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The hadron is considered to be a compound with two or more constituents circulating free-
ly in a box of radius =10 ~' cm. The density of hadron levels, p(m). is estimated from the
number of states in the box (statistical condition) and is also required to be consistent with
tIle spectrum of constituents, which are assumed to be the hadrons themselves (bootstrap
condition). This type of model was first considered by Hagedorn, who obtained a solution of
form p(m) - cm'e~~ with a =- —2 which satisfied the bootstrap condition asymptotically to with-
in a power oi m. We obtain a solution with a & -2 which satisfies the boot3trap condition ex-
actly in the high-mass limit. The constituents in the box are distributed with probability
P(N) =(In')" ~j(n —1).'«, i.e. , an average high-mass resonance decays (in the first generation
of its decay chain) to two hadrons (697o probability) or three (24% probability). We also re-
view briefly the thermodynamic applications of this model to high-energy scattering and
astrophysics.

I. INTRODUCTION AND DISCUSSION OF MODEL

In 1936, Bethe' proposed a statistical model for
the density of excited nuclear levels. ' He consid-
ered a, free fermion gas of Z protons and (A-Z)
neutrons in a box with the normal nuclear radius.
That is, the potential was used only to provide the
walls of the box; residual nucleon-nucleon inter-
actions inside the box were neglected.

As the energy is raised above the Fermi level,
the number of nuclear states increases rapidly.
Already the first excited single-particle level can
be filled in a number of ways by raising any of the
nucleons near the top of the Fermi sea; each dif-
ferent way leaves a different hole behind and there-
fore a different state. The first two excited single-
particle levels can be filled in an even larger num-
ber of ways by raising any two of the nucleons
near the top of the Fermi sea, and so forth.

Studying this problem quantitatively, Bethe found
that for excitation energies E such that most of the
fermions are still degenerate, the density of states

p(E) =dn/dE-
in the box rises as

p(g) ~ eb~AE

where b is a numerical constant. Experimentally,
excited nuclear levels show up as resonances.
Vfhen they are counted, a, rapid rise qualitatively
consistent with Bethe's formula is found. '

Of course, since Bethe's model is statistical and
the potential has been grossly oversimplfied, Eq.
(1.2) often fails to fit specific nuclei in. detail, es-
pecially for low excitations. The model i has sub-
sequently been modified' by adding effects of the
potential which distinguish between even and odd
nuclei, by putting in some shell-model corrections,

etc. These modifications improve the fit to specif-
ic nuclei.

In the present paper, we consider an analogous
model for hadrons. Just as the nucleus is consid-
ered to be a compound 'with A constituents drawn
from two varieties (n and p), we consider the had-
ron to be a compound with n ==- 2 constituents drawn
from various varieties (e.g. , the three varieties
of quark in the quark model, or many varieties of
11adl'oil ill tile boc'tstrap model). Tile potell'tiRl 18
used explicitly only to define the walls of the box,
with a radius of order 10 " cm, since we know
hadron structure is confined within a distance of
this order. Inside the box, constituents will circu-
late without interacting. The density of levels in
the box will be identified with the number of had-
ron states (as listed, for example, in the Particle
Properties Tables) per unit interval of rest mass.
Of course, this is the crudest dynamics possible,
but it has the virtues of being soluble and of treat-
ing all states on the same footing (very important
for t116 1lootstl'Rp CRse). The dynamics cR11 be 1111-

proved later if some detailed effects of the poten-
tial are understood, just as Bethe's free-fermion-
gas model was later improved.

This approach to hadrons, and the systematic
method of analysrs w'e shall follow, were fsrst in-
troduced by Hagedorn in 196'5.' %e shall rephrase
his analysis in rather different; language and intro-
duce some technical changes, to be noted below.

The mathematical counting of states in the box
proceeds as follows:

For one Particle, the density of states inside the
box goes like

Vd'p, /1 ';
For n indePendenI, Particles with total energy ns,

it is
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d(number of sta, tes)

d'p;5 g, —ypg
5' p;

+ ~ ~ ~

Here we have counted only the density of levels with

center of mass at rest, because this is the density
to be identified with the number of hadron states
per unit interval of rest mass.

As preliminary exa.mples, we consider several
simple models for the constituents:

(i) Quark antiqua-rk model of rnesons In its.
naive form, this model has n=2. The integral
(1.3) is trivial and one finds'

The equation for the density of states is

p(m) -m'.

(ii) Three quark mo-del of baryons. Here, n =3.
The extra. Jd'p, increa. ses the density of states to

p(m) —rn' .

(iii) Single elementar-y parti cle m-odel of me

sons. Suppose there were a single elementary
boson x (let us ignore, for the purposes of this

example, such complications as spin, cha.rge, and

strangeness). Suppose mesons were made of xx

pairs, xxx triplets, xxxx quartets, etc. —i.e. , n

= 2, 3, . . . , ~. In this case the density of states
would be

(1.6)

where the factor 1/n! appears because only totally

symmetric states of n bosons can be counted. The

integrals in Eq. (1.6) can be evaluated approxi-
mately, yielding

p(m) —exp(bm"'),

a much more rapid growth than in previous exam-
ples because states of all n are now included. Al-

though the evaluation of (1.6) is well known' and

elementa. ry [for example, the number of photon

states in an enclosed space is described by an

expression similar to (1.6)], we present it in the

Appendix for completeness.
The model we wish to focus on in this paper is

the bootsA"aP model of hadxons, in which the had-

rons are assumed to be compounds of hadrons.
The model can be represented schematically by

which can be explained as follows:
(i) The integral over mass appears on the right-

hand side because each particle in the box can take
on not only different states of motion with phase
space d'P, , but also different states of mass with

density labeled by p,„(m,). Included in the single-
particle density p;„(m, ) are all different states of
spin, charge, strangeness, baryon number, etc. —

for example, v is counted as (2I+ 1) = 3 states,
p as (2I+ l)(2S+ 1) =9 states, and so forth.

