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a point outside the integration region. However, a closer
examination reveals that (t& + I;„) reaches its maximum at
a point in which neither t, nor t„ is stationary. It is
therefore possible that t& —t„undergoes sizable varia-
tions in the integration region in which (t, + t„) stays
close to its maximum value.

~These contributions were lumped in the central dis-
tribution in Ref. 2. We have considered them separately
in this paper for the following reasons: (a) In Ref. 2 the
distribution 2, e. g. , was considered as the limit of 3,
where s& I&, and the correspondent extrapolation was
performed in 0&„(s&); this is certainly a dangerous pro-
cedure (the extreme case of the distribution 48 was
computed in the old scheme extrapolating the pp cross
section at a value of the c.m. energy equal to m„).
(b) In the reasonable assumption that the baryon exchange
does not extend more than three steps from the end, we
can suppress the need of using the pp annihilation cross
section as an input. (c) In the particular problem under
examination, the charge distribution plays a very impor-
tant role. In the present case of an incoming m, assum-
ing I= 1 exchanges to be dominant, the leading 7r (position
1) will be a m an average of 50% of the time and a 7t 50%
of the time; the pions emitted in the position 2 are also
rather charge asymmetric (50% x, 25% 7l', 25% 7t.+).
However, the particles emitted from the chain more than
two steps away from the ends have to a large extent "lost
memory" of the incoming one, and can be reasonably
considered charge symmetric .

We assume nucleon exchange to be dominant over 6 ex-
change on the basis of the experimentally large x p (as
compared to the ~ p) backward peak and of the charge
asymmetry in pp annihilation into 7t. x at low energy.

For the meson trajectory we remark that an elementary
m exchange would do just as well; what is really needed
to get the asymmetry is a rapid decrease in the momen-
tum transfers.

~The existence of the forward-backward asymmetry and
its size do not depend critically on any of these assump-
tions .

See also A. Ajduk, L. Michejda, and W. Wojcik, Acta
Phys. Polon. A37, 285 (1970).

~~Our distributions have a maximum close to pl ——0, and
therefore a definition in terms of slopes at pz =0 is
meaningless .

J.W. Elbert, A. R. Erwin, W. D. Walker, and J. W.
Waters, Nucl. Phys. B19, 85 (1970).

These features are more easily understood in terms of
the rapidity distribution. The central particles 3 contrib-
ute to do/du an approximately constant central plateau,
the length of which increases with lns whereas the height
remains unchanged. The (asymmetric) end effects get
more and more displaced in opposite directions with in-
creasing s, and keep their shape unchanged. Therefore,
the displacement required to go from the center-of-mass
frame (which is the symmetry frame of the central pla-
teau) to a frame in which the asymmetry of the central
part compensates the asymmetry of the end effects is
energy independent. On the contrary, to increase the
number of particles at fixed s corresponds to increasing
the height of the central contribution. Therefore, the
larger the number of particles at a given s, the smaller
the displacement in se (and correspondingly the P of the
Lorentz transformation) required to compensate for the
asymmetry of the end effects. The author is very grate-
ful to James Bjorken for a conversation on this point.
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We summarize several inequalities for the neutron and proton inelastic structure functions
W2(v, Q ) that must be satisfied if the partons are identified with quarks. Some of these in-
equalities provide us with very useful constraint equations for the P(N) function of the parton
model. Due to lack of sufficient data, it is not certain at present if all the inequalities are
satisfied. The importance of these inequalities lies in the fact that if any of them are con-
firmed not to satisfy the experimental data, the concept of individual quark-parton associa-
tion has to be abandoned.

I. INTRODUCTION AND DATA

We discuss here a few inequalities for the inelas-
tic neutron and proton structure functions that fol-
low from the quark-parton concepts" of the inelas-
tic lepton-nucleon scattering and the isodoublet
character of the nucleons.

First let us summarize the experimental observa-
tions on the neutron data' that we shall require.

(a) D/H -1= W,„/W» data are consistent (within
errors) with a single function of a. Further,
vW, „/vW» starts from about 0.5 at u= 1.5 and in-
creases gradually towards -0.95 at u = 12.

(b) (2 —D/H) (vW»)= vW» —vW, „ is roughly consis-
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tent with a function of ro.

