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7t-exchange graphs of Fig. 2. N. F. Bali, G. F. Chew,
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Berger, Ref. 4, have argued that this is not unreasonable.

6For elementary pion exchange this choice would be
correct, and empirically it is a reasonable approxima-
tion to the data.

'The widths chosen for the p and f are larger than the
accepted values, but it is well known that in strong inter-
actions, the p typically has an observed width of -150
MeV. When we study the question of truncation of the
Breit-Wigner forms, the effective widths are about 25/0
smaller than the input widths.

Note that the vertical scale is twice that for Fig. 4(a);
in order to compare the two figures it should be remem-
bered that the total 37t spectrum must be the same for
4(a) as for 4(b).

The truncation is important only for the 7(+ ~, masses
below the p band, as we have found by truncating the low-
er and upper halves of the p independently. For the form-
er the results are similar to those shown.

~ The incoherent background tends to extend the '3x mass
spectrum to higher values, which are difficult to obtain
in our double-Regge model. This background, of course,
affects the 7t+7(' mass spectrum, but it does not give rise
to threshold enhancements. The constant C of Eq. (2.4)
has a numerical value of 0.18,
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We derive exact bounds for the K&3 decay form factors f.,(t). Particularly, we find the
bound (mx —m„)l f+(0)l ~16(avE(0)lt (ms + m~) (mr + m~ ~

) t, where A(0) is the propa-
gator of the divergence of the strangeness-changing current at zero momentum. If we fur-
ther assume the Hamiltonian of Gell-Mann, Oakes, and Renner in order to estimate 6(0), we
obtain lf+(0)l ~ l.o. Similarly, an inequality testing the standard EC&& soft-pion theorem is
found to be well satisfied. In addition, a new inequality involving derivatives of f+(t) is de-
rived. Taking )+ - 0.02, this inequality leads to

I f (0)l ~ 0.22.

I. INTRODUCTION AND SUMMARY
OF PRINCIPAL RESULTS

According to the standard Cabibbo theory, all
the properties of the K» decays are obtainable
from two form factors f, (t) defined by

which can be obtained from Eq. (1.1) by means of

-f& '(p') Ia, &„" '"(o) I&'(p))

Recently, Li and Pagels' derived the following
exact inequality for the derivative of d(t):

= (4p,p.' V') "'( l )"'i t(p„ +p ', )f,(t) + (p „-p ', )f (t)j,
ld'(o)

I
- (advs)~"(o)&"',

where a(t) is defined by

(1.4)

with t = -(p —p')'. It is convenient to consider the
combination

d(t) = (m ' -I,')f,(t)+tf (t), with f = -q', and I is the numerical integral
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QO

t2 (t t )1/2($ t )1j21 (1.6)
at the point f = 6=m ' -n2, '. From Eqs. (1.13) and

(1.15), we find

with If./f. I= 1.43, (1.16)

t, = (m~+n2, )',

t, = (n2, -n2, )'.
(1.7)

a(x) =e,(x)+ e, S,(x)+ e, S,(x), (1.8)

If we further assume that the Hamiltonian den-
sity is given by''

neglecting the small correction due to terms of
order nz,

'
E.quation (1.16) is experimentally rea-

sonable.
We also derive an inequality involving d'(0),

l~dlo) halo)l l,~low r. „4—4)"'
to t0

where S2 2(x) are members of the (3, 3*)$(3*,3)
representation of SW(3) = SU ~'(3) 8 SU ~ '(3) and

EI,(x) is the SW(3) invariant, then it is known"
that

&&-,'(A, +A, )(1+K')' '

where y is an arbitrary real number and

A, = I1+4t,y[, A, = Il 4t,yI,

(1.17)

6(0) = ——E, (0 Is, (o) fo) . (1.9) (1.18)

Many estimates of the vacuum expectation value
of S2(x) suggest that it is small, corresponding
to the approximate SU(3) invariance of the vacuum
state. Indeed, the estimate of Ref. 5 gives

a"'(0) = I.olm, f, . (1.10)

Using f, (0) =0.845, Eq. (1.4) then implies a rather
stringent bound,

I~+».3., I
= o.29,

as has been noted by Li and Pagels. ' As usual, (
and A. „are defined by

(f t )1/2[t 1/2 (I t )1/2]-1
0 1 0 0 1

1 2

I f (0)
I

0.33, 0.55, and 1.22. (1.19)