(ii) The fa,ctor 1/n!, which wa.s required for
states consisting of n identical particles, is also
needed for states consisting of nonidentical par-
ticles to avoid double counting. '

(iii) There is one error in (1.8): Configurations
with two or more identical fermions in the same
state are counted. The resulting overestimate of

phase space should be slight because states con-
taining fermion pairs are expected to be statis-
tically unimportant in the hadron spectrum. The
author has checked this by repeating the calcula-
tion using the partition function, which does take
the Pauli principle into account; the leading asymp-
totic results discussed in this paper were essen-
tially unchanged. Of course, for problems involv-

ing degeneracy (nuclei, neutron stars, etc.), it is
crucial to take the Pauli principle into account and

Eq. (1.8) would not be appropriate.
(iv) On the left-hand side of (1.8), we intro-

duce the notation p, „,(m) for the total density of
states in the box, again counting all quantum
numbers. In a complete bootstrap theory, p, „,(m)
would be the sa.me as p;„(m), but in any approxi-
mate model such as ours it is not possible to make
them consistent over the entire spectrum, and we

must keep the separate labels. The best we can
do ls

p,„,(m) „„=p;„(m) .
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p;„(m) =cm'e', a& -2 (1.10)

satisfies (1.9) fully (with one numerical constraint
on c), while

p,„(m) =c'm '"e'

satisfies (1.9) as far as the exponential behavior
is concerned, but not in the power (a,„,&a;„,'. We
shall devote most of our attention to the fully con-
sistent solution (1.10).

Historically, a number of quite different models
have yielded hadron densities growing as cm'p' .
The first was Hagedorn's statistical model' of
1965. Hagedorn invented the systematic argument
we have followed above, and introduced the prin-
cipal applications' '" which have been made up to
the present time.

The specific solutions cm'e™obtained by Hage-
dorn were asymptotically self-consistent only in
the exponent; for the power behavior, he found'
one solution with

5 3
~jn 2 . out jn+» (1.12)

and another with

5
a&n- --, a & -1 (1.13)

The second solution was favored. The reasons for
the slight difference between Hagedorn's solutions
and ours are as follows":

(i) Hagedorn included one-particle states in the
box (n=1, 2, . . . , ~). This is the normal proce-
dure in statistical mechanics, but we prefer to
consider only n~2 because we are interested in
the "compound states. " The practical consequence
of including single-particle states on the right-
hand side of Eq. (1.8) is to make it impossible to

At low m, our statistical approach cannot hope to
give the exact self-consistent p(m).

The density of states (1.8) and the bootstrap con-
dition (1.9) define our version of the bootstrap mod-
el. From the previous example (iii) of a, single
variety of input particle, we know that if p~„(m)
= b(m —mo), then p„,(m) -exp(bm' ). So p„„,(m)
must grow at least this fast. We analyze Eq. (1.8)
mathematically in Sec. II and show that to satisfy
(1.9),

(i) p;„(m) must increase faster than exp(bm' '),
where e is any positive number greater than zero
(otherwise p„, grows exponentially faster than

p;.).
(ii) p&„(m) must increase slower than exp(bm"'),

where e is any positive number greater than zero
(otherwise p,„,grows exponentially slower than

pi. )
(iii) There are various solutions increa. sing es-

sentially as fast as e'; in particular,

satisfy the bootstrap condition exactly; p,„, is
always greater than p;„.

(ii) Hagedorn effectively included the states of
motion of the center of mass. Ne do not wish to
do so because it is the density of states at rest in

the center-of-mass system that we associate with

the number of hadron states per unit rest-mass
interval. The practical consequence of including
the phase space Vd'P/b' of the center of mass is
to make p,„,grow faster, relative to p;„, by a fac-
tor m"' [it is shown in Sec. II that the important
contributions are nonrelativistic; here
p =(2m&g;„)"', so fd'p-m"']. This shift of —,

' in

the power is precisely the difference between
Hagedorn's solutions [(1.12) and (1.13)] and ours
[(1.10) and (1.11)].

There is also a difference in language; we have
worked directly with the density of states p(m)
whereas Hagedorn worked with the partition func-
tion"

ziTi Jdm =ilm)e (1.14)

Actually (1.14) is just the Laplace transform of
p(m) and the results obtained working with p can
be obtained working with Z [provided points (i) and

(ii) of the previous paragraph are treated appro-
priately]. The reason we choose to work directly
with the density of states, at the cost of some
awkwardness with the Pauli exclusion principle, is
mainly pedagogical: Phase space is more familiar
to particle physicists, and the independence of the
derivation from any assumptions concerning ther-
mal equilibrium is most convincingly demonstrated
by not introducing temperature at all.

The most famous applications of Hagedorn's had-
ron spectrum are related to the exponential growth,
and will still apply. There are interesting conse-
quences of taking the power a& --,' instead of a =--,',
however, which we shall note as we go along.

Subsequent to Hagedorn's work, completely dif-
ferent approaches based on duality"'" and the
Veneziano representation" " a1.so yielded the
spectrum P-cm'e' . Factorization of the A-point
Veneziano representation even yielded a similar
set of possibilities for a, "

5
z) ~ ~ ~ ~

In Sec. V we discuss a possible interpretation of
this remarkable correspondence: The number of
resonances in the statistical model grows at the
same rate as the number of open channels, and
this allows one to represent a typical amplitude as
a sum over direct-channel resonances, which is a
necessary condition for duality. "

In Sec. III we consider further the particle spec-
trum, including the spectrum of hadrons with
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II. MATHEMATICAL STUDY OF BOOTSTRAP

CONDITION S

In the present section, we find solutions of the
bootstrap condition

p„„,(m) „- p,.„(m), (1.9}

where p,„,is given by the phase-space integral

specifi'c baryon number, strangeness, charge,
etc.

In Sec. IV we study the predictions of the model
concerning statistically dominant couplings. The
average number of particles coupled to, which was
n-Inm in Hagedorn's case (a= -~), is n=2. 4 in our
case (a& ——',), independent of mass (this is the
"first-generation" coupling of a resonance, not the
result of the entire decay chain). In detail. the
probability for a resonance to couple to different
numbers of secondaries is

(ln2)" '
(1.16)

(n-1)! '

i.e. , 69% to two-body channels and 24% to three-
body channels, independent of mass. Unfortunate-
ly, our knowledge of decay systematics of heavy
resonances is insufficient to check these predic-
tions, but our result on n bears a striking resem-
blance to most dynamical models, which usually
couple resonances directly to only two or three
particles.