(c) Experimental data indicate that f
1

fN(x)dx = 1 .
0

(2.3)
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—=0.72 +0.05,
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Further, if the momentum distribution of the N

partons is symmetric, which we shall assume here,
then
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1 (d

(1.2)

(1.3)

(1.4)

1 1
xf„(x)dx =N .

r, Q,. ') can be written aa

Q]' = I;''+ —' F; 2+I,'7,

(2.4)

Here F(u&) = vW, (v, Q') in the scaling limit.
There are possibilities of large errors in the

data, especially for the neutron data. It has been
suggested from an analysis of the data that

vW» —vW, „=0.03(12/(b))"

(2.5)

where I;' is the third component of isotopic spin
and Y; is the hypercharge of the i th parton. Now

the fact that neutron and proton form an isodoublet
implies that

for ~~ 12, where u&0. (1.5)

Since both the neutron and proton data roughly
obey scale invariance, the parton concept seems
to be quite useful for the inelastic lepton-nucleon
scattering. It is therefore worthwhile to investi-
gate what ean be learned from a comparison of the
inelastic e-P and e-n data. from such models. It is
known that an understanding of the discrepancy be-
tween the e-P and e-n data will give us some in-
sight into the nucleon structure relevant to the
deep-inelastic phenomena. With this object in
mind, we shall discuss here several inequalities
which can test whether partons can be identified
with quarks.

II. PARTON-MODEL FORMULAS

From the parton-model considerations, it can
be derived' that the inelastic structure function

W, (v, fb)') of the lepton-nucleon scattering is given

by

etc(e, Q')-Zt'(N) ZQ,.')xf„(x)=X(x),
N 1

(2.1)

where x=@'/2Mv= 1/(d. Here P(N) is the probability
of finding N partons in the nucleon; (g,"Q,') is the
average value of the sum of the squared charges of
the partons in a configuration of N partons, and

f„(x) is the probability density function for finding
a parton with longitudinal fraction x of the nucleon's
four -momentum. Note that

(2.6)

III. INEQUALITIES

A. Inequalities for vV, (v, Q )=F(~)

Two sum rules that follow immediately" from the

parton-model formula are

=mean square charge per parton

(3.1)

pg, —= P N Q2 (3.2')

We shall discuss here inequalities based on the
assumption that partons are quarks. For this case
we note that (I')'+-,' 1" is —,', for each of (P, %, (Y',

and K quarks, and it is -'for A. and ~ quarks. Simi-
larly, I,I' is —,

' for t and 6' quarks, --,' for X and
5L quarks, and zero for X and X quarks.

Q P(N) =1

and

(2.2) Several useful inequalities can be derived from
these sum rules by exploiting the maximum and

minimum values of Q;
' for the quarks. We observe
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that (g"Q; ') satisf ies the following bounds:

N

Q."l (&-~)- ZQ )-Q' ~ ';(&-w,
1

(3.3)

(1/N) =0.22 for N, =3

=0.12 for N, =5

0.08 for No=7 (3.6)

—'+ —', (1/N) & F~(&ar) —,- -' ——,'(1/N)
1

(3 4)

for the proton, and

-'+ -'(1/N) - F"(~) - —'—--'(1/N)
9 3 (d1

(3.5)

for the neutron. The upper bounds correspond to
assuming all the partons beyond the first three as
6' or 6' quarks while the lower bounds correspond
to assuming that there are no 6' and P quarks in
the cloud. We have made this oversimplification
to obtain the bounds. However, they furnish us
with some useful information. For example, these
inequalities can be turned around to produce an
inequality for (1/N) and hence a constraint equa, -
tion for P(N). Taking the experimental data for
the proton, we find that (1/N) & 0.1. Thus Eqs.
(3.4) and (3.5) will put a, severe constraint on the
parameters of the P(N) function. We shall illus-
trate this by the following example. Suppose P(N)
=const/N'; then, for the Bjorken-Paschos' mode], ,

where Q,' is equal to 1 for proton and -', for neutron.
Thus if partons are quarks, we must have

where N, is the minimum number of partons al-
lowed in the model. Therefore only N, = 7 models
should be allowed. However, we shall show later
that large-N, (N, ) 5) models may not satisfy an in-
equality Eq. (3.16) and thus these kinds of models
should be rejected. In Fig. 1 we plot (1/N) values
for several P(N) functions which display clearly
the effect of these inequalities.

From the second sum rule we obtain an inequal-
ity,

' + ' (N) & F~(e) &', (N—)--,'.
1

(3.7)

for the neutron. (3.8)

The left-hand side evaluated for the proton up to
+=20 is only 0.72, but the trend of the data is not
conclusive enough to make any definite statement

A similar relation can be derived for the neutron.
It says that if the integral diverges, then (N), the
expectation value of N, must also diverge and vice
versa. Also, since for quark-parton models there
must have at least three quarks, we obtain

f d(dF(e)—) 1 for the proton
1 (d

0.3-
N

0.2-

(N) N =5

FIG. 1. (1/N) values are plotted for
some P(N) functions given by P(N)
=const/[(N +n)(N + P)J, with n and P as
parameters. N is given by Np Np+2,
Np+4, . . . , ~. Note that only certain sets
of values ofNp, m, and P are allowed to
satisfy the requirement (1/N) ~ 0.1.
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regarding these inequalities.
(N) should be directly related to the average mul-

tiplicity in hadron collisions. It is usually believed
that the multiplicities will become infinite (-lns) at
infinite incident energies. However, Eq. (3.7) gives
us an upper bound for (N). Since the parton concept
of the hadrons is independent of lepton-hadron and
hadron-hadron scattering, this bound for (N) will
be very useful in settling the question whether the
average multiplicity can be finite even when the in-
cident energy approaches infinity.

