths. "

The general picture that emerges (on the theoretical side, at least) is that all the scalar mesons in our
model should be rather broad. There is some experimental support of this for the 0 meson, from phase-
shift analyses" of deduced m-n scattering data. However, real experimental confirmation seems to be es-
sentially an open question at present.

V. p4 COUPLING CONSTANTS

By the Q' coupling constants we mean the following set of quantities which appear in (2.6):

(5.1)

The first term on the right-hand side may be calculated by differentiating the basic equation (2.21) three
times with respect to the pseudoscalar field and evaluating the resulting expression at the equilibrium
point. This gives

+Qa v5 symsyi eye spa e sy~syg ss a z symsye ssa m syg eye ssa a
o gb 0 +g& 0 o +, gf

B3 83
+pa Vo +gn ~ Vo

g gyntgye ps' a gag gee gym

83 BP

0

8 Vo

~Q„BS

(5.2)
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When the indices a and 5 are unequal, (5.2) amounts to a relation between the Q4 and SPP coupling con-
stants once V,&is specified. The case a=5 brings in the a priori unknown objects

in addition to the V„which entered in the a = 5 case in (4.2). Again, those Q' coupling constants which re-
main unrelated are the ones for vertices with all four particles being isoscalar.

Here, we are interested in calculating q'-q2m decay, nw scattering, and mK scattering so we shall only
pick up the g'q2v, n', and v'E' four-point terms. The appropriate part of (2.6) is (in isotopic-spin nota-
tion)

&(0-') =kg(„"V'nv v+ —,', g"'(v v)'~ + .' g(„"I7—En'v+~ ~ ~,

where we make the identifications

(5 3)

(5.4)

(.)
Fy ey'sy''8y') ' (5.5)

g(~)~' =
ey', ee,'~', sg), ' {5.6)

The quantities Bp,'/sg and 8&,'/Bq' in (5.4) can be found from the transpose of the matrix in (3.13).
For the case when V~, is given by (2.22), we get the following results for these coupling constants after

relating them to the Sgp coupling constants by (5.2) and when possible relating these, in turn, to the par-
ticle masses by (4.2):

g'„'}=,(2W2cos28~- sin28p)[e' ——,'(g'+g")]+ ~ (cos8, —v 2 sin8, )g,„„.+ ~ (sin8, +v2 cos8, )g, .„„.,
(5 'I)

(4)g"' = —,[(cos8, -W2sin8, )'a'+{sin8, +W2cos8, )'c "]—v'/n', (5.8)

g'r@= [-,'o'(4sin'8, —cos'8, —(-,') '~'sin28, ) +-,'cr "(4cos'8, —sin'8, + (-,') '~'sin28, ) +(a'- v' —E')].
(5 9)

Now let us go to the decay process q -qn 'n . This decay is interesting since its Dalitz plot has been
determined experimentally. " %hen this amplitude is computed in the tree-diagram approximation2' there
enter, in addition to the four-point "contact" term discussed above, diagrams with intermediate o, g', and
e lines. All these are shown in Fig. 1. The SPP type coupling constants involved in these other diagrams
are defined in (4.4) and (4.5). After calculating the diagrams of Fig. 1 in the usual way, we find"

T(q'(P)- g(q), v'(k, ), w (k ))

~ (cos8, -&2sin8, )g,„„, , ", "„+~ (sin8, +&2cos8,)g,.„„o.v 6 0 -q -g" —2P q ev6

+ —,(2v2 cos28~- sin28, ) 2e' —(q'+q") —(~'-rj)(e'-q")
12K

1 1
—2p k e -g" —n. —2p (5.10)

It is of some interest to consider the limit of (5.10) wherein the scalar masses c, c, and e become. infi-
nitely large. This corresponds to the "current-algebra" result. In this limit g,«and g .«are expected
to remain finite since they are not related to particle masses by chiral symmetry. Thus the first two
terms of (5.10) do not contribute, and we get
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IT {k)

Tl{kI

FIG 1 Diagrams for q' decay

2~~cos20~ —sin20~'[(g'+q" 2v') 2—q q j—. (5.10')

T"e spectrum shape predi«ed by {5.10') is essentially the same as that of Schwinger. ~' However, he did
not predict the over-all factor.