Finally, in Sec. VI we review, for completeness,
highlights of Hagedorn's fascinating work' "on
the thermodynamics associated with this model.
We point out that in high-energy collisions, the
model does not permit establishment of thermal
equilibrium with a uniform temperature over the
entire interaction volume (as in the old Fermi
statistical model). Establishment of local thermal
equilibrium, with temperature varying over the
interaction volume (as in Hagedorn's model of col-
lisions), is permitted provided a& -~2. With regard
to recent attempts to apply the spectrum cm'e'
to neutron stars and the "big bang, "' '" we empha-
size that they involve an additional element of spec-
ulation: Just when the high-mass hadron spectrum
becomes relevant, the hadrons are squeezed to-
gether and overlapping in space, in which case our
derivation of the spectrum in terms of an isolated
box of radius =10 "cm may fail.

In reading this paper, note that the messy and
approximate mathematical study of phase space is
confined to Sec. II and the Appendix. The reader
uninterested in such details may skip these sec-
tions or, better, read only the portions p = 1 and

P = 1, a& ——, of Sec. II which deal with the self-
consistent case.

&a y 11-1
1

p„„(m)=g „—, —,Q dm, p;„(m,.)
77=2 n!;,

x d p,. 5 m — Q,. g p, 1.8

p,„(m) =f (m)exp(bm'), (2.1)

where f(m) and f '(m) are polynomial-bounded at
large m.

P& l. Inserting (2.1) into (1.8), we find for p& 1

that the integrand of the nth term is maximal when
all the m, are equal and of order m/n. The expo-
nential factors dominate, and at m,. =m/n they give
an integrand of order

n

g exp[b(m/n)~] = exp(n' ~bm') .
i=1

(2.2)

The density p„„,(m) grows at least as fast as the
exponential in (2.2), which for P& 1 grows faster
than p;„-exp(bm ). Thus the bootstrap condition
cannot be satisfied with P& 1.

Note that this reasoning (with the exponential
mass factors dominant) applies to all n for which
a sufficiently large energy is available for each
particle in the box. It certainly applies at suffi-
ciently large m when n &Cm' '

with &&0, for
then each particle has an energy -m' available.
This means that the exponential in (2.2) can be at
least as large as

exp(n' ~bm') -exp[C'm' '!' ~'], (2 8)

which shows directly that for p;„-exp(bm~), p,„,
grows faster than exp(bm' '), where e is any posi-
tive number.

p& 1.. At m,. =m/n, Eq. (2.2) shows that the inte-
grand grows exponentially sloseey than p;„when
p& 1. In fact, the integrand for the nth term
reaches its maximum, in this case, at the bound-

The p's, of course, satisfy p(m) =0 at m &m, and
p(m) & 0 at m & m„where m, is the mass of the
lightest hadron.

We shall show that at large m
(i) p increases faster than exp(bm' '), where

e is any positive number greater than zero.
(ii) p increases slower than exp(bm"'), where

e is any positive number greater than zero.
(iii) Thus, any solution must grow essentially

as e' . We do not find a unique solution or a com-
plete list of solutions, but we do show specifically
that p(m) = cm'e, with a& ——.', , satisfies conditions
(1.8) and (1.9).

It has already been shown that if only one variety
of particle is put into the box [p(m) = b(m —m, )],
the output spectrum grows as exp(bm"'). Thus we

are assured that p grows at least as fast as
exp(bm" ), and we consider p&„of the form
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p;„(m) = cm'e'", (2.5)

though a series of terms of this form, or of such
terms multiplied by (lnm)", could equally well be
considered. Inserting (2.5) into (1.8), one obtains

V n

p,„,(m) =Q —, —,g [ dm;cm e' '
out

ary where one mi is as large as possible and all
others are as small as possible. At this point one
obtains

g exp(bm ) = exp(b [m (n -1-)m, ]'}exp[(n —1)bmo']

—exp(bm~)exp[-bp(n —1)m,m '],
(2.4)

which still grows exponentially slower than p&„(m)

because there is no massless hadron. In the n-

pa, rticle term, the exponential (2.4) is multiplied

only by a polynomial-bounded function of m. Thus
the ~th term increases more slowly than the
(n —1)th term, by a factor of order exp(-bpm, m~ ').
The dominant term is v=2, but even this contribu-
tion to p,u, grows more slowly than p;„by

exp(-byn, m' ') .
Thus the bootstrap condition cannot be satisfied
with p&1.

In Hagedorn's formulation' the situation was
somewhat different. An n = 1 contribution to p,„,
was included. This grew as fast as p;„, so solu-
tions with P& 1 had to be ruled out by an appeal to
thermodynamics.

P =1. We now specialize to the form

p; =E; —m =(m;+Q,.)' —m,. =Q,.'+2Q,.m,

(2 9)
Because the momentum integration is effectively
cut off at Q, = b ', large m, are important for the
terms n & Cm' ', e& 0. For large mi, we can use
the nonrelativistic expression

P; = (2Q; m;)"' (2.10)

Thus the integral for particle i has the approxi-
mate form

Ii = rim, m,.' d'p, e '~i= „, dm, .m "'"1

(2.11)

The integral is cut off in practice by energy con-
servation; denoting the cutoff by A (A ~ m), we dis-
tinguish the cases

50& -2, I -A'"
i

I; -lnA

I; convergent.

(2.12)

Let us take up these three cases in succession.
P = 1, a & -—,'. According to Eqs. (2.11) and (2.12),

the integral over the masses and momenta avail-
able to any one particle is of order 5 "'A""'. The
contribution to the n-particle term is maximal (if
n ~ Cm' ') when A. for each particle is of order
m/n. Thus the n-particle term is of order

The behavior of Eq. (2.8) is fundamentally differ-
ent for a& --,' and a& --,'. To show this, we consider
the relation between momentum and kinetic energy,

x e'),.e r, e,. — e' gp, .

