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We argue that it is not meaningful to discuss the vector-dominance model using the lan-
guage of longitudinal projections. We find that a more suitable language for vector domi-
nance is in terms of electric and magnetic couplings rather than in terms of longitudinal and
transverse ones, We advocate the use only of the off-shell invariant amplitudes (“Ball am-
plitudes”). The experimental failure of the model for polarized photoproduction of pions then
implies either that some of the Ball amplitudes require subtractions in k2, the mass of the
current, or that states other than p, w, and ¢ also couple to the electromagnetic current.

I. INTRODUCTION

The vector-dominance model (VDM) has served
as a good qualitative guide over the last ten years
in its applications to processes involving photons
and vector mesons. There seems to be a large
body of truth in the model, far too much for it to
be coincidental. Recently however, a disturbing
number of “failures” have been recorded! Apart
from doubts (which have now almost disappeared)
as to the numerical value of the direct coupling,
Zyv, the two major difficulties may broadly be de-
scribed as the frame problem and the behavior of
form factors as #*—~ —», where k? is the mass of
the electromagnetic current. While we make no
attempt here to treat the nucleon form factor, we
note that applying vector dominance in this region
requires a large extrapolation in 2. In this work
we shall advocate that the other major difficulty,
namely the failure of VDM in polarized photopro-
duction of pions, is in a sense related to its failure
in the form-factor region; i.e., we may say that
even though we do not know the reason for the ob-
served behavior of the form factors, whatever that
reason is, it also influences the off-shell Ball in-
variants of photoproduction. This may then mani-
fest itself in some of the Ball amplitudes needing
subtractions in %%, or through contributions of
states other than p, w, and ¢ to the ¥* dispersion
relations. The aim of this paper is actually very
limited. We are unable to predict when subtrac-
tions may be required, and have no hope of calcu-
lating the subtraction constants. Like the form-
factor problem this requires knowledge of hadron
dynamics. We can only use the experimental data
to infer that they may be required. Thus we do not
set out to fit the polarized photoproduction data to
those of 7~p- p°z. We endeavor to show, however,
that this failure is not due to a nonuniqueness in
the choice of frame, and that though the data still
represent a challenge to VDM, we cannot meet this
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challenge by playing around with frames.

By using the off-shell Ball invariants we shall
(like many previous authors) automatically recov-
er the helicity-frame predictions, but only in the
limit as s—~. For small s there are still pre-
dictions, but they cannot be expressed in terms of
a frame at all. As pointed out by Cho and Sakurai?
and also (though in a slightly different context) by
Mannheim and Nussinov,® we even get more infor-
mation this way than by using a longitudinal projec-
tion procedure, i.e., we are also able to relate the
helicity-zero vector-meson amplitudes to those of
helicity one. Thus we reject the impression that
has become somewhat prevalent in the literature,
namely that the choice of frame is itself a dynami-
cal problem, and suggest that the two major diffi-
culties mentioned above are in fact related and to-
gether provide a single dynamical problem for
VDM. We are well aware that most of the argu-
ments we shall present are known or have been de-
rived as “back of envelope” calculations. The only
point of this paper is where we put the emphasis.

We aim to show that it is kinematically incorrect
to apply VDM in any frame at all. We then show
that none of the kinematical difficulties obtain if we
apply VDM to the off-shell invariant amplitudes
(Ball amplitudes®). These should not be confused
with the amplitudes for electroproduction (FNW
amplitudes®) or the on-shell photoproduction ampli-
tudes (CGLN amplitudes®). Though we find that this
procedure is kinematically consistent, we leave
open completely the question of whether it is dy-
namically correct. The Ball amplitudes are known
to be free of kinematic singularities in k*(which is
not the case for the FNW amplitudes) and hence we
can write dispersion relations for them. Whether
or not they are smooth in %%, and whether or not
they are dominated by the vector-meson poles, we
cannot a priovi say. This is why vector dominance
is still only a model.

In Sec. II, we discuss the nature of the frame
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problem from the viewpoint of Lorentz invariance,
little groups, parity, and crossing. In Sec. III, we
examine a “yes-frame” philosophy for the process-
es yN— 1N, yN- VN, and yN- 74, and show that
the only genuine breakdown is in polarized yN-— nN.
Finally in Sec. IV, we adopt a “no-frame” philoso-
phy and discuss the nature of the predictions we
can make using the invariant amplitudes. We find
a description in terms of electric and magnetic
couplings to be the most convenient one.