As it stands, (5.10) contains at least four quantities, namely g,„„,, g,,„„., 0„and o", about which we
have very little idea. However, the imposition of scale invariance on V, will enable us to get a handle on
these objects and attempt some meaningful comparison with experiment. The discussion is thus deferred
until a. later section. In preparation for this, though, we expand (5.10) in terms of the q-meson kinetic
energy in the q' center-of-mass frame and keep only terms of first order; i.e., we write

Z'(q' qv" v-) =a-+aT„+ ~ ~ ~,

vrhere T„=qo —q and the coefQcients A and 8 are

(5.11)

(cos0, -W2sin0, )g,~„. . . + {sin0, + /2 cos0,)g,,,„,
2

6' 8 +QQ i g2 ql q
2 6 p 8 0

1+,(242 cos20p —sin20, ) 2~' —(q'+q")— (5.11 )

8= ( cos, 0-&2i sn)0g,«. . .—,+
5 F (sin0, +v2 c»0,)R'a~ —„2g '(o" —v')

c" (n' n' '--
+,(2W2cos20~ —sin20~)

1 2q '(e' —q') (e' —q ")
—'lT 'g'g

(5.11")

The computation of the m-mzcattering amplitude is very similar to the computation above. In addition to
the "contact" diagram whose coupling constant is given in (5.8), there are diagrams with internal o and c'
lines. The ovv and c'wv coupling constants are given in (4.V). For the process v;(p, )+ v, (p,)- v, (p,')+ v, (p,'),
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we thus have the T amplitude

2 (c' —m')' 2 (o"—m')' 2v'
5;,5„2(cos8,—&2sin8, )~ o' —, + 2(sin8, +v2 cos8, )2 o'2—

cj kl 3y 2 s o'-s 3F,' S g/2 ~ F 2

+5,„5&,((s- t)] + 5;,5&i ((s u-))

z&»+z~ ~

+& ~&ji 2
+&~ &jj j

where the decomposition into isospin amplitudes has been shown, and s = -(P, +P,)', t = -(P,' —P, ) ',
u = -(P.' -Pi)'

The scattering lengths are found from (5.12) to be

-1
a, =

3 (3 4 )
T"'(s=4v', t=u=0)

(5.12)

'T 7 9 m m'
~+(cos8, —W2sin8, )' —, , +, +(sin8, +W2cos8, )' —,» +

8 3.1416jF ' s 2 O2 4~2 302

(5.13)

32(3.1416)
T '(s= 4w', t =u = 0)

2 2

1—,(cos8, —&2sin8, )
' — „(sin8, + &2cos8, )

'
30 (5.14)

(Note that m in the above formulas stands for the pion mass. ) Equations (5.13) and (5.14) are each written
in such a way that the first terms on the right-hand side give the usual "current-algebra" result while the
remaining terms give a correction. Again we do not presently have enough information to evaluate the cor-
rection. Later we will attempt to estimate the correction with the additional assumption that Vo is scale-
invariant.

Finally, for the case of vK scattering we must compute the "contact" diagram, whose coupling constant
is given in (5.9) as well as diagrams with internal o, c, and ~ lines. The T matrix for K+ v, —K+m,. is
(in isotopic-spin notation)

(4) 1 2 + g +ILIA g+ + ft g +'It,'1 1 1
K2 S K2 + 0-2 g

i2 ] ~ tP j ~ KE7 K2 — 2 —S

T ~&t'2&+ 2 T ('3t'» T ('&~2& T~3~»
—= 5;j 3 ,'[T, , ~,.]— (5.15)

where the isospin decomposition has been displayed and the v's are the Pauli matrices.
Evaluating (5.15) at threshold, substituting in our formulas for the coupling constants, and multiplying

by -[8(3.1416)(rr+K)] ' gives the scattering lengths as

-1 1 3
16(3.1416)(w+K) o., +n, ~' —(K- m)' ti' —(K+ ~)

s s' —,4sin'S, —cos'8, — sin2S, — „4cos'6, —sin'S, s —sinso
oc +oc~ 30 V2 30 s s V2 s