)
. {2.6)

i=-1 i =1

It is useful to recast the exponential factors in
terms of the kinetic energy Q; of the ith particle
(E, =m, +Q,. ). With the help of energy conservation
we find

e™+ V n-1 m {n-1){a+5/2) 1 3 {n-1)/2
pt"' (m)—out nt b

m V +5/2 n-1

g3y3/2 a 5/2

(2.13)

n

g e' '=exp bum, =exp b m —gQ;
i=1 i i

ebeecg e-bQ{

Equation (2.6) now takes the form

(2 7)

where, with use of Stirling's formula,

cVma+ 5/2

f(m, n) = -nlnn+ n+ (n —l)ln»„,+„,- . (2.14)

The sum over n can be approximated by an integral

gV n'1
p,„,(m)=ee' g, —,P dm, m,.'

n 2 + i=-1

C,„,{ )=ce' f dee (2.15)

x Q'pe i 5 E —m 5 p.

(2.8)

which shows that e' at least reproduces itself.
Equation (2.8) also shows that large kinetic ener-
gies are exponentially damped, most of the energy
going into mass.

in which the integrand is maximal at sf/an=0,
i.e. , at

a+ 5/2 1/ (a+ 7/2)

+max
p

3g3/2 (2.16)

This maximum is within the region n ~ Cm' '
where our estimates apply, ' the contribution from
n & Cm' ' will not affect the following conclusions.
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The value of f at its maximum is

= c m'"'/" /'~'"/'~
Jmax

thus
( ) b m ( r (a+ 5/2) /(a+ 7/2))

Olltk / PX j y

(2.17)

(2.18)

we find the sum over n has the approximate form
(with c' = cv/b'b"')

72 ~

5/2ebmec 'lnm

which increases exponentially faster than p;„. So
the bootstrap condition cannot be satisfied for

5P=1, 0& -2.
p=]., g = ——,'. In this case, the integral over the

masses and momenta available to any one particle
is of order b "'ln(A/m, ) [Eqs. (2.11) and (2. 12)].
The contribution to the n-particle term is again
maximal when A =m/n. The nth term is of order

~ "5/2+ c 'eb m (2.21)
confirming our earlier statement that p =1, a = -2
satisfies the bootstrap condition as far as the ex-
ponential is concerned, but not in the power be-
havior. The power a«, exceeds ——,

'
by a term of

order c' = cv/b'b'", i.e. , by a. numerical factor
which depends on the parameters of the model.

If we had followed Hagedorn' and had included
the phase space associated with center-of-mass
motions, an extra factor

(2.19)

V) .(
'

m, ))'

cV m

0
(2.20)

which is again well within the range n ~Cm' '
where our approximations make sense. Dropping
some logarithmic factors which are of purely sec-
ondary interest compared to the power behavior,

where the factor (m/n) '" is obtained by working
out the consequences of energy-momentum con-
servation for the nth particle with more care than
in the previous ca,se (the numerical coefficient has
still been approximated very crudely, however,
since we will not make use of it). Proceeding a,s
before, one easily finds that the maximum in the
sum over n occurs at

ce' V (c'lnm)" '
m b3b~/2 (n —1)!

(2.22)

which sums to

(2.23)

Here the discrepancy in the power a has grown by
an additional & as mentioned in Sec. I.

p =1, a& ——,'. In this case the contribution to the
nth term comes mainly from the region where all
P,. are small, one m, is large, and the other m,
are small. It turns out that n=2 is the dominant
term. Therefore, we begin with a careful evalu-
ation of the n = 2 term:

(V/b') (m,./b)'" = (V/b')(m/nb)'"

would have occurred. Equation (2.19) would have
read

(„i( ) (
)e'

(
v )(dv) (m/((m, ))"

'

2

((„".=,'(m)=, n dc "fd;'(l(d. d, —( )li'(p, +),(,). (2.24)

Four of the six momentum integrations can be done with the aid of the 6 functions, and the remaining two
angular integrations simply give 4m. So we obtain the exact relation

m mp ! m-ml
p",„,'(m) =, md, p(„(m~) ( dm, p;„(m2)

x (m'+ m, ' —m, ')(m'+ m, ' —m, ')([m" —(m, —m, )'][m' —(m, + m, )']]'".
(2.25)

Speci@izing to p = cm'e', changing to the variables m, =m, +m„and using the symmetry between positive
and negative m, we rewrite (2.25) as

m m 2mp

0
(2.26)

which is still exact. One easily sees that the integrand peaks exponentially at ml+m2 m, and that m,
large and m, small, or vice versa. (i.e. , ~m ~

= m) is favored by a power. This peak region is indicated in
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Fig. l. In view of the peaking, we can approximate (m' —m, ')'" by (2m)"'(m —m, )"', (m, ' —m ') by

2m(m, m-), (m'-m ')"' by (2m)"'(m —m )"', and (m' —m, 'm ') by 2m'(m —m ), obtaining

2 m m+-2 mo

p",„',(m)=, ,m' dm, e' +(m —m, )" dm (m, —m )'(m —m )"'. (2.27)

In the limit b '«m„m, is so near m that the sec-
ond integral becomes

lN~-2 m(& (2m )a+5/2
dm (m —m )a-3/2 o

-(n+2)
'

and p",„,' can be evaluated as

(27/)3/2c Vm„"3/2

(2.26)

(2.29)

One can also evaluate the limit b '» m„obtaining
m'e' with a somewhat different numerical coeffi-
cient. The estimate (2.29) should not be too bad
for the experimental parameters" b '= ma (i.e. ,
b '=160 MeV, m, =140 MeV). But the important
point here is that p",«equals p;„~imes a numerical
coefficient; the power m' as well as the exponent
e' has reproduced itself. The exact value of the
numerical coefficient is of somewhat secondary
interest and is, in any case, sensitive to the low'-

mass spectrum which is not well represented by
the asymptotic form cm'e'm.

The contributions from higher n are also maxi-
mal when one ma.ss is large and all others are
small. One gets approximately

(„) (cm'e' ) (27/)"'cVm, ""' "-'

Oo xn-1

P...(m) =W. (m) Z („1),,

(2 )
3/2 Vm a+3/2

0

( 3)b3b3/2

(2.31)

(2.32)

The bootstrap condition ppgf ping requires

(2.33)

l.e. )

x = ln2 = 0.69 . (2.34)

This provides one constraint on the parameters of
the model (a, b, c, V), leaving three free param-
eters. Concerning the detailed form of Eq. (2.32),
however, we remind the reader once more that x
is sensitive to the low-mass spectrum, so that
(2.32) is not expected to be very accurate.