II. STATEMENT OF THE PROBLEM

A physical photon has two degrees of freedom,
whereas a vector meson has three. Comparisons
in which both the photon and the vector meson are
on-shell in their respective processes thus require
a commitment as to which degrees of freedom we
compare. This problem never arises in “form-fac-
tor physics,” since here the current is off-shell,
and hence has three degrees of freedom also.
There is a gauge-invariance problem and this has
been resolved by the current-field identity of Kroll,
Lee, and Zumino? Further, we showed in Ref. 3
how current conservation and smoothness of the
invariants in %2 lead to successful predictions for
3-point functions when both the V and y are respec-
tively on-shell without the need to specify a frame.
For the 3-point function, k? is the only dynamical
variable, so the only possibility is to disperse in
k2. It is instructive for the subsequent study of the
4-point function that in the above case VDM for in-
variants did not yield helicity-frame VDM. We re-
turn to this point again in Sec. IV.

The physical photon has no rest frame, and so
for it the natural quantization axis is the direction
of motion. In fact, gauge invariance demands the
use of the helicity basis for a massless particle,
with its helicity being a Lorentz invariant® The
helicity of a massive particle however is not a
Lorentz invariant, as it can always be suitably
Lorentz-transformed to its rest frame, where we
are free to pick any axis we like to quantize the
states. These states then mix under rotations. The
choice of quantization axis is arbitrary and re-
quires some additional direction (such as the line
of flight of some second particle), and, unlike the
photon case, this direction bears no reference to
the massive particle itself. All directions are
equivalent and @ priori we can choose any one we
like. This is in fact the frame problem, and vari-
ous authors have exploited this ambiguity like an
adjustable free parameter so as to fit the data. We
shall discuss such a purely phenomenological ap-
proach in more detail in Sec. III. The current the-
oretical understanding of the frame ambiguity is
that since all frames are in principle equally good,

we need more information (possibly dynamical) in
order to select the best one. We prefer to take the
view that all frames are equally bad, and that since
there is no preferred frame, there is no frame at
all; i.e. there is no way of formulating VDM for any
set of transversely polarized states in a Lorentz-
invariant manner.

The second kinematic difficulty is provided when
we try to continue from k%=m,? to £2=0. The little
group for massive particles is R;, whereas that of
a photon is noncompact £,. So even if we pick a
frame and choose two out of a set of three polariza-
tion states, we are still faced with the task of con-
tinuing a compact group into a noncompact one.
This is of course a far more serious problem than
the ambiguity in picking the frame.

Our third kinematic objection is provided by the
demands of parity. Though we have stated that a
physical photon has two degrees of freedom, strict-
ly speaking the little group only provides us with
one. For the other helicity state we need the parity
transformation (cf. the two-component neutrino the-
ory) as it is not possible to connect the +1 helicity
states of a photon by a restricted Lorentz trans-
formation. However, for massive particles the
eigenvalue of the helicity operator (or, for that
matter, of any other basis operator) may be re-
versed by an ordinary 180° rotation in the rest
frame. Thus the comparison between 1 states of
massive and massless particles is not immediate.

We have also noted in a previous publication®
that massive and massless particles have different
crossing properties. These arise because a trans-
verse vector meson acquires a longitudinal compo-
nent in the s-/ crossing. Consequently the kine-
matic singularities of both the s- and {-channel
helicity amplitudes at the respective s- and f-chan-
nel thresholds and pseudothresholds are not contin-
uous in the limit m,%~ 0. We took this into account
in Ref. 9 by proposing VDM for the kinematic sin-
gularity free (KSF) amplitudes, and found that we
could then maintain consistency with crossing.
Thus for calculations in which VDM is coupled to
the Regge-pole model it is necessary to use the
t-channel KSF amplitudes. At large s the s-chan-
nel thresholds and pseudothresholds are far away,
and our construction of Ref. 9 actually only showed
that it is necessary to use the ¢(-channel KSF am-
plitudes, if we start with the assumption that it is
legitimate to apply VDM to the full helicity ampli-
tudes in the s channel. Thus the KSF prescription
is also a helicity-frame prescription, and not a
Jackson-frame prescription as claimed in Ref. 10.