When we set y = 0, Eq. (1.17) leads to an inequality
for ld'(0) I, which is numerically slightly better
than but practically almost indistinguishable from
that given by Li and Pagels. However, if we
choose y to be 1n, y = —A, , then we find yd(0) +d'(0)
=f (0) and our inequality gives an upper bound for
lf (0)

I
when A. , is known. For example, the values

A., =0.02, 0.03, and 0.06 give, respectively,

(=f (0)/f, (0), X,=m, ' f, '(0)/f, (0). (1.12)

Experimental values' for ( and A., are still uncer-
tain but they appear to be consistent with Eq. (1.11)
if IE I

is not too large.
Unfortunately, the method of Li and Pagels is

not directly applicable to an evaluation of bounds
for Id(0)

I
itself. The purpose of this note is first

to derive an exact upper bound for ld(0)
I

and sec-
ond to improve the bound for ld'(0) I. We derive,
for real t with t & t„
ld(t)

I

~ 4[-,'-71'(0)]""

Using the previous estimate, Eq. (1.10), for n, (0)
and noting that

II. D I':RIVATION

First, we write down the familiar Lehmann-
Kallen representation for b, (t):

t /

~(t) = dt' p

t0

where the spectral weight p(t) is given by

p( ~') =-,'(2;)'gl(ols„v„"-"l(o) In) I'6i" (q —p,).

(2.1)

(2.2)

Because of the positivity of p(t), we can compute
a lower bound for it by restricting the summation
over ln) to the K-1/ intermediate states only. Then,
as has been noted by Li and Pagels, we discover
for t~ t, the inequality

Id(t) I' ~ "2'1/'&(t f.) "'(t —t, )
' 'P-(t) (2.3)

d(o) = (m,
' —m. ')f, (o),

Eq. (1.13) leads to

lf, (0) I= 1.o1, (1.14)

Now, the usual consideration shows that d(f) is
the boundary value of a real analytic function
[which we shall simply write as d(t) again] at the
cut t, ~ t & ~. The reality condition implies

d(6) = (m
' m„')[f /f„+O(m, )-] (1.15)

which is reasonable in view of the Ademollo-Gatto
theorem. Next, we use our inequality (1.13) to
test the standard soft-pion theorem"

(2.4)

in the cut plane. Equation (2.3) enables us to com-
pute an upper bound of ld(t) I

on the cut. If b.(0) is
known, then we can estimate
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—7l+0
tp

(2.s)
= 1, and the three points $ = ~, a, and t, are pro-
jected onto z =-1, 0, and -1, respectively. Defining

It is now natural to question if we can get some
information regarding Id(0) I

when a(0) is known.

As we shall see shortly, the answer is affirma-
tive. To that end we shall assume that d(t) satis-
fies a dispersion relation with finite numbers of
subtractions. As a matter of fact, the validity of

Eq. (2.5) strongly suggests that it may satisfy an

unsubtracted dispersion relation, but we need not
assume so for our purpose.

In order not to introduce unknown parameters,
we will make use of the following method. I et
(t((t) be an arbitrary analytic function of t with a,

possible cut at the interval t, t& . Moreover,
we require p(t) to go to zero sufficiently fast at
infinity. Then, a function G(t) =—P(t)d(t) is an ana-
lytic function of t with cut at t, ~ t & ~ and will satis-
fy the unsubtracted dispersion relation

D(z) -=d($), F(z) =-f((),
Eq. (2.7) is now written as

(2.1 1)

1
d(a) = ——

271
d 8 cot—', 8 D(e' ")F(e' "), (2.12)

F(0) =1 (2.13)

and the integral on the right-hand side of Eq.
(2.12) is finite.

Let tz(g) be an arbitrary positive function of 8 on

the circle. We can then majorize the integral of
Eq. (2.12) by means of the Schwarz inequality to
obtain

where we parametrized z = e' on the circle.
In terms of the new variable, E(z) is an analytic

function inside Iz I
& 1, subject only to the con-

straints that

((t(d(t( 2, fs=(. , ((((&(((, (2.6) 1 ' '" cot (—g) i1/2
Id(a) I

= — dg ' —ID(. ')
I2vr, tz(g)

where the integration is over both upper and lower
cuts at t, & $ & ~. As an example of p(t) satisfying
these required conditions, we could choose

2 77 - Z/2
x dog g (2.i4)

y(t) = I(t t, )"'+(t ——e)"'] -",

where c is an arbitrary real constant larger than

t, and n is a sufficiently large positive number.
Our method is essentially a generalization' of the
continuous-moment sum rule.

