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then one has to calculate explicitly the second sum of
the right-hand side of this equality by substituting in it
the expression of the functional derivative. Thus one
gets

2 () 2 6)

al T2 [:3) T1
+c2l—1</ drl'/ d‘rg'-—/ de// dr1/>
71 —a2 T2 —al

XV ([wr(r1) = x2(rs") I [Ea(r1") - To(ra) I
X[xl“(n') —.’)C2"(T2,)] . (A].S)

We can now take the limit (A11) of this last expression
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by considering that the limit holds

lim <——-a’—> =j)¢“(n) ,
)] —>00; ag->® 5mw(“)

where p;#(7;) is defined by the formula (2.5); substi-
tuting the expression (A15) in the definition (A11) and
making the limit, we obtain the expression of P*(r1,73)
given in Sec. III. By applying this same procedure, one
can show that the definition (A12) of Q* leads to the
expression (3.25) of Sec. III. We note that the deriva-
tion of the previous results has been only sketched; in
fact, the precise definition of the solutions of the
equations (A4) has not been discussed, and their
dependence on the parameters a; has been omitted.
This method applies to a system of any number of
particles.
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The problem of the quantization of evanescent waves, which appear in the angular spectrum representation
of the electromagnetic field in a half-space, is discussed. Although evanescent waves are associated with
material sources, scatterers, etc., we are able to treat the electromagnetic field, including the evanescent
waves, effectively as a free field, by making use of the idea of the refractive index of a passive, macroscopi-
cally continuous medium. We consider a space which is filled with a homogeneous dielectric to the left of the
plane =0, and is empty to the right of the plane. Triplets of incident, reflected, and transmitted waves at
the interface form the fundamental orthogonal modes of the space. By expanding the field in terms of these
triplet modes, we show that the field Hamiltonian reduces to the sum of independent harmonic-oscillator
Hamiltonians. The quantization is therefore straightforward. We introduce the creation and annihilation
operators for the triplet wave modes, and encounter Fock states, coherent states, etc., for a field having
evanescent wave components. The field commutator at two space-time points in the right half-space is shown
to have an explicit contribution from evanescent waves, characterized by an exponential decay to the right
and a propagation parallel to the interface. We also examine the problem of atomic excitation by quantized
evanescent waves, and show that the results are of the form given by semiclassical treatments.

I. INTRODUCTION

LTHOUGH evanescent electromagnetic waves
have been well known in optics and in the micro-

wave domain for many years, they have tended to be
something of a curiosity. They are perhaps most famil-
iar in connection with the total internal reflection of
light at a glass-to-air interface, and quantitative fea-
tures of the evanescent waves produced under these
conditions were studied experimentally by Quincke! and
by Hall? as long ago as 1866 and 1902, respectively. In

* Work partially supported by the Air Force Office of Scientific
Research.

t Also at the Institute of Optics, University .of Rochester,
Rochester, N. Y.

1'G. Quincke, Ann. Phys. Chem. 5, 1 (1866).
2 E. E. Hall, Phys. Rev. 15, 73 (1902).

recent years they have been frequently encountered in
the context of diffraction, particularly in the angular
spectrum representation of the electromagnetic field, >
where the evanescent waves appear as a natural adjunct
to the spectrum of homogeneous plane waves. Expan-
sions involving evanescent waves have also proved val-
uable recently in the treatment of radiation from moving

3 C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).

1 E. Wolf, Proc. Phys. Soc. (London) 74, 269 (1959).

5P. C. Clemmow, The Plane Wave Spectrum Representation of
Electromagnetic Fields, 1st ed. (Pergamon, New York, 1966).

¢ G. C. Sherman, J. Opt. Soc. Am. 57, 1160 (1967); 57, 1490
(1967).

7J. R. Shewell and E. Wolf, J. Opt. Soc. Am. 58, 1596 (1968).

8 E. Lalor, J. Opt. Soc. Am. 58, 1235 (1968).

9 A. Walther, J. Opt. Soc. Am. 58, 1256 (1968) ; 59, 1325 (1969).
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charges,®1%~12 and it has been shown that, when there
is no radiation, the field is describable entirely in terms
of evanescent waves. In this context, the evanescent
waves may be an alternative to the virtual-photon
approach for the representation of the field.!?