As we noted above, the frame problem is the am-
biguity in picking the quantization axis, and arises
only because the vector meson has a rest frame.
As such, this ambiguity is independent of the mo-
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mentum of the vector meson in the process in which
it is compared to a photon, and is independent of
how many other particles are involved in the scat-
tering. It is unfortunate that the major attention to
VDM in the literature has been to 4-point functions
in which the meson is relativistic. Then claims
for the helicity frame in dynamical models will
always be enhanced (as we shall see in Sec. IV).
We already find® for the 3-point function that there
is no preferred frame, and here the vector meson
cannot be moving relativistically. Further there
is as yet no prescription for the n-point function in
which a slow vector meson is emitted. From the
point of view of VDM, it is hard to understand why
the momenta and dynamical properties of all the
other particles in the process should be relevant
to an ambiguity which exists independently of them,
especially if the vector meson couples universally
to matter.

II. YES-FRAME PHILOSOPHY

To make an experimental comparison we may
compare the reaction 7~p - p° to the reactions
yp—1"n and yn— 1-p. We define o, (o) as the sum
of the differential cross sections for the last two
above reactions for incoming photons polarized
perpendicular (parallel) to the production plane.
Using time-reversal invariance and p dominance,
we then have

01 =gy2lpyy +0y-1Jo(mp~ pn),

(] :g-ypz[ pu—-pl_l]d(‘n_P—'pon), (1)
o(unpolarized) =g, =3(0, +0y),

where the frame of the density matrix of the out-
going meson has to be prescribed. Apart from the
helicity frame, there is also in the literature an-
other popular choice, the Donohue-Hogaasen frame
(DH), ** advocated by Bialas and Zalewski!® This
frame is such that in the new basis, Rep,,=0.
When the predictions were first tested a few years
ago a remarkable fact was that the prediction for
0,, Worked in the helicity frame over a wide range
of s and ¢ using the value of ng given by the col-
liding-beam experiments.!'** We now use the word
remarkable because of historical hindsight, since
the predictions for o, and o; were later found to
fail. This then prompted the search for a frame.
Diebold and Poirier! have noted that the prediction
for o, fails for any quantization axis in the scatter-
ing plane (o, is invariant to rotations about the y
axis, so it is untouched by the DH rotation). Mann-
heim and Maor'® made the proposal to take the
quantization axis out of the plane and use the y axis,
the transversity frame. It is amusing to note that
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Egs. (1) are then satisfied, though we regard this
as-coincidental.

If the present data do not change, then the exper-
imental status of Egs. (1) is not too encouraging.

A search for other 7"~ partial waves in the p re-
gion in the process 7~ p— 7' 7"n is being conducted.
Dar’® has noted that such waves would mainly affect
pf_, and hence not spoil the good agreement of o, .
It is perhaps encouraging to note that in the process
yp—~ m* 17p there definitely are other partial waves
in the p mass region”

Before conceding Egs. (1) as an experimental
failure we present two possible escape clauses (for
highly optimistic readers). The first relies on du-
ality. According to duality the p and A bands in
7"p- 7" 71" n are dual. Thus to parametrize the Da-
litz plot as an incoherent sum of Breit-Wigner res-
onances may commit double counting and hence af-
fect the right-hand side of Eqs. (1). Unfortunately,
hadron physics has not yet reached the state where
we can make a déefinitive statement on this sub-
ject.® The other way out relies on our knowledge
of soft-pion physics. We have to correct to hard
pions when we study processes in which the pions
have high momenta. So maybe we should also have
to make a “hard-p” correction, especially if the
meson is relativistic. Again we cannot make a de-
finitive (i.e., model-independent) statement.

Though polarized photoproduction of pions is the
most studied process experimentally, there are a
few other examples we can discuss as well. They
are yN—- VN and yN—~7nA. In yN-— VN we connect
first to VN— VN and then to 7N- 7N, using the
quark model or some symmetry scheme. For un-
polarized photons the predictions are satisfied very
well in the helicity frame for cross sections!® The
density matrix of the outgoing V is also well fitted
in both unpolarized® and polarized®® photoproduc-
tion. As noted by Gilman e/ al.?' and by Mann-
heim,?? diffraction scattering conserves s-channel
helicity in the reactions yN- VN, VN- VN, and
7N — 7N to leading order in s. Consequently there
is only one (helicity-independent) amplitude com-
mon to the whole three processes, which then has
to be the amplitude for VDM. Thus for diffraction
there is anyway no need to look for a frame, and
the extension to polarized photons gives no new in-
formation and just has to work. Finally for yN — 1A
we connect to VN— 7A and then to N~ VA, an s-u
crossing property which depends on the signature
of the exchanged Regge trajectories. Using the
KSF prescription, Gotsman'® was able to incorpo-
rate this property correctly, and so a helicity-
frame prediction again works for the unpolarized
data he analyzed. There have as yet been no tests
for polarized yN - 7A or for photoproduction with
polarized targets. If the situation in yN-— 7N is



genuine, then these other tests will presumably
also fail.