If we fix the value of t by setting t =Q & tp, Eq.
(2.6) is now written as

Choosing

tz(g) = Icot—,'8Icos'( —,'g)

x 1+ ' ta,n'(-,' g) 1+ ' ' tan'(-,' g)
I.p

—a to a

(2. is)
and noting the reality condition Eq. (2.4), we find

d(a) =, d$ f($)d((),
1 1

where we set

f(&)=, y(&).

(2.7)

(2.8)

1d8„cot'(-', 8) ID(e'8) I' & —',"v'b, (0), (2.16)

where we used the inequality Eq. (2.5) after we re-
mapped the integral on the unit circle into the
original cut plane. Setting

From our construction, f(() is an arbitrary ana-
lytic function of ( in the cut plane, provided that it
satisfies the condition

f(a) =1

27r

Z= — dgt (8) IF(e*') I',

we find

(2.17)

and that the integral in Eq. (2.7) converges. This
fact is crucial to what follows.

It is more convenient to map our cut ( plane into
the interior of the unit circle, Iz I

& 1, by the fol-
lowing conf ormal transformation:

(( —t,)' '=in i, n=(t, —a)' '». (2.10)

By this transformation, it is easy to check that
the upper and lower cuts in the ( plane are respec-
tively mapped on lower and upper semicircle of Iz I

Id(a) I
- 8I.4»(0)]"'d"'. (2.18)

It is important to remember now that F(z) is an
a.rbitrary analytic function of z for Iz I

& 1 such that
F(0) = 1. We may forget about the condition that J
must be finite, since then Eq. (2.18) is trivially
satisfied. Hence, our task is to discover an ap-
propriate F(z) which minimizes the integral J.
At this point, we may remark that the method of
Li and Pagels is equivalent to setting F(z) =-1 iden-
tically. Because J becomes divergent with this
choice F(z) = 1, their method is not applicable to
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an evaluation of bounds for ~d(0) ~. At any rate,
k(6) given by Eq. (2.15) is singular at g=o and 2v,
so that it is not summable on the circle. To elim-
inate this deficiency, we set

ly more awkward method in deriving Eq. (2.25).
To find an inequality for d'(0), we differentiate

both sides of Eq. (2.6) with respect to t and then
set t = a & t, to obtain

E(z) =(1-z) 'G(z)

for a positive P. %e then have

(2.19)
d'(a)+yd(a) =

2
. d(, f((}d((), (2.26)

1

CUY

1Z= — de ~(e) ~G(e") ~',
27 ~

where tc(g) is given by

~(6) =~(~))(2sin-', t))" (P o).

(2.2o)

(2.21)

1= exp — d8 inn(g)
2m

(z = e"), (2.22)

where the infimum must be taken over all complex
numbers g„.. . , g~ and arbitrary non-negative

integer K. Therefore, we compute

Infg= —,
' 1+ 1+ — ' 2 23

Note that t()(0) is a positive summable function of

g on the unit circle, because of the multiplicative
factor sin'8(-,'8). Also, G(z) is an arbitrary ana-
lytic function of z for ~z

~

& 1 such that G(0) = 1. We

can now minimize the integral J by means of the
well known Szego theoremio, ix which states

1 2'
d e I (6) ~I + a,z + a,z'+ ~ . ~ +a„z"~'

0

where y is given by

y = --y'(u)=f'(e)1

y(e)
Repeating the same procedure as before, we find

lyd(e) + d '(e)
I

8[-', ~n, (0)l't 'd')'I 2 1'2
to —0

(2.27)

(2.28)

where J is defined now by

d en(e)sin'(-', tI) ~E{e")~', (2.29)

while k(g) is still given by Eq. (2.15).
An important difference in the present case as

compared to the previous one is that E(z) is an

arbitrary analytic function of z in ~z
~

& 1, which

now satisfies two constraints,

E(O) =1, E (O) = -4(t, —u)y. (2.30)

Before going into details, we remark that the re-
sult, Eq. (1.4), of I 1 and Pagels is obtainable from
Eq. (2.28} by setting y=0 and E(z) =1. Because of

the new constraint for E'(0), we cannot directly
apply the Szego theorem. However, we can still
evaluate an infimum of J as follows. Let us set

Note that the infimum does not depend" upon the
arbitrary constant P we introduced in Eq. (2.19).
In computing Eq. (2.23) we used the elementa, ry
formula

E(z) = [1-4(t, -e)yz]G(z)

w(g) =k(g)sin'(-,'6)

(2.31)

(2.24)

x[1+16(t,—a)'y' 8(t, —a)y cosa-]. (2.32)

Then, we have to minimize

Summarizing, we find finally

2 fr

de u (e ) ~G(e") ~' (2.33)

j./ 2-2

(d((z) (
&4 [-,')TS(0)]'t' 1+

0

y/2 -1/2
x 1+

to
(2.25)

When we replace a by t, this gives Eq. {1.13) of
Sec, I.