(5.16)
~ 1 K 1

6(3.1416)(v+JC) n+~. ~' —(&- ~)'

g'-
2 4sin 0, -cos 0, — sin20, — „4cos'0, —sin'0, + sin20,2A(A +(X3) 30

(5.17)

We will estimate the numerical values of these scattering lengths after determining 0, and cr' from scale
invariance of Vo.
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VI. SCALE INVARIANCE

There has been a great deal of recent interest'
in the invariance (or more correctly, approximate
invariance) of the strong interactions under scale
transformations of the space-time coordinates,
i.e., transformations of the form

(6.1)

where P is some real constant. The main reason
for this interest" seems to be the experimental
fact that high-energy inelastic electroproduction
amplitudes display an approximate scale-invariant
behavior. On the other hand, the way in which this
approximate invariance should be implemented in
terms of field theory or "current-algebra" models
has not at all been settled even though many differ-
ent proposals have been made. '

The simplest approach to this topic (and the one
we shall investigate here) is to proceed in exact
analogy to classical physics. In a classical model
the scale invariance of a theory just says that no
constants having any dimensions should enter into
the Lagrangian, and the whole problem becomes an
exercise in dimensional analysis. The dimensions
of all fields can be read off from the "free" La-
grangian density which has the dimensions of an
energy density or (mass)'. Thus our fields P and

S should each have the dimension (mass)'. Note
that as in the previous case of chiral invariance it
is more convenient to impose the scale symmetry
on the Lagrangian written in terms of the original
fields as in (2.1) rather than the Lagrangian writ-
ten in terms of the "physical" fields as in (2.6).
Actually it is easy to see that any scale symmetry
which is present in (2.1) becomes severely man-
gled when expressed" in terms of the "physical
fields. "

For the Lagrangian density (2.1), exact scale in-
variance would mean, by dimensional arguments,
that V= V, + V&Bbe a homogeneous function of order
four in the fields Q and S. Now the particula. r
choice of V„given in (2.22} obviously violates this
criterion. Since this choice of V,~ seems to be a
fairly reasonable one, it is tempting to require

26
only V~ to be scaEe-invariant. Then the same term
zchich breaks clziral SU(3}xSU(3}zvould also break
scale invariance. Obviously, other more compli-
cated assumptions can be made but we will test this
simplest case here.

At first thought, it would appear that requiring
V, to be a homogeneous function of order four limits
us to a linear combination of (I,)' and Iz, where I,
and I, are the invariants defined in (2.2). However,
in a theory of the present type this is definitely not
true The reas. on is that the invariants I, of (2.2)
are expressed in terms of the original unphysical

fields which have nonvanishing "equilibrium"-point
va, lues. Thus (I, ), c0, and we must expand

so that (I, )
' does not blow up for the "ground"

state. The result of this is that terms like
(I,) 'I„(I,) '(I,}', as well as an infinity of others,
are allowed. An easy way to proceed in general is
just to use Euler's theorem on homogeneous func-
tions for Vp This immediately gives us the basic
equation

Tr +S 0 =4V, (6.2)

since V, is a homogeneous function of order 4 in Q

and S.
Equation (6.2) is analogous to the ba.sic equations

(2.18) and (2.21) in the sense that it is a "genera-
ting" relation from which all the consequences of
the scale invariance of Vo on masses, couplings,
etc., can be obtained simply by differentiation with
respect to P and S.