IV. NO-FRAME PHILOSOPHY

Our program now is to study VDM for invariants
to see whether we can understand the above suc-
cesses and failures from that standpoint. Our phi-
losophy is that we have to make a continuation from
k%=m,? to k?=0 and the only way in which we can
meaningfully do this is by using nff-shell ampli-
tudes and appealing to current conservation. We
shall begin by reformulating a study of A, - p7
which we made in Ref. 3. We write the vertex
A, ~J,mas

<A1'Jp 'U> =€£1G5(k2)
+[(eA1- R)gy = (k- @)ef1]Gy (k)
+(€A1’k)ku Goff(kz), (2)

where €1 is the polarization vector of the A, with
momentum ¢, and mass m, and k, is the momen-
tum of the current. We have introduced the “elec-
tric” and “magnetic” form factors G(k?) and

G, (k?) and a third form factor G, (k2) which only
contributes off shell, i.e., does not appear in
physical A, —~pm, A,—vym. We use the terms elec-
tric and magnetic in the sense that they respective-
ly correspond to couplings of the A, and F,, type,
and note that only the magnetic term is divergence-
less. Current conservation now gives

(€41 - R)GR(R?) + E2G o ()] =0. (3)

In the A, rest frame, €“!:k=0 for the A, in helicity
one, and in helicity zero €41-k~m?-m,* as k%~0.
Go¢¢(R?) surely has no pole at £2=0, so we obtain

(m? —m,%)G;(0)=0. (4)

Thus for unequal masses, G(0)=0. We note that
in the unequal-mass case, the point k£, =0 (where
the form factor becomes the charge) is unphysical,
and so the physical interpretation of Eq. (4) is that
we cannot build an electric charge out of unequal-
mass states?® The magnetic coupling is indepen-
dent of this mass-difference effect and so is allow-
ed. Of course, for equal masses Eq. (4) is satis-
fied trivially, so that no constraint may be obtain-
ed. We note in passing however that this is the
reasonwhy in photoproduction each individual elec-
tric Born diagram is not gauge-invariant (only the
sum is). We illustrate this remark by considering
the process yX -~ YZ with the arbitrary X, Y, and
Z being spinless for simplicity. Let €] V" be the
gauge-invariant electric yXX vertex. The ampli-
tude associated with X exchange is
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y pH
el _6uV 8xvz (5)

Now though %, V* vanishes when the intermediate X
is on-shell, it vanishes as (s —=my?). This zero is
then cancelled by the pole in the propagator leaving
k, T" finite.

So far we have only used current conservation.
We now turn to VDM, and assume that G,;(k?) sat-
isfy unsubtracted dispersion relations (UDR) in %2
with p dominance. In fact it is sufficient to require
UDR for G;(k?). Because of the kinematics G, (k%)
and G (k%) have anyway a better large k2 behav-
ior. Thus either by dispersing or by using the cur-
rent-field identity we have

Ga(0") =S ), ©

where G{f), the residue at the p pole, is the on-
shell A,pm electric coupling. Introducing the on-
shell A,y electric coupling G{’, we then obtain
G = g,,GY) by smoothness, and hence finally con-
clude that G¥’= 0, using Eq. (4). Thus we see that
we are able to extend the range of applicability of
p universality beyond diagonal matrix elements.
Of course, we should stress that we have no con-
straint in the event of a subtraction being re-
quired. The helicity amplitudes of A,~ pw are re-
lated to G{"'by

gy =2, =1)=g,= G - [ m? +m,? -m 221G,

E 7
80y =2 =0)= g =122 G mm, G Q)

where everything is defined in the A, rest frame
with quantization axis along the decay direction of
motion. Thus, using the condition Ggf’ ) =0 we are
able to express g, in terms of g,, viz.

& _@M 8

e 2mm, ’ (8)
which agrees reasonably well with the available
data.®* Thus Eq. (8) provides a direct test of p
dominance of Gz(k?) without any need to perform
an experiment involving a photon at all. A test of
p dominance of G, (k%) is then provided by compar-
ing the A, - pm and A, - y7 rates.