Here m'e' comes from the one high-mass factor,
as in the n=2 case. The factorial 1/(n —1)!comes
from 1/n! times an n representing the fact that the
integrand peaks when any one of the n particles
has large m, . There is a factor cV/b' for ea.ch
new particle, a factor m, '"/b'" for each new

f d'p, , with the m,."' getting absorbed into a factor
m, '""/(-a ——,') for each new f dm;m;"'". Finally,
the (2n)3/2 is our best estimate of the numerical
coefficient. Again, the important point is that
pt"„~t equals p&„ times a numerical coefficient. Add-

ing all terms, we obtain

m-mp-
III. THE PARTICLE SPECTRUM

g I 0fl S
I'Q Il CI

ITl0

I

IT!p m —m 0

FIG. 1. The density of two-particle states, ppUg {lpga),

as a function of m& and m2.

The relation of the particle spectrum p- cm '"e"
to the data (as tabulated in the Particle Properties
Tables) has been studied by Hagedorn. " The ex-
perimental p(m) rises rapidly (Fig. 2) and is con-
sistent with theory up to energies where our de-
tailed knowledge of the particle spectrum becomes
seriously incomplete. This is encouraging, but
does not prove the model is correct, since other
rapidly rising functions of m can also be devised
which fit the data with a couple of adjustable pa-
rameters. By the same token, it is not possible
to distinguish between a = ——,

' and a somewhat less
than -2.

Up to this point we have 'discussed the over-all p
counting all hadrons. It is possible to make simi-
lar theoretical arguments concerning the spectrum
Pa3&(m) for sPecific quantum numbers, such as
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xJ d'p, . 5(QE, — )cp.(r, pI 5(r, &; —
8)

x5 S,. —S 5 Q,. —Q (3 1)

and

P»o oui(m) m~~P»oie(m) i (3.2)

plus the conditions p»@(m&m, »z) =0 and

P»o(m&ma»o) -0, where m, »o is the mass of
lightest hadron with quantum numbers B, S, and

Q. In practice, at any nz, only a finite number of
B,, S, , and Q, contribute, of order

Thus, for

p(m) = Z p»g (m)
B,S,Q

(3.4)

to hold with p(m) —cm'e', we must have at least

Q. ~
P. g

4~o
~V

a = 2.63 &&10 [Mev ]
ITI =500 MeV

To= l60 MeV

0

O

O

JANUARY l967~ (l452 STATES)
'AP R IL l966

$ 1971 STATES)

OCTOBER 1964
(609 STATES )

NCE IS COUNTED
EIGHT Z = (2J+1)(2I+I) x2
NTIPARTICLE 1

ANTIPARTICLE J
ED BY A GAUSS

TO Z WITH WIDTH

BOO l600 2400 m [Mev]

FIG. 2. The smoothed experimental mass spectrum as
it developed from 1964 to 1967, compared with the func-
tion p(m) =a(mt) + m ) ~4exp(m/To), which has the as-
ymptotic form required by Hagedorn's theory. The fig-
ure is taken from Hagedorn, Ref. 21.

B=1, S=O, or B=O, S=1, etc. The formulas for
p»z(m) in our model are

y n-11 n

p»Q out(m) + 3 II t
dmi 2 pe s o- in(mi )

fl =2

one pe s, Q.(m) as large as (m, /m)'cm'e' at each
m. Consider the n = 2 contribution from this
particular p~. ~. Q, and its antiparticle density
p e. s. o. to p,»,„,(m) in Eq. (3.1). It is of

I
order p«p

—c'm' e™,where a' is some power not
exceeding a. Next, consider the n= 2 contribution
to ea.ch p»z(m) from p„a(m, =m —m, »@) and

p»o(m, =m, »o). By the arguments of Sec. II, it
a'gives p»z(m) —c»zm' e . If, from summing over

other contributions, some p~. ~.Q. grows with a
higher power a" & a', we can go back and consider
again the n=2 contribution to p», (m) from
pe s, o (large m, ) and p s, s Q (small m, ),
with the result that pppp also grows with the higher
power. Proceeding in this way, we find that all
ppgQ grow asymptotically as

p»g (m) c»om e (3.5)

where a" is a common power.
Determination of c»Q and (a" —a) from the

coupled equations (3.1), (3.2), and (3.4) is an inter-
esting problem which we shall leave for future con-
sideration, since it seems to be sensitive to
"transient" terms which die away at large m but

are important near threshold. Experimentally, the
density of hadron states with the quantum numbers
of 71, K, N, and 7, respectively, rises rapidly
above their thresholds, in a manner similar to the
total density. '

Our model also gives hadron states in "exotic
channels" such as B= 1, S = 1 or B = 0, Q = 2 since,
for example, K'p and m' w' states are counted. At

present, no particles with these quantum numbers
have been firmly established. Dynamical models"
indicate that the potentials for these states are
relatively weak or possibly repulsive, unlike the
strongly attractive potentials for nonexotic states.
Evidently, to fit the data in detail we must include
these differences in the potential for various states,
just as to fit the nuclear data in detail one includes
effects of the nuclear potential. ' Of course, once
two-body potentials are introduced, the model be-
comes less unique. The result might be that exotic
states are not confined inside the box at all. Or
perhaps there is a repulsive potential which simply
raises the "floor" of the box on the order of 1 BeV
for each pair with exotic quantum numbers. In the
latter case, exotic resonances would occur once the
mass was higher than the "floor, " and their level
density would rise asymptotically in the usual fash-

a" bmion pggQ c+$QM 'e

The reader may ask why one should not include
attractive potentials for "nonexotic" channels as
well. The answer is that the main effects of attrac-
tive potentials have already been included implic-
itly, not only in the walls of the box but also in the
resonance states. To see this, consider two par-
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IV. STATISTICALLY DOMINANT COUPLINGS

Let us consider the decay of a typical resonance
of mass m. Assume that the transition rates to the
various open channels are proportional to phase
space, which may be sensible at high mass where
a large number of channels are open. Since the
interaction radius is of the same order as the had-
ron radius, we may use the phase space in our box
to discuss decays. We can take over directly the
results of Sec. II for the phase space as a function
of the number, masses, and momenta of the par-
ticles in the box.