In the literature, ' most of the work on scale in-
variance has used the energy-momentum tensor
e„, as a starting point. Although the simplicity of
the present approach using (6.2) can hardly be im-
proved upon, it may be helpful for the purposes of
comparing with other work or going beyond the
framework of this model to study this alternate
method. This is done in Appendix C, where it is
shown how our relations may be derived by cal-
culating the trace of 6„,. The situation is analo-
gous to the chiral-summetry case where an alter-
nate approach involves using the current diver-
gences (see Appendix A).

Now let us take up the consequences" of (6.2).
Differentiating it with respect to the scalar field
and evaluating the result at the "equilibrium" point
gives

(6.3)

Equations (6.3) are very interesting in that they
provide information on the o mass, o' mass, and
scalar mixing angle, O„all of which were left
completely free after the imposition of chiral sym-
metry on V, (see the discussion in Sec. III).

To make our initial test of the assumption that
V, be scale-invariant, we check (6.3) for the sym-
metry breaking term given by (2.22). Note that be-
cause of isotopic-spin invariance only two of the
three equations in (6.3) are different from each
other. After using the scalar analog of (3.14) to
express the quantities (O'V/BS;BS", ), in terms of o,
0', and 0, , we may write these two equations as
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' =-,'(o'+o") — [W2(i+2m)cos28,

—(so —4)sin28, ](o ' —c"),

meson masses:

(6.7)

(o'+ c")+ —,
'

[(ur —4)cos28,

+ v 2 (2 w+ 1)sin28, ](o' —a "), (6.4)

(w'+2)(oa')'=, [2(A,)'+(A, )']

where ur [see (2.10)] is the quantity which charac-
terizes the SU(3) noninvariance of the "ground"
state. The angle 8, may be eliminated from (6.4)
to give the following relation between a' and 0": Xa gg+Vg'„„=2n'/&,

Xg,„„.+ Vg„„,„,= 2q "/a,
Xg,«.+ Yg .„„=0,

(6.6)

(6.9)

(6.10)

An amusing consequence of (6.7) is that those SPP
coupling constants which could not be related to the
others by the imposition of chiral symmetry on t/0

[i.e., the ones defined in (4.5)] now are required to
satisfy the following equations:

+ —(2A, +wA, )(c'+o") . (6.5) where

The quantities so, A, /o. , and A, /o. appearing above
can all be computed from the pseudoscalar-mass
spectrum in our model. Corresponding to the nu-
merical values in (3.11}, we may thus write (6.5)
as

61.2 —g'
1 —o'/38. 5 ' (6.6)

g/2

0
10
20
31.7
38.5

61.2
69.2
85.0

166.5

127
118
107'
90'
75

Generally it is believed" that there is an extreme-
ly broad isoscalar resonance in the vicinity of the
p meson (o' = 31.7). If this is identified with o, we
are led to expect the 0' to be around 1740 MeV.
Furthermore the o' is predicted to be the member
of the SU(3) octet while the lower mass o should
be essentially a singlet. [See the scalar analog of
(3.12).]

Another set of predictions from scale invariance
of V, may be found by differentiating (6.2) twice
with respect to the pseudoscalar field and evaluat-
ing the result at the "equilibrium" point. This
gives the following set of relations between the
SPP coupling constants and the pseudoscalar-

where masses are expressed in multiples of the m

mass. Let us assume for definiteness that e'& o".
Then (6.6) shows that a'& 38.5 and o"&61.2, or
equivalently the lower of the two scalar isosinglets,
must be less massive than 840 MeV, while the
higher one must be more massive than 1050 MeV.
The mixing angle 0, may also be calculated from
(6.4). Below, a chart is given showing the predic-
tions of 0" and 8, for various values of 0'.