The reason we have presented this analysis is to
bring out the difference between electric- and mag-
netic-type couplings on the one hand and longitudi-
nal and transverse on the other. In the special
cases of p— 77 and w— 7wm, we note that p— 77 is
electric and longitudinal, whereas w- 777 is mag-
netic and transverse. There is thus a tendency to
exchange these terms and to speak loosely about
electric when one means longitudinal and vice
versa. However, in these particular processes
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the helicities of the p and of the w are determined
by conservation of angular momentum and parity
only, independent of whether the current is con-
served (i.e., K*— Kn, K*- Knm have the same ki-
nematics). We see from our example of A, - p7
that in more general configurations, g, and g, may
be written as combinations of G{ and G{’. Thus
the terms longitudinal and electric are not inter-
changeable, and we see that we should take (almost
take, actually) as our definition of vector domi-
nance

fly+B~C+D)=gyyf(V+B~C+D), (9)

where the V is coupled magnetically, rather than
where the V is coupled transversely. We write
“almost” as this is not quite complete, because
states mass-degenerate with the external states
may solve Eq. (4) without requiring G,(0) to vanish,
and hence contribute electrically as intermediate
states in Eq. (9). However, the prescription to use
the off-shell amplitudes is complete. Thus, we re-
solve the frame problem by saying that we do not
look for a frame where the vector-meson is trans-
verse, since this is not how the current couples.
The concepts of electric and magnetic are better
defined than longitudinal and transverse (from the

viewpoint of Lorentz invariance), are not ambigu-
J

ous, and most importantly, may be continued to
k% =my? without difficulty.

The extension of this analysis to 4-point functions
is immediate, though it does raise one new feature.
Here k%, s, and t are present and so we hope that
we can disperse in 4% with s and ¢ fixed. (It should
be possible to ascertain if this is legitimate by con-
tracting the current and one other state and study-
ing the matrix element of a current commutator
between states of infinite momentum. Then we
may even obtain smoothness via locality. We are
not aware that such a construction has been made
in the literature). We shall therefore assume that
it is valid to fix s and £, and study first the hypo-
thetical process J, + m,—~ 05 +m, where ¢ is a 0" me-
son. The T matrix of the process is given by

T=€, (R) k" B,(k?)+ph By(k?) +pi By(k%)],  (10)

where B;(k?) are the equivalent of the correspond-
ing Ball amplitudes of the process J,+N,—~ N,
+m,.* Current conservation then gives

2k2B, +(s = m,® = k®)B,y+ (k% + m,® — t)B;=0.
(11)

We may thus eliminate one of the invariants, say
B, so that

T =[(e Rt —my?=k2)+2(c - py)k2|A,(R2)+[ (€ pp)(t = m % = £2) + (€ P s = m? = k)] Ay (R?), (12)

where we have introduced

B,(k?)
Al(kz)ﬁﬁ’
B,(k?)

msz - k2 ’

(13)
Ay(k?) =

which are the FNW invariants for electroproduc-
tion® We note that A, and A, have a kinematic sin-
gularity at 2% =¢-m,* and as such cannot be con-
sidered as candidates for dispersion relations in
k? with fixed ¢. The photoproduction amplitude
(CGLN)® is then given by

T7 = [(e - )t = mg?) +(€ - pe)(s = m,*)|A),  (14)

where
B,(R?=0)
- . 15)
Al==f (

We note that A] does not have a kinematic singu-
larity at £=m,?. This is because current conserva-
tion [Eq. (11)] forces B, to have a kinematic zero
at t=m,* at k=0 only, leaving AJ finite. There
is a lot of confusion in the literature over this
point. We note only that it is necessary to distin-
guish between kinematic singularities in the vari-

r

able %% and in the variable ¢{. Also the kinematic
factor (¢#-m,?)™" in Eq. (15) bears no relation to
the Born term associated with ¢ exchange as this
factor is obtained for all charge states of the o in-
cluding charge zero. Finally, the amplitude for
V+m,—0,+m, is given by

TV=¢, (k) p:BY +pt BY] . (16)
We thus see that 7¢, T7, and 7" all have a different
kinematic structure, so that we cannot immediately
apply VDM to them. The only remaining candidate
is B;(k?) which we know to be free of kinematic sin-

gularities in £2.* Thus we take as our definition of
VDM

mig
Bi(“h;ﬂ%&’; amn

so that from current conservation we find that at
k2=0,

(s = m,?)BY+(m2 - )BY=0. (18)