It is worth mentioning that we can also derive
Eq. (2.25) by a method more simple and mathe-
matically more rigorous than used here, as we

shall see in the Appendix. Also, we shall there
prove that our inequality is the best one we can
obtain. Unfortunately, the method does not seem
to be easily generalizable for inequalities involv-
ing d'(t), and therefore we have here used a slight-

with respect to an arbitrary analytic function G(z)
subject to the conditions

G(0) =1 G'(0) =0 (2.34)

Inf
2

dg so(O) ~I+ a,z'+ ~ . +a„z"~'

0

= Ig(0) ~'+ Ig'(0) I' (z = e"),
where g(z) is given by

e +z
);( ) = exp —

. de, . , ) (e)].
47t 0

e'~ —Z
(2.36)

Since the positive function g (8) given by Eq. (2.32)
is summable on the unit circle, we can apply a
generalization" of the Szego theorem which states
that



Using the formula

J
2 7r

d8cos8ln[1+ c'tan'( —,'8)] = -42j
1+p

J

�2
fr

d8 sin8ln[1+ c'tan'(-,'8)] = 0,

we compute

(c o- o),

Repeating essentially the same procedure, it is
not difficult to derive, for t & t, = 4 p.',

(t) f
«2[321~ (0)]1/2[(t t)1/2 t 1/2]jj+1/2

x (t t) -5/4 (2.43)

where to=4', , n xs an arbitrary non-negative num-
ber, and a„(0) is defined by

t. 1i2
f) d{a)+d'(a)

f
«[21ja(0)]"' 1+

to a L to a

1/2 -1j2gt0 tl 1 2 (1 ~If2)1/2
to —a

(2.37)

where A„A.„and K are

(Ol f„u=j j pjjl.-"

~en we set t = 0 and notice

Eq. (2.43) leads to the inequality

(2.44}

(2.46)

/l, = f1 + 4(t, -a)yf, /). , = fl -4(t, - a)~ f,

(2.36)
f dt „p(t) &—

4
(4t1)' '".

0
(2.46)

/l, +A, (t,)"'+(t, -a)"'
(t. —t,)"'

(t —t )' '+ (t —a)' ' '

When we set a=o, Eq. (2.37) reduces to Eq. (1.17).
Our upper bound for ld'(0) l, which is obtainable
from Eq (2.37). by setting @=0, is in principle an
improvement over that given by I i and Pagels.
However, both give essentially indistinguishable
numerical results.

The method outlined above is applicable to a
. variety of problems. For example, let us consid-
er the Lehmann-Kallen representation for the
hadronic electromagnetic current j„(x),

jjjl)j „j ) j (j)llo) f ,d~.
'
(j..—=—. & .&.)

In particular, if we set n = 1, the left-hand side of
Eq. (2.46) represents the Schwinger term and we
find that it must satisfy the absolute inequality

dt p(t) ~— (2.47

Applications to other problems will be given
elsewhere.¹teadded in p2"oof. After this paper had been
written, the author received a preprint by I i and
Pagels [Phys. Rev. D (to be published)], in which
they derive Eq. (1.13) by the method of Meiman.
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xp(m')a(x —y, m), (2.39)

where the spectral weight p(m') is defined by

(2 )'g &0 I j„(0)l.&&nlj, (0) lo&6"'(p„-~}

=(6„+—,a„t„)p{m') (a'=-rn'&0).

Again, due to the positivity of the spectral weight
p(m'), we can obtain a lower bound by taking only
the two-pion intermediate state,

(2.4o)

p(t) t ' '(t —4t1')' 'fF (t)l'

(t~ 4p'), (2.41)

[t = -(P —p')']. (2.42)

where p. is the pion mass and E„(t) is the electro-
magnetic form factor of a positive pion:

&~'(p') fz, (o) Iv'(p)& = (4p,p,'v')-"'(p„+ p„)z,(t}

APPENMX

1
f,(~,f) = —„ d8 f f(ye'0)f~ «M & ~

for all 0 «y & 1, then we say f(z) belongs to the
class Pl'.