X = (~}' '(1 -w)cos8, —(&)' '(2++)sin8„

I'=(')' '(I -w)sin8 +(')' '(2+so)cos8
(6.11)

VII. APPLICATIONS OF SCALE-INVARIANCE
RELATIONS

We found in Secs. IV and V that just imposing
chiral SU(3)xSU(3) on V, was not sufficient to give
us all the information needed to calculate the a and
v' widths, g'-g2m decays, or mm and nK scatter-
ings. In the last section some of this information
became available on the assumption that V0 is also
scale-invariant, Here we shall use this informa-
tion to make some estimate on the processes men-
tioned.

and we have assumed that V~~ is given by (2.22).
These equations are not completely academic since
(6.10) is useful in connection with our computation
of g' decay in Sec. V.

It would first seem that (6.7) also gives some new
restrictions on the ann, o''n~, crKK, and O'KK
coupling constants. However, these relations are
easily seen to be no different from the chiral-sym-
metry predictions of (4.2) when taken together with
our previous result (6.3).

Finally we note that, in general, scale invariance
relates n-point vertices where at least one in-
coming line is anisoscala~ scalar particle to the
(n —1)-point vertex without this incoming line.
Specifically, differentiating (6.2) P times with re-
spect to the scalar field, q times (q even) with re-
spect to the pseudoscalar field, and evaluating the
result at the "equilibrium" point gives

3 ~p+q+y y0

8$"~ ~ 8$'~sS"' BS"~8S'a=I r& fg~ mp a 0
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A. q'~ @Zest Decay B. Scattering Lengths

Experimentally, the width of this decay is very
small and all that can be said quantitatively" is
that it is less than the resolution width of the appa-
ratus —around 10 MeV. However, there are more
data available from angular-distribution measure-
ments. The best fit" to the Dalitz plot is given for
the matrix element

(7.1)

where a = -0.11+0.05 and the variable y is defined
in terms of the q kinetic energy T„and the decay
Q value as

(7.2)

This means that the quantities A and 8 introduced
in (5.10) should satisfy

The formulas for the I = 0 and I = 2 m~ scattering
lengths are (5.13) and (5.14). Taking the values of
o', o", and 8, as above enables us to evaluate
these quantities including the effects of corrections
to the "current-algebra" results. We find a, = 0.151
in units of inverse m' and a, =-0.038 in the same
units. The correction term to the "current-alge-
bra" term for a, is positive and about 10% of a,
while the correction terms for a, is positive and
only about 2% of a, in magnitude.

The quantities a', 0", and (9, were also previ-
ously the only unknown ones in the mK scattering-
length formulas (5.16) and (5.17). Taking the values
stated above for these objects gives the predictions

Qy/2 0.13 inverse m
' mass units and a3/2 -0.050

inverse n' mass units.

B/A = -0.615 (7 3)
C. 0 and o'Decays

in units of inverse m' masses.
The theoretical predictions for A and 8 are given

in (5.11') and (5.11"). The o mass appearing in
these equations is taken at the p mass (o' = 31.7)
from crude experimental indications. Then scale
invariance (Sec. VI} predicts o"= 166.5 and 0, = 90 .
(We note that slightly different choices of o' should

not make much difference in the results. ) Further-
more, scale invariance relates g, « to g „„by
(6.10). Thus the only unknowns appearing in (5.11')
and (5.11")are, say, g,.„„.and the value of the e

(scalar isovector particle) mass. We shall proceed
as follows: A value of e' will be assumed and the
value of g, «. wiQ be adjusted to fit the experimen-
tal result (7.3). Then the width will be predicted"
as listed in Table I.

Our results are evidently not in disagreement
with the present experimental situation; a better
experimental bound on I" would pin down the e mass
more closely, granted our assumptions.

For comparison we note that the "current-alge-
bra" result (5.10') predicts B/A = -1.9(m'} " [which

seems to disagree with (7.3)j and I' = 0.1 MeV.

TABLE I. Predicted width.

If we accept the values o' =31.7 (m, masses}',
o"=166.5, and 0, =90', we can estimate most of
these decays from the SPQ coupling constants
given in (4.7). We find I'(o- vm) = 830 MeV. Such
an extremely broad resonance is in rough qualita-
tive agreement with fits to the I=0 mn phase shifts.
Perhaps we should think of the 0 not as a resonance
in the conventional sense but as a way of describ-
ing the low-energy continuum.