In practice, a heavy resonance decays into light-
er resonances, which themselves decay, forming
a chain which eventually leads to a final state con-
taining light metastable particles such as pions.
Since we are counting all channels including those
with high-ma, ss (unstable) particles, we shall only
obtain statements about the first generation in the
chain. In the present paper, we shall not consider
the more complex question of what emerges at the
end of the whole chain. Thus we will not be able to
make direct comparisons with presently available
data, though our results on "first-generation"
couplings can be compared with theoretical ver-
tices appearing in dynamical schemes such as the
Veneziano model.

First, consider the number of particles produced
in the first-generation decay. It was shown in Eq.
(2.20) that for a = --,' (Hagedorn's model), phase
space peaks at n-lnm. On the other hand, for
a& --,', phase space is maximal at n=2 and is dis-
tributed according to Eqs. (2.31) and (2.34) with
probabilitie s

( )
(ln2)" '

(n —I)! ' (4.1)

independent of mass. Numerically, P(2) =0.69,
P(3)= 0.24, and P(4) = 0.06, i.e. , the 2- and 3-

ticles which attract each other moving around in a
box, As a result of the attraction, the wave func-
tion involving the relative coordinate of the two par-
ticles oscillates more rapidly than usually when

the particles are close together. The more rapid
oscillation means that more states fit into the box;
specifically, when there is one extra oscillation
(phase shift of 180'), one extra state can be fitted
into the box. In this case, although an exact cal-
culation would count states of motion of the orig-
inal two particles with their mutual potential, it is
approximately valid to omit the potential and count
states of motion of the original two particles
(treated as noninteracting) plus states of motion of
the resonance. " This is what we have been doing
by counting all resonances as independent particles.

particle channels dominate very strongly. The
average particle number is

n = g nP(n)
n=2

=—(xe' —x)
x=x2

= 1+2 ln2 = 2.4 . (4.2)

To the best of the author's knowledge, this is the
first time that the theoretically fashionable proce-
dure of coupling resonances mainly to two-body or
three-body channels has been justified by a system-
atic argument.

It was also shown in Sec. II that for a& ——'„phase
space peaks when one particle has most of the
mass and the other particles have as little mass as
possible. The phase-space contribution for each
low-mass particle is nearly independent of that for
the others. These facts suggest a physical inter-
pretation of Eq. (4.1): It is a modified Poisson dis-
tribution in the (n —1) low-mass particles (with
n —1=0, of course, omitted). The low-mass par-
ticles are emitted almost independently because
each carries off only a small fraction of the total
energy.

The other characteristics of heavy-resonance de-
cay are easily read off from Sec. II. Large kinetic
energies Q; are damped by the factor exp(-bQ; )
IEq. (2.8) j for both a = ——,

'
and a& ——,'. To put it

another way, most of the available energy goes
into mass rather than kinetic energy,

V. CONNECTION BETWEEN DUALITY AND
STATISTICAL MODEL

Dual models, "'"some forms of the Veneziano
model, " " and the bootstrap statistical model' all
lead to hadron spectra of type p(m) —cm'e' . In the
present section, we discuss a possible reason for

(4 3)

For a =--, , individual masses are distributed as
dm, /m;, and the n particles tend to divide up the
energy evenly. For a& ——'„as already mentioned,
one particle gets nearly all the mass; the other
masses are small and distributed as m,.""'dm,
These features are shown in Fig. 1 for the partic-
ular case n=2, a& ——,'.

One also finds that production of specific heavy
particles, such as PP pairs, in resonance decay is
damped exponentially because of the statistical
competition. '
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this remarkable correspondence. "
One of the features of dual and Veneziano mod-

els is that a typical amplitude (specifically, a
nonexotic amplitude which is not dual to the Pome-
ranchukon) can be represented as a sum over di-
rect-channel resonances, even at arbitrarily high
energies. From an over-all point of view, this
implies that the supply of resonances in each mass
interval, multiplied by the average resonance
width I'„,(m), must be comparable to the number
of channels open at each center-of-mass energy:

N, (m) p(m)i„,(m) . (5.1)

m +~2 m0

x dm (m, ' —m ')'. (5.3)
0

For our case (a & ——,'), the integrand peaks strong-
ly at m =m, m =m, (i.e. , m, la.rge, and m,
small, or vice versa) so we may approximate
(m ' —m ')' by (2m+)'(m, —m )'. The integral then

gives
a bm a+1

„-2( )
cm e cmp

5 -(a +1)

Similarly,

(5 4)

N,"(m) =-cm'e' cm "'
b(n —1)! -(a + 1)

and

p m a+1 n-1

(5.5)

Thus the number of open channels in the statistical
model (with either a =-—,

' or a& ——', ) rises exactly in
parallel with the number of resonances —just what

is needed for duality. For comparison, the reader
can easily verify that this condition is generally

If we make the usual assumption, consistent with
existing data, that I',„,varies only slowly (at most
as a power) with mass, then the requirement be-
comes essentially N, (m) ~ p(m) .

I et us calculate the number of two-body channels
open in the statistical model. At center-of-mass
energy m, the number is

] m~m

N,"='(m) =—, dm, (cm, 'e' l)
m0

m~ m

x dm, (cm, 'e" l), (5.2)
0

where 1/2! is inserted to avoid double counting the

ij and ji channels. Equation (5.1) is similar to the
expression for two-body phase space. In terms of
the variables m, =m, +m„(5.2) becomes

C2 m

N,"='(m) = „„dm,e' +

2 m0

not satisfied by other expressions for the level
density, such as p(m) -m~, which are not solutions
of the statistical model.

This result could have been anticipated directly
from our basic equations (1.8) and (1.9). They can
be interpreted as providing one resonance level
for each scattering state that can get inside the
interaction volume with unit phase space. "

An estimate of the numerical coefficient in Eq.
(5.6) yields cm, "'/[-(a+1) j= 10. Thus one might
be worried that channels are much more numerous
than resonances even though they both rise with the
same functional dependence on mass. But when one
takes proper account of the states of motion in each
channel, as in Eqs. (1.8) and (1.9), this discrep-
ancy is removed.