However, in all problems in which evanescent waves
appear explicitly, the electromagnetic field has so far
been treated as a classical field, and, to the best of our
knowledge, no attempt to treat these waves quantum
mechanically has been made. It appears that questions
regarding the interaction of evanescent waves with
atoms cannot now be tackled except by semiclassical
methods, despite the fact that there has been some
experimental work in this area.!* In the quantization
of the free electromagnetic field, it is customary to
expand the field in homogeneous plane waves, and to
admit no evanescent components. But this is not a
valid procedure if sources, scatterers, apertures, etc.,
are present, when the field is, in general, not represent-
able by homogeneous plane waves.!® In that case we are,
of course, no longer dealing with a free field, and it
might seem that we cannot tackle the problem of
quantization without treating the coupled system.
Nevertheless, in the following we have succeeded in
treating the electromagnetic field, including evanescent
waves, effectively as a free field, by making use of the
idea of refractive index of a passive, macroscopically
continuous medium.

We consider the problem of quantization of the elec-
tromagnetic field in a space which is filled with a homo-
geneous dielectric of refractive index 7, to the left of the
plane 2=0, and is empty to the right of this plane. Such
a space allows the appearance of evanescent waves on
the vacuum side of the interface. Instead of introducing
the material medium and its interaction with the elec-
tromagnetic field explicitly,'® we allow the material

10 G, Toraldo di Francia, Nuovo Cimento 16, 61 (1960).

LR, Asby and E. Wolf, J. Opt. Soc. Am. (to be published).

12 The problem of the interaction of an electron with an electro-
magnetic field and the radiation reaction has been the subject
of many investigations, among them P. A. M. Dirac, Proc. Roy.
Soc. (London) A167, 148 (1938); J. A. Wheeler and R. P. Feyn-
man, Rev. Mod. Phys. 17, 157 (1945); C. J. Eliezer, ibid. 19, 147
(1947); J. Schwinger, Phys. Rev. 75, 1912 (1949); F. Rohrlich,
Am. J. Phys. 28, 639 (1960) ; G. N. Plass, Rev. Mod. Phys. 33, 37
E%gglg, M. D. Crisp and E. T. Jaynes, Phys. Rev. 179, 1253

9).

18 C. F. Weizsicker, Ann. Physik 5, 869 (1933); E. J. Williams,
Proc. Roy. Soc. (London) A139, 163 (1933).

“4The first qualitative experiments on the interaction of
evanescent waves with atoms appear to be due to Selenyi. See
R. W. Wood, Physical Optics, 3rd ed. (McMillan, London, 1934),
p. 420. More recently, measurements of fluorescence induced by
evanescent waves have been made by H. Forster [ Diplomarbeit,
Philipps-Universitat Marburg/Lahn, 1967 (unpublished)]. See
also K. H. Drexhage, Sci. Am. 222, 108 (1970).

15 Under certain special circumstances it may be possible to
represent the effect of all the evanescent waves by a sum of
inward-travelling homogeneous plane waves, as has recently
been shown: A. Devaney, G. Sherman, and L. Mandel (unpub-
lished), see also J. Opt. Soc. Am. 60, 738 (1970).

16 See, for example, D. A. Tidman, Nucl. Phys. 2, 289 (1956);
1({. 6%) Bullough, J. Phys. A (London) 1, 409 (1968); 2, 477
1969).
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medium to determine the modes of the electromagnetic
field, which is then treated as a free field. We show that
the evanescent waves may be regarded as a consequence
of the spatial phase modulation of the incident and
reflected waves at the interface. When each transmitted
homogeneous or evanescent wave, together with the
incident and reflected waves which give rise to it, is
treated as one mode, the field Hamiltonian reduces to
the sum of independent harmonic-oscillator Hamilton-
ians for each mode. The quantization of the field is then
straightforward and proceeds in the usual manner. The
space-time field commutators are found to contain
explicit contributions from evanescent waves, which
decay exponentially with distance from the interface.

Since the evanescent waves constitute only a com-
ponent of a mode, this approach leads to the point of
view that there are no evanescent photons per se; there
are photons which behave as homogeneous plane waves
in the one half-space and as evanescent waves in the
other. Although the problem of the dielectric-to-vacuum
interface may appear to be a special one, the results
should be applicable to other problems involving the
field in a half-space. For the actual source giving rise to a
homogeneous or evanescent wave in the right half-space
is often equivalent to, and may be replaced by, a dielec-
tric together with a pair of homogeneous waves in the
left half-space, provided the three waves are coupled
via the Fresnel relations for the interface.!”