Any function f(z) belonging to H'(p = 1) is known
to admit the decomposition"

f( ) = ca(z)S(z)Z(~),

where c is a constant with unit modulus, and B(g),
S(z), and E(z) are given by

As we have mentioned in Sec. II, we can derive
the upper bound for ld(t) l

in a mathematically more
rigorous way as follows. Suppose f(z) is analytic
inside the unit circle, and p is a fixed positive
number. If we have
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271 e +z
S(z) = exp — dtL(8)

0
ee z

(A2)

e +z
F(z) = exp — d8,. e lnlf(e'e}

I
.

The function B(z) is the so-called Blaschke prod-
uct, where o„are the zero points of f(z) inside
the circle satisfying the condition

g(I —l~„l) & -. (AS
n=1

S(z) is the singular function with singular non-
negative measure p. (8), and F(z) is said to be an

outer function.
From Eqs. (Al) and (A2), we find

1 2'
d g ln e'

1 &/u

I, =
2

d8p(8)ID(e*')I'
0

(p) 0) (A9)

1
dt „—ld(t) I

& (A8)
t0

for a sufficiently large positive integer n. Now,
we map the cut t plane into the interior of the unit
circle Iz I

= 1 by Eq. (2.10). In terms of the cor-
responding function D(z), the condition Eq. (A8)
is then equivalent to a statement that the function
f(z) = (1+z)(1 —z)"D(z) for a sufficiently large posi-
tive integer n must belong to H'. Since g(z) = (1+z)
x(1-z)", for a positive integer n, is outer and
belongs to H', we conclude that D(z) satisfies the
Jensen inequality Eq. (A7).

After these preliminaries, let us consider the
following mathematical problem. Let p(8) be a
non-negative function on the circle such that
lnp(8) is summable. Suppose that the quantity

=)~)li(0))l Z) I~. )l
'-fa~ie),

n

(A4)

is given and D(z) satisfies the Jensen inequality
Eq. (A7). Then can we find an upper bound for
ID(0) I? The answer is yes, with the result

provided f(0) a0. Since lo„i&1 and Jdp. (8) & 0,
this gives the Jensen inequality"

1 2'
lnl f(0}I

« — d8lnl f (e' ) I. (A5)

However, any outer H function g(z) must satisfy
the identity'0'"

1
lnlg(0) I=— d8lnlg(e' ) I. (A6)

Unfortunately, our function D(z) defined in Sec.
II does not necessarily belong to the class H' since
D(z) may have a singularity at z = 1 corresponding
to a possible divergence of d(t) at infinity. How-

ever, we can circumvent this difficulty as follows.
Assume now that D(z) is analytic inside Iz

I
& 1,

and that we can find an outer H' function g(z) such
that the product f(z) = g(z)D(z) belongs to the class
H'. Then, applying the Jensen inequality to f(z),
we ha.ve

ln ID(0) I+ In Ig(0) I

1
d8[inID(e") I+lnlg(e") Ij.

ID(0)l «I exp— 1

2' d81np(8) (p) 0) .

(A10)

1 2'
d 8lnp(8) .

P 0
(A11)

We now note the validity of the well-known in-
equality"

1 2" 1 2'
d»nit (8) I

=»—
2m o 2r ~

(A12)

for a summable function tt(8). Hence, we can re-
write Eq. (A11) as

1 1
lnlD(0)

I

« —ln — d8 p(8) ID(e") I'
P 0

1
d81np(8) .

27' 0

Also, we can prove that this is the best inequality
possible.

The proof is elementary. We can rewrite the
Jensen inequality Eq. (A7) as

1 2'
» ID(0) I- 2V 0

Therefore, we conclude that

1
lnlD(0)

I

« — d8lnlD(e") I.
27l 0

(A7)

This is nothing but the inequality Eq. (A10). Also
from this derivation it is obvious that the equality
in Eq. (A10) is possible if and only if we have

Hence, the Jensen inequality is also valid for such
functions D(z).

Now, in our case, d(t), defined in Sec. II, is as-
sumed to satisfy a dispersion relation with a fi-
nite number of subtractions. This implies

1
D(z) = I~ exp — d8,.e lnp(8) . (A13)

P 0

Therefore, our inequality is the best one we can
obtain.
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The result of Sec. II is reproduced easily if we
choose p = 2 and

2

tt (8) = = ~sin-,'gcos-', ()
~

i+ ' tan'(-', ())p8 t, —a

(A&5)

so that we have

(A&4)
This is nothing but the bound Eq. (2.25).

Unfortunately, this technique does not seem to
be easily generalizable to the evaluation of bounds
for iL)'(0) i.
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