VI. THERMODYNAMIC CONTENT OF MODEL

E = dEEp(E)e ei
0

dE p(E)e "' (6.1).

With the center of mass at rest, E =m and the den-
sity of states is just p(m) =cm'e' . This gives in-
tegrals of the form

ma+ lem(b-1/2)

m0

(6 2)

which are defined only if T & 5 '. Thus, b '—= T, is
a maximum temPexatnve. To see what happens in

more detail, consider the mathematical example
a =0, for which the integrals can be performed
exactly, yielding

TQT

T, —T
' (6.3)

This result is plotted in Fig. 3. At T =0, the ener-
gy in our box is just the ground-state rest mass
m0. As T increases to T0, the average energy
rises to infinity. Physically, what is happening is
that as the energy in the box increases, it goes
into the mass of new particles rather than into
raising the kinetic energy of the existing parti-
cles." In other words, the specific heat C~ =dE/dT
rises because of the many new particle modes the
energy can go into.

Another property of the model at T = T0 is the
existence of large energy fluctuations. " Energy

As we have seen, it is possible to set up a statis-
tical model without reference to thermodynamics.
However, now that a level density has been derived,
we can write thermodynamic expressions in the
usual way and study them. In the present section
we review Hagedorn's remarkable results on this
subject.

If thermodynamic equilibrium could be achieved
in our box, the average energy would be
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fluctuations are defined by

2 E2 1/2

(6.4)

where

mo

I

I

I

I

I

I

I

TO

(=ISO MeV)

FIG. 3. Schematic plot of average energy E against
temperature T for the case p(yn&mo} = cm e ~, a ~-2.

dmm'pm e dmpm e-

(6.5)

is aga. in easily calculated with our p(m). One finds
large AE/E- I as T approaches T, The. reason is
ea.sily seen. Normally p(m)e is a very strongly
peaked function of mass, and E' and E' lie close
together, near the peak. But in our case, as T
approaches T„p(m)e is a. slowly varying func-
tion of mass, allowing E' and E' to differ consid-
erably. This is reminiscent of other situations in
thermodynamics where a parameter is not sharply
specified by 7 and exhibits large fluctuations; it
often happens at a phase transition if some phys-
ical parameter is different in the two phases.

Hagedorn has made several important applica-
tions of the maximum-temperature concept. One
application is to high-energy hadron reactions. 7

Each of the incoming hadrons is normally in its
ground state (the lowest mass state for a partic-
ular baryon number, strangeness, and charge),
and thus can be said to have zero internal temper-
ature according to Eq. (6.3). During the collision,
however, some of the incoming energy is con-
verted into internal energy. In the original model
of this type, Fermi's statistical model' for pp col-
lisions, all of the incoming center-of-mass kinetic
energy went into internal energy of an intermediate
interaction volume. It was assumed that statisti-
cal equilibrium is reached in the volume; i.e., the
particles in the volume could approximately be
described as having a uniform nonzero tempera-
ture. The subsequent decay into final states then

follows the statistical distribution in the box.
Fermi's model fails to fit high-energy data well.

In particular, it fails to predict sufficiently strong
forward-backward peaking in the c.m. system.
Hagedorn and Ranft' removed this problem by as-
suming that the incoming particles retain a sub-
stantial fraction of their longitudinal momentum,
converting the rest into internal energy. The in-
ternal energy is greatest at small impact param-
eters where "friction" is most intense, and less at
large impact parameters. It is assumed that local
thermodynamic equilibrium is achieved, the tem-
perature being greatest at small impact param-
eters. Each portion of the incoming particles then
decays into a distribution of final particles con-
trolled by its local temperature.

At high energies the internal energies are quite
high, and therefore correspond (Fig. 3) to temper-
atures near T, ~ Thus secondary particles boil off
with the weight factor exp[-(M'+ p~~'+ p„')"'T], T
being close to but always below T,. Hagedorn and
collaborators" have made detailed fits on this
basis; among the most impressive are the fits at
large P~ where the weight factor is approximately
exp(-P, /T) = exp( P~/To), -and the fits at large M
(production of K pairs, PP pairs, etc. ) where the
factor is approximately exp(-M/T) = exp(-M/To).
From these fits, the value

Tp 160 MeV (6.6)

has been obtained. At present, these fits consti-
tute the best numerical check on the model.

It is interesting to study how the thermodynam-
ics depends on the power a in p(m) cm'e' . If a
is not zero, evalutation of the integrals in F. be-
comes more complicated, and the analog of Eq.
(6.3) develops a branch point in the complex tem-
perature plane at T = T„ instead of the simple pole
found in our example. However, the qualitative
situation remains that pictured in Fig. 3, provided
a ~ -2. If a& -2, the situation changes radically
because the integrand of Eel. (6.2) favors low ener-
gies even at T =T,. E rises with T as usual, but
only to the limit

g+1
lim E =mo

r-ro;a(-2 ~ + 2
(6.7)

which is 3m, at a = --,', for example. This behavior
is pictured schematically in Fig. 4. The exact val-
ue of the limit in Eq. (6.7) is not to be taken seri-
ously, being sensitive to the low-mass spectrum
which may differ from cm'e™.But the qualitative
behavior is that pictured in Fig. 4: There is a max-
imum energy as well as a maximum temperature
above which thermodynamic equilbrium cannot be
achieved.

Since a& ——, in our model, the picture envisioned
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by Fermi of high-energy collisions achieving a uni-
form temperature fails on theoretical as well as
experimental grounds. However, Hagedorn's non-
uniform temperature distribution is allowed pro-
vided a & ——,. The rea, son is that if Eq. (6.1) is
applied to each local region, the density of states
includes d'p, for movement of the local region rel-
ative to the over-all c.m. system. The extra
d'p, introduces a factor m'" into p$„,$-m'+' 'e
and shifts the region where high-energy reactions
can be described by thermodynamics to a ~ --,'."

