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We write down a dual expression for the differential cross section in two-body reactions
for inclusive production of a single particle with definite momentum. The formula is similar
to the usual five-point amplitude but where the range of integration has changed. We show
that it describes both limiting fragmentation and pionization. It furthermore shows approxi-
mate factorization as a function of p~ and p~~ . The asymptotic behavior inp~ is universal.
We also generalize the formula for inclusive reactions where n particles are detected.

I. INTRODUCTION

Recently there has been considerable interest in
the study of single-particle distributions in high-
energy reactions. Several theoretical properties
were predicted both from the parton model" and

from the multiperipheral model. '
Some of the interesting features that have come

out both from these models and from experiment
are': (i) The distribution in longitudinal momenta
approaches a finite limit both in the lab frame
(limiting fragmentation') and in the c.m. frame

(pionization). (ii) In the limiting-fragmentation
region the differential cross section can be written
approximately as

Po«l~'0 = f(P(i)G(f. '),

where G(p, ') is a universal function (a decreasing
exponential). (iii) In the limit of fast fragments,
one should recover Regge behavior.

In this paper we want to show how the Veneziano
amplitude can be used to derive an explicit for-
mula for the differential cross sections which
demonstrates all the properties stated above and
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which shows, furthermore, the implications of
duality for these particular processes. However,
we would like to stress that we are not explaining
the existence of a finite limiting distribution be-
cause, as is well known, "this necessitates a
model for the Pomeranchukon. We will rather ad-
just ad Aoc the intercept of trajectories w'ith the
quantum numbers of the vacuum so as to get
Pomeranchukon-like behavior. As the explicit de-
pendence on the Pomeranchukon factors out, we
argue in the final section that different models
should provide similar results.

The qualitative features of the model reproduce
the experimental results quite well in spite of the
fa,ct that we are mistreating (as usual) unitarity
and spin. The only meaningful qualitative dis-
agreement of the model with experiment occurs at
large p~' where the model gives a, cross section
falling off too fast. This confirms the expectation
that unitarity corrections should be important at
large angles.

M, p,

, p)

FIG. 1. Inclusive reaction. (yg, p) is the detected
particle.

The paper is organized as follows: In Sec. II we
will derive the expression for the differential
cross section. In Sec, III we will obtain the asymp-
totic behavior in p, and the pionization limit. In
Sec. IV we will present other possible models and
generalizations and a discussion of the results; in
particular, we will discuss the irrelevance of the
concept of limiting temperature and the counting
of final states.

II, DERIVATION OF THE FORMULA

The process that we are considering is shown in Fig. I. We are supposed to integrate over phase space
the square of the modulus of the amplitude for all the particles (p, ) that we do not detect. The method
consists in using the six-point dual amplitude to do this integration as shown in Fig. 2.

In doing this we are supposing that the complete set of states over which we are summing can be simu-
lated by resonances. This is incompatible with the absence of exotic states (Harari-Freund ansatz). We
will come back to this point in Sec. IV.

We begin therefore by writing

where da is the differential cross section for the production of a particle with three-momentum p. The
summation is over all possible resonances and 7.'„ is the amplitude for producing the nth resonance and the
detected particle. Then

T„T„*5(p~ ™„)= I ™(,2B6(ppip2 —f12 —f1, —p),

where we have assumed that only the (s, t) term contributes in T„(this will correspond to the physical case
p+p- v+ anything) a,nd

dudvdu'(uu') " '~ "2' 'v ~ '+'1'1' '
l

-~(&+ & ) -i -n(u2) -2
(1 —u)(1 —u') (1 —vu)(1 —vu')

(1 —vu)(1 —vu') (1 —11uu )

-n2(o) -x
(1 —v)(1 —uu'v)

X
(1 —uv)(1 —u v) g

- i6(,)-,(o) (1-u)(1- v ')
u'(1 —u')(1 —vu)

(4)

Several points are worth mentioning in this formula. (a) The trajectories o, ,(0) and ((,(0) always have
the quantum numbers of the vacuum. Therefore we can put o.;(0)= l.' (b) The trajectory n(M') has always
the quantum number of particle 1; therefore n(M')= 0 (or an integer in the case in which the external par-
ticle is excited). (c) It is a, valid representation only for all invariants negative. When continuing analyt-
ically to positive values we have to remember that exponents of factors that include u or u' have to be con-
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p

=—Im
p

FIG. 2. Cutkosky's generalized unitar-
ity relating the six-point function and the
differential cross section for inclusive
experiments.