We begin by briefly introducing the angular spectrum
representation of the classical electromagnetic field, and
show under what conditions it leads to the appearance
of evanescent waves. We then introduce the transverse
electric and transverse magnetic triplet wave modes of
the dielectric-to-vacuum interface, and expand the
field in terms of these modes. The modes are shown to be
orthogonal, so that the field Hamiltonian reduces to
quadratures. We quantize the field by treating each
mode as a noninteracting harmonic oscillator, and
evaluate certain field commutators, which are found to
contain explicit contributions from evanescent waves.
We show that photon absorption and number operators
can be introduced as usual. Finally, we consider the
problem of the excitation of an atom in an evanescent
wave field, and find that the results are equivalent to
those given by semiclassical methods.

II. CLASSICAL ANGULAR SPECTRUM REPRE-
SENTATION AND EVANESCENT WAVES

Let us consider an expansion of the electric field
E(r,)) to the right of some plane located at z=0. We
suppose that the right half-space is empty, and that
sources and scatterers, if any, are located in the left
half-space. We first make a two-dimensional spatial
Fourier decomposition of E(r,f) in some plane

17 See for example, M. Born and E. Wolf, Principles of Optics,
4th ed. (Pergamon, Oxford, 1970), p. 38.
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z=constant,
1 0
E(r,l)= —_— //dkldng(kl,k2,Z,t) expz(klx—l—kgy), (1)
(2m>/

where r=(x,y,2), and then Fourier-analyze U(ki,ks,z,t)
in time by writing

1 0
Uk oy, l) = — / dk u(ky ks ke, (2)
2 J

™

We choose our units so that the velocity of light in
vacuum is unity. In view of the reality of E(r), it
follows from Eq. (1) that

U(_kb _k2; 2, t)zU*(kl,kz,Z,t) (3)
and from Eq. (2) that
u(—kl, —kz, Z, —k)=u*(k1,k2,z,/e) . (4)

With the help of Egs. (1) and (2), we can now write

1
E@,t =—-/uk,k,,k)
(T, (2m)’ (k1ykzyz
X exp[i(kix+koy —ki) Jdkidkadk.  (3)

Since E(r,!) satisfies the wave equation

2

V2E(1,t) — —E(1,) =0 (6)
912

at all times everywhere in the right half-space, it seems
natural to require that the integrand in Eq. (5) satisfies

E(rt)=

(2m)?

1

2

(2m)?

1

2

+

2m)3 J ki ket>ke
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the Helmholtz equation
(Vi-EkDu(ky,ks,z,k) expli(kix+key)]=0,  (7)
throughout the right half-space. Then

82
<_k12_k22+ 3_2 +k2>u(k1,k2,z,k> =0; (8)
2

which has the solution

u(ka,ko,2,k) =v(k1,ks,k) exp(iksz)
+W(k1,k2k) exp(—ik.o,z) , (9)
for k370, where
ks=+~/(k*—ki2—Fko?), (10)

and may be real or imaginary according as k1?4 kq?S k2.
When k3= 0, the solution of Eq. (8) grows linearly with
z to o, and is therefore not an acceptable solution,
unless it is a constant. From condition (4) we find

v(—ky, —ks, —k) exp(tksz)+wW(—Fky, —ks, —k)
Xexp(—ikyz) =v*(kyko,k) exp(—iks*z)
+W(k1,ks,k) exp(iks*z).
When £; is real, this leads to

W*(khkzak):v(_kh _k27 —k) ’ (11)
while, when %; is imaginary, we have
V*(kl,kg,k>:V(—k1, _k23 _k)7 (12)

W¥(ky,kok) =W(—k1, —ksy —F).

With the help of relations (9)-(12), we can now rewrite
Eq. (5) in the form

/ [v(k,ko,k) expi(kiv+koy+ksz—kt)+c.c.)dkidkydk

Tt ko?<?

/ [v(k1,kek) exp(— | ks|2) expi(liwtkay —kt)-+c.c. ]dkidk.dk
k1l k2?>k?

[W(kl,kz,k) CXP(‘ kg‘Z) exp¢(k1x+k2y—kt)+cC]dkldkgdk (13)

The first integral represents contributions to E(r,/) from ordinary homogeneous, plane waves. The second
and third integrals represent contributions from waves which propagate in a direction parallel to the xy plane
and decay or grow exponentially in the z direction. Since the contribution from the third integral represents a
field that becomes infinite as z —, we put W(ki,ks,k)=0 and discard this term. Finally, we rewrite the double-
sided  integral as an integral over the positive-frequency range. We may discard the homogeneous waves travel-
ling to the left, if there are no sources or scatterers on the right.!® We then have