Models with a& ——, are possible, though empir-
ically somewhat unlikely in view of the success of
Hagedorn's thermodynamic description of reac-
tions. They are possible because they satisfy a
"correspondence principle": There is a range of
low temperatures and energies, including all tem-
peratures at which thermodynamics has received
laboratory checks, in which a macxoscoPic box
containing hadrons with an a& --, distribution will
behave according to normal thermodynamics.
The same cannot be said for distributions
p(m) —exp(bm «) with p& 1, yielded by some versions
of the Veneziano model ~ These distributions do not

allow the integrals in E to converge even at arbi-
trarily low temperatures, and thus do not satisfy
the correspondence principle.

Another possible application of the high-mass
hadron spectrum is to macxost. ".opia states of very
high density occurring in astrophysics, for exam-
ple in the "big bang" and in the interior of neutron
stars. Unfortunately, these applications face a
serious difficulty: High-mass states become rel-
evant precisely when the density is so high that
hadrons are squeezing and overlapping each other
in space. Under these conditions, our derivation
of the hadron spectrum, which involved a box sur-
rounded by high walls and isolated from outside
influence, becomes questionable. Suppose, for
example, that the neighboring hadrons squeezed

the box to a smaller size. According to our self-
consistency relations (2.32) and (2.34), the other
parameters would have to adjust to the smaller
volume V; the adjustment is not unique because of
the presence of several parameters, but one pos-
sibility is a reduction in f«(i.e. , a.n increase in the
limiting temperature To).

Nevertheless, Hagedorn" and Huang and Wein-
berg" have courageously assumed that the hadron
spectrum is unchanged in a densely populated en-
vironment, and have studied the "big bang" theory.
According to cosmology, the universe cools as it
expands following the "big bang, " from tempera-
tures that exceeded 1 MeV during the first second.
If the spectrum of particles did not rise exponen-
tially, the temperature would rise higher and high-
er as we proceed back into the first second, even-
tually reaching the ionization point where matter
dissociates into its quark constituents (if such a
point exists). If there was once a phase when

quarks dominated, quarks would still be quite nu-
merous today because the subsequent cooling was
too fast to allow all quarks to find each other and
annihilate. Zeldovich" has estimated quarks would
be about as common as gold, which is clearly con-
trary to observation.

If the spectrum rises like p-e', a different sce-
nario is obtained. The temperature never rises
above 160 MeV, and quarks do not necessarily be-
come numerous. This possibility has been worked
out by Hagedorn" for the case a = --,', net baryon
number zero, and by Huang and Weinberg" for
more general cases including nonzero net baryon
number.
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APPENDIX: DENSITY OF STATES FOR

P. (m) = 5(m — rnQ)

If only a single variety of particle with mass m,
is put into the box, in all possible combinations
n = 2, 3, . . .~, the density of states is

TQ

FIG. 4. Schematic plot of average energy E against
temperature T for the case p(m &mo) = cm'e, a & —2.
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Consider first how one would evaluate (1.6) if the center-of-mass momentum were unrestricted and m, =0
(if we multiplied by a spin factor 2", this would give the density of photon states in an enclosed volume).
In the absence of 5'(p, ), all angular integrations can be done immediately and we obtain

(Al)

The first integration, using the 6 function, gives
(m -Q";:,P;)'. All subsequent integrations have the
form

yf
go dP(Pg (y Pg) =2y

( 3))
.

Working all the way down the chain, we obtain

(A3)

The sum over all n can be approximated by an in-
tegral,

p(m) -— dn e""
Sl 0

where, with the aid of Stirling's formula,

8mm V
f(n, m) = nln, —nlnn+n

—(3n —1) ln(3n —1) + (3n —1) .

The maximum of f, where Sf/an=0, occurs at

8&m'V "'

at which point

(A6) for photons in thermal equilibrium in an en-
closed volume: the temperature T goes like

kT =(kinetic energy)„=m, /n ~m"'.

Relabeling the total energy m by F. , we obtain the
familiar relation E cc T'.

Returning to the original problem, we find that
p~ exp(bm"') still holds for particles with mass
m, + 0, because the average energy per particle
grows like m/n-m"' and eventually becomes so
large that the I est mass m, can be neglected. The
behavior p~ exp(bm"') is also unaffected by re-
stricting the center-of-mass momentum to zero,
because 1 d'p, ~ only contributes -(m/n)'.

In the other cases considered in this paper, it is
not possible to carry out the integrations exactly
and approximations based on the optimum contri-
bution from each particle must be made. It is re-
assuring to apply this procedure to Eq. (A1) and
check that it yields essentially the same behavior
as the exact integration of that equation. The inte-
grand of Eq. (A1) is maximal when each p,. is of
order m/n. Giving this value to each P;, and not
worrying much about numerical coefficients, we
obtain the estimate

f,„=4n.

Thus, p grows as

p(m) exp 4 p m

(A7)

"
(4

m't )'1 P)"
We digress briefly to note the consequence of Eq. which again leads to exp(m'") growth of p.
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We write down a dual expression for the differential cross section in two-body reactions
for inclusive production of a single particle with definite momentum. The formula is similar
to the usual five-point amplitude but where the range of integration has changed. We show
that it describes both limiting fragmentation and pionization. It furthermore shows approxi-
mate factorization as a function of p~ and p~~ . The asymptotic behavior inp~ is universal.
We also generalize the formula for inclusive reactions where n particles are detected.

I. INTRODUCTION

Recently there has been considerable interest in
the study of single-particle distributions in high-
energy reactions. Several theoretical properties
were predicted both from the parton model" and

from the multiperipheral model. '
Some of the interesting features that have come

out both from these models and from experiment
are': (i) The distribution in longitudinal momenta
approaches a finite limit both in the lab frame
(limiting fragmentation') and in the c.m. frame

(pionization). (ii) In the limiting-fragmentation
region the differential cross section can be written
approximately as

Po«l~'0 = f(P(i)G(f. '),

where G(p, ') is a universal function (a decreasing
exponential). (iii) In the limit of fast fragments,
one should recover Regge behavior.

In this paper we want to show how the Veneziano
amplitude can be used to derive an explicit for-
mula for the differential cross sections which
demonstrates all the properties stated above and