This implies that

TV:TT%?S [(E Pt - maz) +(€ *pg)(s - m22)] :
(19)
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We note that Eq. (19) is not Eq. (14) as it also con-
tains zero-helicity vector mesons and is on the
vector-meson mass shell and not the photon mass
shell. However, our construction admits of a
mass continuation, i.e.,

m%,izrgo gyT’=T7, (20)
which is what we set out to find. We now calculate
the s-channel helicity amplitudes and find
gl =—gsin6, B]/V2 ,
g¥=-qsin6, BY/V2 , (21)

v my B, Y(s, t)
&o 2(s = m2)[s = (my = my) 2 ?[s = (my, + m,) 2 2

where
q=ls = (my— m P1"s = (mgy+m, 212 /2512
and
Y(s,0)=tm 2 = my* = 3s)= s* +s(m* +ms® +2m %)
—m 2 (my? + my?) +myt(my? +3mg? —m,).

Here 0, (i =y,V) is the s-channel center-of-mass
scattering angle. Thus VDM in the form B} =g, BY
does not yield g] =g,, g except in the two limits
mi—0 or s—«. Inparticular, as s—,

gy~ —-BY(-1"?/V2,
(22)
gg"’ _Bgmv/z ’

and we see that g¥ does not go to zero. Nor will it
go to zero in any other frame. That it stays up is
a consequence of the fact that the physical vector
meson is not massless. Thus our approach takes
into account specifically that m% #0, and shows
that it is not meaningful to search for a longitudinal
projection scheme. We find that at arbitrary s we
may relate g} to g7 (though not in any frame at all),
but only as s— = do we obtain VDM in the helicity
frame. Also we gain something in that we may re-
late g% to g¥.

To complete the analysis we look at J,, +m,— 73 + 7y
Here there is only one amplitude which is already
conserved, i.e.,

T=€pum€”(k)P;PgPIB(kz) (23)

and this process is purely transverse. The helicity
amplitudes are given by

gi=p(s,0"2B /2VT (i=y, V), (24)

where ¢(s,?) is the Kibble function. Thus again
only in the limit s—« does VDM for invariants
give VDM in the helicity frame. So even when
there is no other frame available except the heli-
city frame we still should not apply VDM to helicity
amplitudes except at large s.

The extension of our analysis to J,+N,—~ Ny +m,
is direct and has already been discussed in the lit-
erature,?'2*7?7 with sometimes varying predictions.
However, all of these authors realized that a no-
subtraction philosophy enables us to recover Eqs.
(1) in the helicity frame in the limit s —«, Meiere?®®
in particular has stressed that the failure of Egs.
(1) experimentally entails the need for subtrac-
tions. On the whole, the aim of these authors was
to see if the invariant-amplitude approach could
give a clue as to the correct frame. Our approach
is that we have to use invariant amplitudes as this
is the only kinematically consistent procedure. We
should point out that if the Ball amplitudes require
subtractions there are still predictions (depending
on how we fix the subtraction constants), and then
even at large s we do not recover the helicity-
frame VDM (or VDM in any other frame either).
Cho and Sakurai®® have noted that in the electric
Born model they necessarily obtain the helicity
frame at large s. (Dar'®'?” has also obtained a sim-
ilar result using the absorption model). This lead
Cho and Sakurai to suspect that the choice of frame
was a dynamical problem. As they noted in Ref. 2,
the B,(k?) amplitudes in the electric Born model
are independent of £2, and as we have seen this
property itself is sufficient to guarantee the heli-
city frame.

So where does VDM stand experimentally? The
predictions of Egqs. (1) are still bad. Such a situa-
tion forces us to the need for subtractions in some
of the Ball amplitudes. Further, the subtraction
constants must be related in such a way that they
cancel in 0 ,. It is nice to conjecture that the sub-
tractions are required in the 4-point function be-
cause they are required in the vertices of 3-point
functions related to intermediate states in which
the coupling is electric. Cho and Sakurai? have
noted that the other class of predictions, i.e.,
those which express g, in terms of g,, seem to be
working well in 7N- pN. However, they only in-
vestigated the small-f region where some of the
elements of the spin-density matrix of the outgoing
p are fixed by angular momentum constraints, so
it is not immediately clear how well the predictions
are being tested. At the moment, the experimental
situation is such that in some cases we need sub-
tractions and in others (yN— VN) we seem not to
need them.?® Thus dynamically the state of the
vector-dominance model is still obscure.