The same situation holds for a'', even more so.
We find I (o'- wv) = 5500 MeV, even though its
mass is expected to be only about 1740 MeV. Fur-
thermore, I'(o'- KK) = 720 MeV. I'(o'- qq) is also
calculable from the results for g». in Sec. VII A

when the value of e' is decided upon.
The width estimations above followed just from a

first-order calculation of the SQQ vertices. It is
conceivable that sizeable corrections would arise
if higher-order diagrams were taken into account
(see also Ref. 19}.
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APPENDIX A

It may be helpful to show how formulas like the
ones we have obtained can be gotten by the more
usual approach of considering the current diver-
gences. For simplicity let us assume that V» is
given by (2.22). It is convenient to introduce the
matrices
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A, o 0 &, 0 0

A=I 0 A, 0, cy= 0 a2 0

0 0 A, 0 0 a3

(Al)

Now if either a "vector" or an "axial-vector" in-
finitesimal transformation is made, we have from
the Lagrangian equations of motion

Bg Bg

u'2q (0 I
8 (P,'), I v'(q)& =2 (A i+A2) ~

Equating (A10) and (All) gives

7+
A +A2

el+ Q2

(All)

which is just the mass formula in (3.8).
As an example of computing coupling constants

let us consider the zKv case. From (A3) we have

= -8,Tr(B„yBy+ B„SBS). (A2)

(V,')„=i v' 8 „K'+i (n, —n, )8„~"+ ~,

while from (A4),

(A 12)

If the transformation above is given by (2.11), we

define the nonef; matrix of vector currents, V„, by
W =+i Tr(B„V„Ev) so that we can identify

Up =i (Q 8
p P +S 8 ~s) .

8„(V,')„=2i (A, -A.,)x' . (A13)

Taking the matrix element of the divergence of both
sides of (A12) in lowest order gives

Using (2.5) and (Al) this becomes

Vq=i (Q Bqg+S 8 qs+[n, Bqs]).

On the other hand, 5J is also given by

Tr 6S =2Tr Sy A I'v ~

(A3)

I.(2P)(»,')] "{v{P')I8„(v,')„ I&'(P))

=i(A' — v') +i( n, —n, )q'

x [(2P,)(2P,')] ' '{v (P') I
~'

I K'(P)), (A14)

where q„=P„-P„'. Taking the matrix element of
both sides of (A13) gives

so that we have the "partial conservation" relation:

B„v„=-2i [s,A]. (A4) [(2P.)(2P.') ]"{v(P')
I 8„(V,'), I

ff'(P))

(A5)

When the transformation in (A2) is the "axial-vec-
tor" one of (2.13), we similarly define the nonet
matrix of axial-vector currents, P„, by
5g = +i Tr(B„P„E„). Then we find

P„=S 8 „P —P 8 „S+[n,8„$],

= 2i(A, -A, )[(2P,)(2P,)] '"{v-(P')
I

~'
I
Z'(P)) .

(A15)

Equating (A14) and (A15) gives for the vertex func-
tion in question

B„P„=2[A,p],+12i ' (detM detM —)x 1.
4

(A6)

[(»)(2P,')] "{v (P')
I

~'
I
vs'(P)) = —,"r',

+K

(P,'), =(ni+n2)Bpd i+ "
while (A7) gives

(A8)

The last term in (A6) may be expanded in a similar
way as (2.6) to give

B~P~= 2[A, f] ~
—24V4n~n2n~Tr(n Q) x 1+ '

(A7)

As an example of computing mass formulas, let us
consider the v' case. Equation (A5) gives

2 2 A Aq'+ 2 ' ', (A18)n3-e,

so that we may identify, with the help of (3.9)

K
gigf =

3
(A17)

In computing (A17) we used the ~-type vector cur-
rent. We could also use either the K-type or the
~-type axial-vector current. This gives three al-
ternative expressions:

8„(P,')„=2(A, +A, )P', .