1 * .
E@,)= ————/ dk/ dB1dka[ V(k1,ko,k) expi(kix—+koy+kst—kt)+c.c.]
2x)3 Jo ke a?<e?
1 « .
+ —— / dk / dkldkz[V(kl,kQ,k) exp(— ‘ kalZ) exp'p(klx—l—kzy—kl)—i—c.c.]. (14:)
(2m)3 Jo katrkat>k?
18 Tt is worth noting]that this is generally not possible when a representation including only homogeneous plane waves is used.
See Ref. 15.
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The terms contributed by the second integral, which
are characterized by exponential decay in the z direc-
tion, are known as evanescent waves. They appear
whenever v(ky,ks,k)#0 for k12 k2> k2. Since v(k1,k2,k)
is simply a three-dimensional Fourier transform of the
field in the plane =0, we see that evanescent waves are
expected to appear, loosely speaking, whenever there
are spatial modulations of the field in the plane z2=0
with periodicities shorter than about a wavelength.
Such a modulation could be brought about by a diffrac-
tion grating of sufficiently small line spacing. But the
most familiar example of such modulation occurs at a
dielectric-air interface, when a light beam is incident
on the interface from the dielectric side, at an angle
greater than the critical angle. Since the refractive
index 7 of the dielectric is normally greater than unity,
it is possible to satisfy the conditions ki2-+ky2<n2?
and k124 k2> k? simultaneously at the interface. There
is therefore a phase modulation of the field with spatial
periodicity which is longer than the wavelength in
glass, but shorter than the wavelength in air. Accord-
ingly evanescent waves appear on the air side of the
interface.

Let us briefly examine the vectorial properties of the
representation. From the divergence condition for the
field in free space and Eq. (14), it follows immediately
that ,

k'V(kl,kg,k)=0, (15)
where k is the wave vector, real or complex, with
components k1, k2, k3. So long as k is real and the cor-
responding wave is homogeneous, Eq. (15) implies
transversality in the usual sense, in that the real and
imaginary parts of v(ki,ks,k) are normal to k. However,
when %3 becomes imaginary and the wave is evanescent,
these conclusions no longer hold. In particular, v(ky,ks,k)
can be proportional to a real vector only if this vector
lies in the xy plane.

Although each component v(ky,ks,k) expi(k-r—kt),
with k real or complex, in the expansion in Eq. (14) is
a possible solution of the Helmholtz equation for the
right half-space, and may therefore be regarded as a
“mode” of the field, these modes are not orthogonal in
the usual sense. The scalar product of two different
modes integrated with respect to r over the half-space
does not vanish. As a result, the expression for the
energy of the field in the right half-space in terms of
modes is complicated, and does not reduce to the sum
of contributions from each mode.

It is not difficult to see the origin of this complication.
For the field in the right half-space is not a free field in
the usual sense, but may be generated by sources in the
left half-space. The field throughout space is given by
the solution of the inhomogeneous wave equation and
is therefore coupled to the sources, scatterers, etc. It is
clear that the mere disregard of the left half-space does
not eliminate the sources and scatterers.

EVANESCENT ELECTROMAGNETIC WAVES
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R G (k,s,n
G:R)(k,s,r) ® / L
K
K (m
G "(k,s,1) Gr (K,s,r)

A
G ,y K®
r (K,s,r) ®)
G (K,s,r)

Index = ng>1

Index = |

Fic. 1. Tllustrating the notation for the incident, reflected, and
transmitted components of each mode. All modes are labeled
by the wave vector of the incident wave. For waves incident from
the left the wave vector k is in the dielectric; for waves incident
from the right the wave vector K is in vacuum. Although electric
fields were chosen for illustration, the notation is similar for the
magnetic fields.

In order to describe a field having evanescent com-
ponents and yet avoid the explicit introduction of
sources, we will make use of the idea of a macroscopi-
cally continuous medium of refractive index #, which is
located in the left half-space. Evidently this is an ab-
straction which takes the place of certain secondary
sources or scatterers. However, a passive medium allows
a simple connection to be made between the fields
inside and outside the medium, and therefore permits
us to express the energy of the field throughout all space
in terms of the component modes. By including the left
half-space in the expansion of the field, we can formally
dispense with sources and scatterers and treat the field
as a ‘“free” field. We shall see that the formalism will
then allow quantization of this free field in a straight-
forward manner.