-fy-{p+ p, ) +i
G

p, sdo/d'p = —Im~ 2 I'(-n, (0)) du' du 1 —— 1 ——,
lT 3 0 u u

-n (o) -i
n{M') -2 ] u ur

"H&-')(& — 'H
(, -,)(,-,)) r-p, (1 —u —u') -s,u —s,u']2 r ~z(o)

tinued on opposite sides of the cuts. This is formally symbolized by the last factor in (4).
There are two different limiting distributions: (a) P,

~

finite in the lab system (or distribution in
x = p",

' "/p,"" for x =-0),"and (b) p~~ finite in the c.m. frame (pionization, or emission of wee' partons).
The limits of the relevant invariants are given in Table I.

For case (a) we obtain the limiting distribution by changing uu' and v into ep" e"" e i' " "
~, and inte-

grating in the region p = 0. We find

Notice that we have distinguished different s variables so as to be able to make the correct analytic con-
tinuation. [Furthermore, this will turn out to be useful in discussing later the addition of a (ut) term to
T„.J For negative p, ', s„and s, the last bracket is always positive and therefore we do not get any imag-
inary part. For p, positive and small (s, and s, still negative), the region of integration R that contrib-
utes to the imaginary part is

(p, ' —s,)u+(p, ' —s,)u'-p, '~0, u~0, u'~0.

The discontinuity is therefore equal to'

1 (u+u, ) +~

2i sinpn(0) I'( —n, (0)) dudu' 1 —— 1 ——, [(I —u)(1 —u')]
R . u ZE

1 —u —uX
(1 —M)(1 —u')

—,-n2(o) —I
n~(0)

[p,'(I —u —u')+us, +u's, ]

To continue this expression analytically, we make still another change of variables so that the range of
integration does not change:

2 —s

3

u'= ', u'=A. u'.P s2
2P3'

We finally obtain

] I'I y y
~ 0'{p+p )+1

p, sdo/d'p= (p,')"' '(z, z, )
' du' du.r(~„(0)+I) ZV,

'

2

X ] —— ] ——
(X, —u)(Z, -u'), () — ()n I(o)

TABLE I. Limit of Mandelstam invariants in the regions of (a) limiting fragmentation
and (b} pionization.

(p +pg)'
2

(a) (M x-m )—X 2 2 PJ

l(pII2+pi + m )~ —pII]vs

(P +P2)'

—xs

—((P II'+P,' + ~') ~' +P II ]Ws

(P ~+P2)' (P +P ~+P2)'= M*'

(j —x)s + O(WS)

2(~2+p 2 +p 2) 1/2 ~s
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We see that we will obtain a limiting distribu-
tion if a, (0) = 1.' From now on, for the applica-
tions. we will suppose that t2, (0) = 1, a(M') = 0 and,
unless there is ambiguity in the definition, we

will write A. , = A., = A. .
Formula (8) can be understood as the residue of

the Pomeranchukon. As such we expect it to have
duality properties. " In fact, by choosing vari-
ables x=u/(1-u) and y =u'/(1-u') we can write
it down as a five-point dual amplitude. However,
a crucial difference is that now the range of inte-
gration is limited by the lines x=0, y =0 and the
hyperbola

(1 —x)(1 —x') -s
1 —xx' p,

' —s ' (9)

The right-hand side of this equation can be easily
seen to be the product of all lines that are dual to
the channel p, '. Therefore the net effect of (9) is
that these lines do not reach zero on the boundary.
This is of course consistent with duality. We
would like to suggest that these features are more
general than our derivation and are rather insensi-
tive to the way we treat the Pomeranchukon.