Taking the matrix element of the divergence of
both sides of (A8) in lowest order gives

(A 9) ~2 ~2 K2 K2 K2 ~2
g'Kgr =

N3 —a 1 Q1 + Cy2 n 1+Cy3
(A 18)

v'2q, {OI 8„(P,')„ I v'(q)) = (n, +n, )v, '. (A 10)

Taking the matrix element of both sides of (A9)
gives

The identity of all three expressions in {A18)is
easily verified for the case when V,~ is given by
(2.22).

If the left-hand side of (A14) is parametrized in
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the usual way as

f, (P+P')p+f (P —P')q,

we find from the above the results

,1 K —w~

W2
' -

W2 (P-P')'+~''
f (0) E' —v'
f, (0)

APPENDIX 8

Coupling Constants of Arbitrary Order

It is straightforward to write down the relation between any vertex with n lines and vertices with (n —I)
lines,

Differentiating the basic equations (2.18}P times with respect to the scalar field, q times (q even) with
respect to the pseudoscalar fields, and evaluating the result at the equilibrium point gives

P+q+l p
} ay'~ ay" as"' as"& esrl rq ml mp 0 0

8p+qp gp+q y
ay&g. . . ey&q es"1. . . es"&. . . aS"» &~ ey&y. . . ay&& es"&. . . es& . . .aS"»

rl rq ml mp 0 rq ml mg mp 0

gp+q v gp+q y
eg] . e(f)'' ~ ~ ~ ep'~ as~ aS» ' ep'&' ' e(f& ' ' 'e) es& ' ' 'eS»

b rq

The mass formula (3.3}corresponds to q= 0, p = I in (B1).
Similarly, differentiating the "axial-vector" invariance equation (2.21) p times with respect to the scalar

field and q times (q odd) with respect to the pseudoscalar field results in

~P+q+l~ Bp" v
(n +o. }

0 m~ 0
a 5 ~ tl. . . g tqggfll. . . ggrtp g a ~ a g &l. . .g tq gg l.„.gyre~-l ag $+l. . .gg p g

rq ml mp 5 0 )=l l
'

rq ml" mg mi+l'' mp 5 0

~p+q y q ~p+qy
+ 5„ 0

eQ y aQ qes I aS l 1 aS f 1 aS' » ep w ey g a(ht2 lerhtj+1 erhtqes g aS» eSt)
1 rq 5-1 mp mg 0

gp+q y gp+q BV
'J ay„'~" ey& ay'~'~". eg as"~ "as"»as„', ' y'~" ey"as"~ "as"»

(B2)

The choices (p = 0, q = 1), (p = 1, q = 1), and (p = 0, q = 3) correspond to our formulas (3.6), (4.2), and (5.2),
respectively.

Note that the left-hand side of (BI) vanishes for a = b while the right-hand side of (B2) contains additional
a Priori unknown quantities in this case.

APPENDIX C

Energy-Momentum Tensor

The energy-momentum tensor 8„, computed from
the I agr'angian (2.1) in the ordinary way does not
satisfy the tracelessness condition 0» = 0 when

V0 = V~~ = 0. This has led to the introduction" of a
"new, improved" 9„,which has the same physical
consequences as the old one but which does satisfy
tracelessness in the appropriate limit.

Here we use the fact that the equations of motion
of a system remain unchanged when we add a four-
divergence to the Lagrangian density. %Ye define a

"new, improved" Lagrangian such that when 8„, is
computed in the ordhnayy zgay, it will be the "new,
improved" 9„„.Thos we add a four-divergence to
(2.1) to get

g = --,'Tr(a, y e„y) ——,'Tr(e„Sa„S)
—V+-,' e„Tr(pep Q + Se»S)