III. MODES OF INTERFACE

We consider a space which is filled with a nonmag-
netic, transparent, homogeneous, isotropic medium of
refractive index %, to the left of the plane 2=0, and is
empty everywhere to the right of this plane. Then the
refractive index function #(r) has the property

for 2<0
for z>0.

n(r)=no

=1 (16)
As is well known, a plane wave incident on the interface
from the left or the right will, in general, give rise to a
reflected and a transmitted wave, and we label these
three components by superscripts 7, R, T, respectively
(see Fig. 1). It is convenient to make a spectral decom-
position of each wave, and, in addition, to decompose
the incident beam into transverse electric (TE) and
transverse magnetic (TM) components, which behave
somewhat differently.
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We denote the wave vectros for one spectral com-
ponent of the wave inside the medium and in the
vacuum by k and K, respectively, and note that they
are connected by the formulas®

Ki=Fi, %)
Ko=Fs, (18)
K=Fk/n,, (19)
Ki=++/(K*—K2—K,?), (20)
ks= 4/ (n2K2—ky?—ko?) (21)

when 7, is real. K is of course the frequency of the light,
but whereas k is always a real vector, K will be complex
when K>+ K,2>K?2 We adopt the convention that
the positive sign is chosen in Eq. (20) when ks is positive
and the negative sign when %; is negative. As is well
known, the complex amplitudes of the electric and
magnetic fields @ and B of the incident, reflected, and
transmitted waves are connected via the Fresnel rela-
tions,Y” which become, for a TE wave incident from the
left,

1
GOkl = V—;—e exp(ik-1) for 2<0

2%0

=0 for 220, (22)
1 k—K;
CL®(k1r)=—"¢ exp(tk™®.r) for z2<0
V2no ks+K3
=0 for 20, (23)
1 2ks
CLDk,1r)=—-¢ exp(iK-r) for 20
: V2ng ks+K3

=0 for 2<0. (24)
We have written k® for the wave vector (k1, k2, —ks)
of the reflected wave. e=¢(k) is a real unit vector lying
in the plane z=0, which is orthogonal to both k and K
and characterizes the polarization of the wave. The
scale factors 1/(V2no) are introduced for later conveni-
ence in the normalization. The label 1 in GL?(k,1,1),
etc., identifies the waves as TE waves, and the suffiix L
indicates the incidence from the left. Notice that we
have chosen to label all three waves GL(k,1r),
G ®(k,1,1), G (k,1,r) by the wave vector k of the
incident wave, even though they represent waves
propagating in three different directions, in order to
emphasize that these three waves belong together (see
Fig. 1). Indeed, they form an elementary “mode” of

the system under consideration, for the functions .

formed by adding the three wave components,

(S)L(k,1.1')5(531,(1)(k,l,r)+@L<R)(k>1,r)

+®L<T) (k: 1,1') ’ (25)
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evidently satisfy the Helmholtz equation

V¢ (k1,r)+ K2(r)€L(k,1,r)=0, (26)

and can therefore be used for the representation of
solutions of Eq. (26).18

We must now briefly discuss some properties of the
refractive index 7. In general it will be a complex func-
tion of the optical frequency K. As is well known, the
causality requirement imposes constraints on the
allowed forms of 7((K), so that the real and imaginary
parts of 7o(K)—1 are coupled by Hilbert transform
dispersion relations.!® But the introduction of an imagi-
nary component of the refractive index is somewhat
unfortunate for our purpose, since it involves energy
dissipation and prevents waves launched from infinity
with finite amplitude from arriving at the interface.
For this reason, we will make the simplifying assumption
that the imaginary part of the refractive index vanishes
over all frequencies in the optical region or below with
which we shall be concerned, and does not become non-
zero until much higher frequencies, say in the x-ray
region, are reached. Under these conditions the real
part of the index will be nearly constant over the fre-
quencies of interest, and we may treat 7, as a real con-
stant which is greater than unity. Such an assumption is
certainly valid at this stage. Later on, when we en-
counter integrals over frequencies ranging to infinity,
we shall have to re-examine the implications.

The magnetic fields associated with the foregoing
electric fields follow immediately from Maxwell’s
equation

VXE(r)=—(3/0t)B(r,), 27)
when the real fields are obtained from Egs. (22) to (24)
by multiplying by the time factor exp(—iK¢) and adding

the complex conjugate. In the corresponding notation
the magnetic fields are given by

1
B D(k,1,r)= —(xXe) exp(ik-1) for z<0
V2

=0 for 220, (28)
1 k3—K;
B (i, 1.6) = — (e X e)—— exp(ik 1)
\/2 3 3
for 2z<0
=0 for 220, (29)
1 2k
Br Ok, 1r)= (cXe) exp(iK-r)
o 3 3
for 220
=0 for 2z<0, (30)