Note Added in Proof

A point which we had not discussed in the paper
is a difficulty inherent in any analysis based on the
use of invariant amplitudes, namely their intrinsic
arbitrariness. Different choices for the set of in-
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variants assumed to be suitable for VDM give dif-

fering physical predictions. We illustrate this re-
mark for our example of A, - pm by considering in-
stead of the set of invariants defined in Eq. (2), the
set used in Ref. 3, i.e.,

(Aldy [m=efrA(R®)+ (e*1 - Bg, B(R?)
+(€A1‘k)ku Goff(k2)~ (25)
VDM applied to A(k?), B(k?) yields®

& __ 2mlm® - my®) -
go mp(3m2 - mpz + m’”2) ’ ( )

in contrast to the result of Eq. (8). This comes
about because of the relation

Gp(k®) = A(k®) +2(m® + m® — m")B(k?)
+3(k* = m,®)B(k?), @17

so that pole terms in one set of invariants induce
nonsingular contributions to the dispersion rela-
tions for the other set of invariants. The whole of
our dilemma is contained in the question of whether
p dominance in the range m,?> k*> 0 is more re-
liable for the set G,(k?), G, (k?) or for the set
A(R?), B(k?), and this is a dynamical problem for
which a priori we have no information. However,
only the set G,(k?), G,(k®) has a straightforward
physical interpretation, and since this is the set
which provides p universality for both diagonal and
off-diagonal matrix elements, we are inclined to
the view that this is the correct set.

The strongest support for off-diagonal p univer-
sality is provided in an experiment of pn annihila-
tion at rest into 7~7n~7*. No p signal is seen at
all,®® and since the pn system must have the quan-
tum numbers of a (heavy) pion, it accords with our
selection rule GP=0. For the A,-pr decay, the
predictions of Eqgs. (8) and 26 are similar. Equa-
tion (8) gives g,/g,=1.04 and Eq.(26) gives 1.15, to
be compared with a recent experimental value®! of
£,/8,=0.89+0.07. Our analysis may also be applied
to the B— wr decay. Equation (8) gives |g,]*=0.29
and Eq. (26) gives |g,|2=0.25, to be compared with

the most recent determination® of |g,|?=0.06+0.10.

Thus the data on 1* decays are not conclusive
enough to allow experiment to choose the best set
of invariants. We suspect that our analysis goes
wrong for the B- wn decay because here the neutral
mode B°- w7° is open (AJ—p°n? is forbidden by

|

charge-conjugation invariance), so that the re-
quirement of the decoupling of the elctric charge
becomes an empty statement as there is no elec-
tric charge.

The physical interpretation of universality above
suggests that for the nucleon form factor VDM pre-
dictions should be made for the F’s (Dirac and Pauli)
rather thanthe G’s (introduced by Hand, Miller, and
Wilson®®). Since we have demonstrated the difference
between electric and longitudinal and between mag-
netic and transverse, it is perhaps unfortunate that
these authors actually defined the G’s as electric
and magnetic since they are, respectively, longi-
tudinal and transverse in the Breit frame.

Despite the above ambiguity in the choice of in-
variants, we find for our example of A, - pm that
we recover both Eq. (20) and the relation g} =gy,,gf
for either set of invariants in the limit mne/my, —~ .
Though we have not been able to prove it, we sus-
pect that the continuation implied by Eq. (20) and
the use of the helicity frame for VDM in the large
s limit are independent of the choice of invariants,
and test only the concept of vector dominance it-
self. Relations between g, and g, and O(1/s) cor-
rections to helicity frame VDM are sensitive to the
specific choice of invariants used. A promising ap-
proach to avoid the arbitrariness in the choice of
invariants has been proposed by Berlad and Ei-
lam.?” They use the unambiguous Poincaré reduced
T-matrix elements and again find helicity-frame
VDM in the large s limit.

We should also mention that we have possibly
overemphasized the role of subtractions in this
paper. More recently, we have investigated the
role of contributions of other vector mesons to the
dispersion relations.** Polarized photoproduction
of pions is experimentally sensitive enough to mea-
sure any p, p’ interference terms.
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