For small (but not wee') x, this expression dem-
onstrates the experimentally observed factoriza-
tion of the dependence in p„' and p~' [in the form
(1)]. In fact for x varying between 0 and 0.62 the
expression (1/2x)ln[(1+x)/(1 —x)] changes from 1

to 1.17. Comparing this formula with the experi-
mental fit of Bali pt al. ,

" it is obvious that in gen-
e ral the damping predicted is too strong. The r e-
fore for large p~' we expect important corrections
from other diagrams. In the suba, symptotic region,
perha. ps a better formula is obtained if we replace
p~' by [u(t)+ l]x. Then, because of the factor
p~ ', factorization will be broken and we will not
have a. universal p~' dependence. (However, (p, )
will change slowly, from around 140 MeV for pions
to 500 MeV for very la.rge masses. )

For x- 1 we should recover Regge behavior. In
fact we obtain'

The limiting distribution in the c.m. system is
also easily calculated [o.,(0) = 1]; we obtain

III. BEHAVIOR IN TRANSVERSE MOMENTUM

AND PIONIZATION

1

p, do/d'p = — du
0

1-u gg -2
4Q +'M+ W

vs

Let us now find out the asymptotic behavior in

pg [ »2»pg» (a') ']. We have to consider in (8)
the region u = M' = —,'. Then using standard methods
we find where

1 1x (u+u'- 1)exp —2E(E —» ) —+—
14

(12)

4
~ -0!~(0)+1

Po / P = 128~( — )'
( 1)

1+xx p~ exp —2 ln
x 1 —x (10)

—p
1

p —p

FIG. 3. Double Pomeranchu1~on exchange contri-
buting to pionization from the end of the chain.

This formula will have a finite limit for x-0
(pionization) if again n2(0) =1." Now the other
Pomeranchukon trajectory becomes relevant, and
the residue ca,n be depicted as shown in Fig. 3.

(p 2~» 2~ ~2)1/2

Notice that the asymptotic behavior in p~'
(p~'»»„', o.

' ') is steeper than before (it goes
like e '~~ ).

Finally we want to discuss the case where the
T„also contain (tu) and (us) terms. When we
square them, we will find both diagonal (st, st) and

nondiagonal (st, ut) contributions. Furthermore,
the excited missing tower of particles can have
both signatures, and therefore we have to consider
the possibility of joining with a twist. In this way
one can count up to 12 different six-point functions.
However, a quick inspection shows that most of
them go to zero exponentially, so that in fact for
fixed x &0, we only have to consider the following
permutations:

&.(pp, p, -», - p, -p),

&.(pp, p, -», -p-», ),

It2(»i PP. —»2 P»i).

Formula (8) remains unchanged if the definitions
for A, and A2 are modified accordingly (replacing
s by u).
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FIG. 4. Generalization to n detected particles.

For pionization we have to add those diagrams
obtained from interchanging the momenta of the
initial and final particles. The calculations follow
the same pattern as for the considered example.

IV. GENERALIZATION TO N DETECTED
PARTICLES; DISCUSSION

M, =O,

u'. =0 )

z=1 ~ ~ ~ n

z —1

g= zu. .. = s/(.", —M*'),

where @=product of all lines that cross a.
In our derivation we made use of a kind of gen-

From the duality properties that we have dis-
cussed in the form (8), we can ea.sily guess an ex-
pression for the differential cross section for de-
tecting N particles with definite p~ in an inclusive
r eac tion.