19 See, for example, Jan Hilgevoord, Dispersion Relations and
Causal Description (North-Holland, Amsterdam, 1960).
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where x and x®) are unit vectors in the directions of k
and k ®), respectively, and ¢ is a (possibly complex)
unit vector in the direction of (possibly complex) K.
Since ¥ and x® are real, 8. and BL® are both
proportional to real vectors. However, the situation is a
little more complicated for B ™. When Kj; is real,
BT is also proportional to a real vector. But when
K; is imaginary, BT is a complex vector, whose real
and imaginary parts point in different directions. It is
once again convenient to denote the sum of the three
foregoing magnetic fields by

Bk 1,1)=B.D(k,1,r+B.®k,1,r)
+B.D(k,1,r). (31)

The relations (22)-(24) and (28)-(30) hold for trans-
verse electric waves incident from the left, but we can,
of course, write down similar equations for transverse
magnetic waves, and for waves which are incident from
the right. Each of these triplets forms another funda-
mental mode. We use the label 2 for the transverse
magnetic components and- the suffix R for the modes
excited by waves incident from the right, which are
labelled by the wave vector K. Unlike the first set of
modes, this last set contains only homogeneous plane
waves, and all the wave vectors are real, by virtue of
the fact that the waves are passing from a low-index to
a higher-index medium. The complex amplitudes of the
other mode functions are given by

B,DO(k,2,r) = -1—2 exp(ik-r) for 2<0
V2
=0 for 220, (32)
%mehzﬂ=—li£2@2gemx&m*ﬂ
V2 kstndKs
for 2<0
=0 for 220, (33)
B (20 = e exp(iK-D)
V2 ks+ne?Ks
fof 220
=0 for 2<0, (34)
GO (k,21)=— ! (xXe) exp(ik-r) for 2<0
=0 o for 220, (395
012, = = (X0 exp-1
210 ks+n¢’Ks
for 2<0
=0 for 220, (36)

1 2Fks
¢ M (k,2,r)=— —(cXe)———— exp(iK 1)
V2 ks+ne’Ks P
for 220
=0 for 2<0

for the TM waves incident from the left,

1
GrDXK,1,r)= —eexp(iK-r) fo
V2 P '
=0 for
1 K3—Fk3
Cr®K,11)= —e exp(iK®).r)
V2 Ks+ks
for
=0 for
1 2K;
CxDE,1,r)=—¢ exp(ik-r) for
V2 Kst+ks
=0 for
BrD(K,1,r) 1( ) exp(
R , ’r = — CX£ (.4 iK-I‘ f
v P ) or
=0 for
1 Ks—Fks;
B2 (K,1,6) = —(c®Xe)
2 Ks+-ks
for
=0 for
B0 = o oexe) ' exp(ik
1 )= —(x&Xe € k-r
" V2 sks3 pke)
for
=0 for

for the TE waves incident from the right,

1
BrDK,2,1)= \/_78 exp(iK-r) for
=0 for
1 %osz'-ks
Br®(K,2 )= —e——— exp(iK® -1)
V2 k3+n02K3
for
=0 for

220

2<0,

220
2<0,

2<0

2<0,

exp(IK®.r)

220
2<0,

2<0
220

and

220
2<0,
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(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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B DK 20 = o i)
! ,2,1) = —e——— exp(ik-r
? \/2%02K3+k3
for 2<0
=0 for 220, (46)
1
CzD(K,2,1r)=— —(cXe) exp(iK-r) for 220
V2
=0 for 2z<0, @47)
1 2Ks—ks
Gr®(,20) = — —(c X e)———— exp(iK ®-1)
V2 72K 3
for 220
=0 for z<0, (48)
Gr®(K,2,1) 1 PRV 2no’Ks (ik-1)
21)=— xXe exp(ik-r
# ’ \/2-%0\ /%02K3+k3
for 2<0
=0 for 220, (49)

for the TM waves incident from the right. K(® is the
vector with components (K1, K2, —K3) and ¢® is the
unit vector in the direction of K(®. As before, we use the
shortened notation G.(k,2,r), Gz(K,1,r), etc., for the
sum of the corresponding complex amplitudes.

We have now established a set of modes, each of which
consists of a triplet of waves, including evanescent
waves in some cases, which may be used for the repre-
sentation of an arbitrary “source-free” optical field in
the combined vacuum and the dielectric half-spaces.
Each frequency component of such an electromagnetic
field satisfies a Helmholtz equation of the form (26).

If these modes are also orthogonal when integrated
over the whole space, they should lead to a compact
expression for the energy of the electromagnetic field.
We shall now briefly examine this question, and find
that the modes we have established do indeed satisfy
an orthonormality condition.