B. Inequalities for F~(u) +F"(~)

Now utilizing the values of (I,')'+-,'(Y, )' for the
quarks and using a similar procedure to that of
Eq. (3.3), we find that

-', +(1/N)
d(d

(vW»+ vW, „)—,& —,
' . (3.10)

If there are no strange quarks (A' s), this integral
would be exactly —,', and so this integral gives us a
measure of the number of strange quarks present
in the nucleon. Experimentally, the integral for ~
up to 12 is -0.24, satisfying the inequality quite
well, and indicating only that there must be a large
number of X and X quarks in a strict quark-parton
picture of the nucleon.

Bjorken' derived a constant-q' inequality which
can be presented as

For the sum of the neutron and proton structure
functions the I;'Y; term cancels out, and we obtain

N

vW»+ vW, „=2ZP(N) Z[(I,')'+ —,'y ] xf„(x). (3.9)
N 1

must be at least three quarks in a nucleon, we ob-
tain the minimum requirement

de
(vW» + v W, „)—~

—,
' . (3.14)

This is a much stronger result than Bjorken's in-
equality, but, of course, this is less general.
Experimentally, the integral is not known exactly,
but the present indications are that it is about
1.25+ j,o + la, rge errors.

If the three-quark configuration of the partons is
rejected due to its main contributions to elastic
and quasielastic scattering, then quark-parton
models must start with five quarks. In that case,

(vW +vW ) ~ ~ (3.15)

00

3 &N, & ,
' (vW»-+ vW, „)——1

1
(3.16)

We stressed before' that the minimum number of
partons plays an important role in the parton pic-
ture of the inelastic scattering. In our previous
work we fixed N, to be 4 by looking at the data near
~-1. This inequality will now give us more ideas
in fixing N, for a quark-parton model.

From the trend of the data it seems that this in-
equality may not be satisfied. In that case strict
quark-parton models should always start with three
quarks. Equation (3.14), then, becomes very cru-
cial and must be satisfied in order to keep the
quark-parton identification. In other words, Eq.
(3.13) enables us to write an inequality for the min-
imum number of partons N, , namely,

(vW»+ vW, „)—~ —', for constant q'. (3.11)

For the quark-parton models, since one knows ex-
actly what the constituents are, one can improve on
this kind of inequality. In the parton picture,

d(d
(vW»+ vW, „)—

1

C. Some Other Inequalities

W,„2ZP(N)(Z,""F*). f.( )

vW» ZP(N)(Z Q, ') f„( )

(3.17)

or

The ratio of the neutron and proton structure
functions' can be written as

Therefore,

=2ZP(N) Zl(&l)'+-'y '] (3»)
N 1 Z P(N)xf~(x) ~V 2n

ZP(N)(N- ,')xf„(x)—
00

1+ -', (N) & (vW»+ vW, „)—& —,(N).
1

(3.13)

This inequality as well as the inequality (3.7) will
have important consequences for those P(N) func-
tions where (N) is finite. For a Poisson distribu-
tion given by P(N) = const a /N!, for example,
(N) =a+N, P(N, ), which is finite. Now, since there

Z P(N)xf ~(x)&4-30
Z P(N)(N+ 6)xf„(x)

(3.18)

Experimentally, vW, „/vW» is greater than 0.25,
satisfying the lower bound, but unless we know
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p(N) and f~(x) explicitly this inequality cannot be
verified. However, we can derive an integrated
inequality from here. We note that

vR»

Q P(X)(N+ 6)xf„(x)
(3.19)

Ther eforeq

,'vW»+—,g P(N)xf, (x) - vw, „-4v W„—", gP(&)xf (x)
N

N

(3.20)

Integl atlng Eq. (3.20), we obtain our final inequal-
ity, '

(vW» ——,vW, )—~ —.» ~
~ ~ ~

~ ~~ I
1

» + 2' (3.21)

In deriving' this inequality, we have used exten-
sively the quark character of the parton, while for
the sum and difference of the neutron and proton
structure functions, the I, y; and (I,')'+-," I" terms
were, respectively, cancelled out." From the ex-
perimental point of view, we can make an estimate
of this integral as follows:

(vW»- —,
'

vW, „)—= (vW»--,' vW, „)—+ —, (vW»- vW, „)—+ —, vW» —= 0.6. (3.22)

So this sum rule is apparently not satisfied by the
data, although we cannot be certain about it at
present.

lV. CONCLUSroN

In this paper we have discussed several inequali-
ties for the inelastic neutron and proton structure
functions that must be satisfied if the partons are
identified as quarks. These inequalities should be
valid for all quark-parton models. The basic in-
gredients in deriving these inequalities had been
the I' and F properties of the quarks and the iso-
doublet nature of the nucleons. The naive deriva-
tion of these inequalities leads us to feel that these
are weak bounds and perhaps much strongeI bounds
can be derived. However, some of these inequal-
ities are of considerable interest because they pro-
vide us information about the P(P) function of the
parton model and also because it is not certain at
present whether these are all satisfied by the data.
The beauty of these inequalities lies in the fact that
if any of these inequalities is not satisfiecI, the in-
dividual quark-parton association picture must be

rejected. At least these inequalities will serve, at
present, as guidelines for numerical estimates of
the structure functions.

Added n«e. I.lewellyn Smith has kindly pointed
out to the author some similar work by him" and
by Gourdin. " The bound given in Eq. (3.8) can be
found in Llewellyn Smith's paper, Eq. (16).
communicated to the author that he has recently
been able to derive the upper bound in Eq (3.10). in
the gluon model and the lower bound in Eq. (3.10)
in a field-theory model. Gourdin has independently
derived the upper bound in Eq. (3.10). He mainly
discusses the neutrino cross sections, and from
the neutrino data (neglecting errors) he concludes
that (I/N)» 0.09, whereas our conclusion from e-p
data is that (I/At) ~ 0.1. Thus improved data on vP
and ej scattering can critically test the quark-par-
ton concept of the inelastic scattering.
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——+ ) (1/N) = [F~(~) —F"( )] (1/N) (b)

———(N) [F ((d) -F"(( )]— —-+
&

(N) . (c)
leo

The A, and A. quarks have I3Y value zero and so these ex-
pressions give us an overestimation, thus making the
bounds too weak.
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~ (N)+ ~ F"(cu)——4 (N) —
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We study the model of nine scalar and nine pseudoscalar fields interacting by means of the
most general nonderivative chiral SU(3)&&SU(3) invariant and any particular symmetry-break-
ing term. Two basic "generating" equations which express the complete content of chiral
symmetry are derived. The masses and coupling constants of arbitrary order for this model
are simply found by differentiating the "generating" equations an arbitrary number of times
and using an equation which expresses the stability of the "ground" state. In this way, pre-
vious results on this model can be easily recaptured and a systematic framework for the in-
vestigation of different symmetry-breaking terms is provided. Numerical estimates are
made for scalar-meson widths, 7tg and 7' scattering lengths, and g' g2x. decays. The con-
sequences of imposing scale invariance on the invariant part of the interaction are also inves-
tigated by writing down a scale invariance "generating equation. " Finally, we discuss the re-
lation between our approach and the method of using the divergences of currents and trace of
the energy-momentum tensor.

1. INTRODUCTION

The subject of chiral SU(3)xSU(3) symmetry
breaking' has recently been one of the most active-
ly pursued branches of strong-interaction theory.
There is great interest in this field not only because
it searches for a way to estimate corrections to the
interesting "current-algebra" results but also be-
cause it is hoped that the answer to the symmetry-
breaking problem will elucidate some deep mys-
teries of elementary-particle structure.

Now, once we depart from the exact symmetry
limit of any theory, a large number of alternatives
usually present themselves. Therefore, in order
not to get lost in a maze of complications, it is
normally desirable to study a relatively simple mod-
el which contains (it is hoped) the key features of
the problem. For the case of SU(3)xSU(3) breaking,
the model which is generally taken as a prototype
is the so-called "SU(3) o model"' which contains

nine pseudoscalar and nine scalar fields transform-
ing linearly under the chiral SU(3)xSU(3) group of
transformations.

The advantage of the SU(3) o model over the quark-
model approach to symmetry breaking (as exempli-
fied by the recent work of Gell-Mann, Oakes, and
Renner' and its descendants) is that everything is
explicit in the case of the o model so that results
can be obtained relatively easily. Otherwise the
structure of the two models, as we shall illustrate,
is very similar. One example of the practical ad-
vantage of the o model lies in the specification of
the "ground state" or "vacuum state" of the system.
In the 0-model approach the symmetry breaking of
the "vacuum" is correlated to the choice of sym-
metry-breaking interaction by means of a "stabil-
ity" or "extremum" equation. On the other hand,
in the quark-model approach this physical condi-
tion is more difficult to enforce and often it is just
assumed that the "vacuum" has a certain symmetry