We consider the dua. l dia. gram shown in Fig. 4.
The broken line a indicates that we have already
taken the imaginary part in that channel. Further-
more, we are interested in the asymptotic behavior
in (p, +p, )'=s and (p, +p, +p+p'+ .p'"')'=M*',
the only contribution will come from the Regge
trajectory h. To find the residue of this Regge
pole, we write a formula which has all the factors
of the corresponding (2n+1)-point function. Choos-
ing as independent variables lines that do not cross
a, the region of integration R will turn out to be
bounded by

eralized optical theorem, In general it is true that
through crossing and unitarity, the differential
cross section for inclusive experiments can be de-
rived by taking the ima. ginary part of an amplitude.
The paradoxical situation is that we have chosen a
non-unitary amplitude to do that. Therefore, we
should not try to analyze in detail the final states
of the model. We should rather consider it as
some kind of Born approximation (but for the cross
section) and then add loops so a.s to get a totally
unitary amplitude. Then for each different topo-
logical dual surface" (specified by e = orientability,
p=number of tori or number of projective planes,
and zo =number of windows and ways of distributing
external lines among them). there will be an infi-
nite class of diagrams obtained by just adding loops
to the original one. The addition of loops can be
argued away by saying that it will just renormalize
the trajectories, and then in average we will re-
cover the term without loops. (However, see be-
low for a. discussion on this point. ) That is not the
case for the different topological surfaces. For
example, if we do not add the diagram shown in
Fig. 5 (particles emitted in the middle of the chain),
we predict precisely zero for the production of
forward v' in v P collisions (except for exotic
states). " We have calculated some higher-order
diagrams, such as the ones shown in Fig. 6, " to
leading order in lns. The conclusions are that if
the model for the Pomeranchukon is a factorizable
one [for instance a Regge pole or the so-called
Pomeranchukon of Fig. 6(b) "], then the formula
obtained is essentially the same.

Finally, we would like to mention a surprising
theoretical consequence. The limiting temperature
of Fubini and Veneziano" does not seem to play any

role in the distribution in p~. This could mean one
of two things: (a) Thermodynamic equilibrium is
not reached during the collision. The identification
of the limiting temperature with Hagedorn's fit
would then be pure coincidence. This is ugly but
possible. (b) Our model does not describe ther-
modynamic equilibrium, which could be connected

p) p p p

(a) (b)

( 3
p p

I"IG. 5. Examples of diagrams to be added.

FIG. 6. Other models for a factorizable Pomeranchuk-
on. These diagrams give essentially Eq. (8) (in leading
order).
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with the possibility of final-state interactions. But
this means that the sum of all planar-loop diagrams
should show thermodynamic equilibrium and will
change their behavior in an essential way, i.e.,
even on the average, it could not be equal to the
Born approximation. The other possibility —that
planar diagrams can not account for thermodynamic
equilibrium while nonplanar diagrams can —seems
to be totally unreasonable. Therefore, it would be
interesting to consider planar-loop corrections at
large p~' and see if they tend to give less damping.

Added note: M. Suzuki has mentioned to me the
interesting possibility that by combining two or
more differential cross sections, one can eliminate
the contribution of. one or both Pomeranchukons.
Our method will be more applicable to the combin-
ation than to each of the differential cross sections.

Our results are obtained with a different prescrip-
tion, which we believe is correct if we are going
to add all other loop diagrams before comparing
with experiment, i.e., if we take the Veneziano
amplitude as a Born term. However, we know that
as a model to be compared with experiment, dual
amplitudes should be averaged before calculating
the cross section. In that case the prescription of
DeTar et al. should be preferred. Accordingly a
semiphenomenological factor e' ~" should be multi-
plied in (8) and (10) and (11) and a corresponding
e """in Eq. (12). [Therefore B,( pp, p, —p, —p, —p)
does not contribute to pionization. ""]

The asymptotic behavior in p~ is still given by
a. formula, like (10) (without any phenomenological
cutoff) but originating in terms like B,(P, PP, —P,

p p,)--
Note Added in Proof

In a recently circulated preprint, De Tar et al."
have pointed out that there is some arbitrariness
in the calculation of contributions coming from
diagrams like B,(pp, p, —p, —p, —p). They consider
phases in all invariants, and they choose them in
such a way that all oscillating factors damp to zero.
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