IV. ORTHOGONALITY AND
MODE EXPANSION

By forming products of two mode functions, and
integrating over all space with the weight function
n%(r), we may readily show that (see Appendix)

/ Gr*(k,s,1) Gk ,s", D) (1) d*x

=1(2m)*6%(k—K)3ser,  (50)

E(,)=

€o.

+
(2m)*
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/@R*(K,s,r) -GrXK,s,"1)n(r)d3x
=1(27)353(K—K") 6 ,
/@L*(k,s,r) ‘G, 1)n2(r)dx=0,

(51)
(52)

which is the usual expression of orthogonality. Similar
relations hold also for the magnetic fields, except that
the weight function is then unity. But since the electric
and magnetic fields are generally encountered together,
it is convenient to express the orthogonality condition
in a form which combines both. We then find the follow-
ing sets of relations:

/ [6.2*(,0)- G (')
+B*k,s,r) B, r)]d%

_ = (27)%6%(k—K)8,0r,  (53)
/ [6r*(K,s,1)-Gr(K',s',)n(r)
+B2*(K,5,r) - BrK',s',1) Jd%
=(2m)33(K—K")dser, (54)
f [Gr*(k,s,1) Cr(K',s ,1)n(r) ‘
+B.*(k,5,1)- B(K',s',1)]d%=0, (55)
[ [ (l5.0) G (K, 1)n*(e)
+B(k,s,1) - BL(K s 1) ]d%%x=0, (56)
f [CGrK,s,r)-Gr(K',s' ,;1)n(r)
+BrK,s5,1) BrX',s',x)]d3x=0, (57)
f [Crk,s,r) CrK,s',r)n’(r)
+B1(k,s5,1) - BrK',s',1) Jd%=0. (58)

Equations (53) and (54) express the usual ortho-
normality of the modes generated by left-going waves,
and by right-going waves, among themselves. It is
interesting to note that the relations are the same
whether or not evanescent waves appear in the right
half-space. Equation (55) expresses orthogonality be-
tween any mode produced by a left-going wave and one
produced by a right-going wave. The remaining equa-
tions, together with their complex conjugates; are also
needed for the evaluation of products of real fields.

By combining all possible modes with arbitrary
amplitudes, we may form a representation of an arbi-
trary electromagnetic field, each Fourier component of
which satisfies the Helmholtz equation of the form (26).
For any such field, we may write

1 2 JK\1/2
/ kY <—> [uk,s)@L(k,s,r)e"Eid-c.c.]
(2m)3 Jka>0 s=1

2 sK\1/2
/ @K Y (—) [(XK,5)CrK,s,r)e-Ei4c.c.] (59)
K30

g=1 [
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and

1 2 SR\
B(r)= — a3k Yy <——> [uk,s)Br(k,s,r)e"Ei4c.c.]

L k3>0 s=1 \ €

I Ep—
(27")3 K3<0 s=1

where ¢ is the vacuum dielectric constant, and the
factor (K/eg)!/? is introduced for later convenience. We
have labelled the complex amplitudes of the modes
generated by right-going and left-going waves u(k,s)
and v(K,s), respectively, in order to emphasize the dif-
ference between these modes.

We shall not here enter into the question of complete-
ness of the set of modes with respect to solutions of the
Helmholtz equation, which appears to be a difficult
problem. However, if validity of the expansions (59)
and (60) is assumed, the amplitudes #(k,s) and »(K,s)
for any given field may readily be derived. Thus, on
taking scalar products of both sides of Egs. (59) and
(60) with n2(r)E.*(k',s',r) and B *(k',s',1), respectively,
and integrating over all space, we find with the help of
Egs. (53)-(58)

u(l',s") = (eo/ K')/2eX"t / [n*(N)E(,) - Cr*(K',s',x)

+B(r,t) - B*&,s',r)]d*. (61)
Similarly we have
v(K',s") = (eo/ K) V2"t / [n*@E(r) Er*(K',s'r)
+B(r,!) - B*K',s',r)1d3x. (62)

The amplitudes appearing in the expansions (59) and
(60) can therefore be found. In particular, we may use
the expansions to represent a field which is composed
only of evanescent waves in the right half-space, by tak-
ing v(K,s) =0, and u(k,s) =0 for (ki2+k2) (nd—1)<kg.
Finally let us consider the energy 3¢ of the electro-
magnetic field in the whole space. As usual, for a non-
magnetic medium this is given by the integral