= —v'Tr(a„y a„y) —v~Tr(a»S e„S)
—V+ —', Tr($ Q + SGS),

where in the second step we have shown that it is
possible to regard g as a function of the fields, the
derivatives of the fields, and the d'Alembertians
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of the fields, i.e.,
Z=C(y, a„y, y;S, a„S,aS). (C2)

For the Lagrangian (Cl), Eqs. (C3) yield, as ex-
pected,

The equations of motion for a Lagrangian of the
form (C2) follow from a variational principle and
are

&V &V
O(f) =—S=-

ap' aS
' (C4)

BZ

ap " a(a„p) a

ag Bg
+ -=0.

aS " a(a„S) a S
(C3)

The (possibily unsymmetrical) energy-momentum
tensor T~„ is derived from (C2} in the ordinary way

by requiring that S have no explicit dependence on
the space-time coordinates, i.e., aZ/ax„=0. This
yields

(C5)

Rewriting (C5) with the help of (C3) gives

d 82 ~Z ~C 8Z 8$ 8Z

(C6)

where it is also shown how T„, is to be identified. For the Lagrangian (C1), computation of T„, according
to (C6) gives a result symmetrical on (p- v} interchange, so that T„, is the same as 8„,here. We have
then

8„„=-V6„„+-,' Tr[-6„„a~pa p P4+a~ya, p 2/a„-a, /+25~„$ p —a„„a~Sa~S+4a~Sa„S—2Sa„a„S+26„„SOS].

(cv)

The 4-trace of this expression is, using the equations of motion (C3),
4

8„„=-4V + Tr(P / +SOS)

&V 8V= -4V+Tr —+S—
ay as (C8)

It is obvious that 9„=0for V=0, so that 8„, is certainly qualified as a "new improved" tensor. Further-
more, when V is scale-invariant (i.e., a homogeneous function of order four in Q and S}, 8» also vanishes
by Euler's theorem on homogeneous functions. In that event, (C8) is the same as (6.2) in the text. On the
other hand, if we write V= V, + V» where only V, is scale-invariant, we have the relation

e„„=Tr +S ' —4V» .a VsB a Vs~ (ce)

Now let us consider the question as to how relations like the ones given in Sec. VI of the text can be de-
rived from matrix elements of the energy-momentum tensor. The method is an analog of the method used
in Appendix A to derive consequences of broken chiral symmetry from current divergences. In that case
the matrix element of the divergence of a current as computed from the direct definition of the current in
terms of physical fields [e.g. , (A5)] was equated to the matrix element of the same current divergence as
computed in terms of V,B, e.g. , (A6). In the present case, the 4-trace 8» is the analog of the current di-
vergence. The direct definition of 8„, in terms of the physical fields is, from (C7),

+ VTr[-6„„a,pa, p+4a„pa„p -2/a„a„/+26„, $ p —6„,a,Sa,S+4a„Sa,S —2Sa„a„S+26„„SS]

+ —Tr(6& o.aS —o. a„a S), (C10)
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where o. is the matrix introduced in (Al) of Appendix A. From (Clo) the direct definition of e» is

»» ---4 (v), +-,' Q ', , y'. y'. +, , s'.s.')+ +Tr(y ) +sc8)+Tr(»us). (C11)

On the other hand, the expression for e„„when V~B is given by (2.22) is found from (C9) to be"

e„„=6Tr(a ~) + 6Tr(~S), (C12)

where the matrix A is also defined in (Al) of Appendix A. We evaluate the matrix element v'2q, (0~e» ~S,(q))
from (C12) to give

))'2q, (o
l e„ I

s', (q)) = 6A, (0 = 1, 2, 3) . (C13)

We also evaluate to lowest order this same matrix element from (Cll), noting that only the last term on
the right-hand side, which may be written as

~ ~ ~
g 2V

a &S &pa Sb
a=1 b a 0

contributes. Then we get
3

Q 2V
v'2 q, (O

~ e» ~

S",(q)) = Q o.. ())) =1,2, 3) . (C 14)

Equating (C13) and (C14) results in (6.3) of the text when V„ is given by (2.22).
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