1 .
=7 / [D(r,)-E(r,)+(1/uo)BA(r,0) Jd*, (63)

in which E(r,f) and B(r,!) are given by Egs. (59) and
(60), and the electric displacement D(r,t) may be de-
rived from E(r,f) by multiplying by emn?(r). On intro-
ducing the mode expansions under the integral in Eq.
(63), and making use of the various orthogonality con-
ditions (53)-(58), we readily obtain the result

1 |
3= — @k Y K|u(k,s)|?
@y Sy T Kl
1
+— [ BKEK[oE)|2. (64)
(27")3 K3<0 s

2 JR\12
3K 3y <——> E,s)BrXK,s,r)e Eitc.c.], (60)

€o

This shows that the total energy of the electromag-
netic field is expressible as the sum of contributions
from independent harmonic oscillators, one for each
mode. The situation is therefore exactly the same as for
the free field in vacuum, although we must not lose
sight of the fact that the modes are very different in
this case, and that each mode consists of three waves,
one of which (for k3>>0) may be an evanescent wave.

V. QUANTIZATION OF FIELD

The simple expression (64) for the electromagnetic
energy now leads to a straightforward procedure for
quantizing the field, which is essentially the same as
that for the free field in vacuum.?® We regard the field
as a collection of independent quantum oscillators. The
complex amplitudes #(k,s), #*(k,s) and »(K,s), v*(K,s)
are replaced by Hilbert-space operators?! 4#(k,s),
4'(k,s) and 9(K,s), 9"(K,s), which can be given the
usual interpretation of annihilation and creation opera-
tors for quantum excitations, or photons, labelled by
the mode k, s and K, s, respectively. Since the different
harmonic oscillators are independent, all operators
belonging to different modes commute. In addition, all
annihilation operators and all creation operators com-
mute among themsleves. We therefore have the follow-
ing commutation relations: '

Lak,s),d(k ,s")]=0="[4"(k,s),a" (K ,s")],
[3(K,s),5(K',s") ]=0=[9"(K,5),6"(K',s")],

[ile,0) (K" 5") 1= 0= [ (k)5 (K )], O
La(k,s),0"(K',s') = 0=[4"(k,s),0(K',s") ],

while
[ﬁ(kys))ﬂf(k,7sl):|= f(k)s)ass'aa(k_k/) ) (66)
[ﬁ(Kys>avT(K/;sl):]=g(K,s)688'53(K_K/) ) (67)

in which the functions f(k,s) and g(K,s) are assumed to
be ¢ numbers, but are undetermined as yet. The expres-
sion for the energy of the quantized field can now be
written in the normally ordered form

1
op = . % t o JUAR,
3 Zs: (2r)3[/k3>0d Kat(k,s)d(k,s)

+
K3<0
% See, for example, W. H. Louisell, Radiation and Noise in
Quantum Electronics (McGraw-Hill, New York, 1964).
21 We use the caret A to denote a Hilbert-space operator, or,
when this is not available, the subscript op. )

3K Kﬁ"(K,s)v(K,s)], (68)
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in which possible zero-point contributions have been these operators are the Fock states of the field, which
omitted. As usual, the operators we can form in the customary way by allowing the
oL rsrat . operators 4'(k,s), '(K,s) to operate on the vacuum

[1/(27") :’d kil (k,s)u(k,s)/ﬁ state |{0}>.22 Thus

and ,
[1/(2#) 3]d3KﬁT(K;S)77(K>S)/h !kl’sl’ ce 71}"!;72;\5{1{"/1: . ')'jKTr(n;o'w)) ,
L =[1/(Vnlvm!) 14" (kis1) - - - @7 (K,,50)
behave as number operators for the excitations, or X' (Ky,0) - - 3" (Komon) [{O}),  (69)

photons, of type k, s and K| s, within the differential
ranges d* and 43K, respectively. The eigenstates of with the normalization

’ ’ r_ 1. AN ANy .
<KM yOM 5« .,K1 501 5 kN SN g .,k1 351 ]kl,sl,. . .,kn,sn, k1,0‘1,. . .,Km,a’m>

1
= BnN‘SmM'—_" Z 63(k1~k1,)58181’ e 53(kn_kn/)ssnsn’63(K1_K1’)50w1' o 53(Km_Km,)5amvm' ) (70)

nlm! P

where Y p denotes the sum over all #! permutations of the k, s modes and all m! permutations of the K, ¢ modes.
Similarly, we can define coherent states of the field,? labelled by a set of complex functions u(k,s), »(K,s), as the
eigenstates of the annihilation operators #(k,s) and (K,s):

A(k,5) | {u(k,9)},{v(K,5)}) = u(k,s) [ {u(k,5)} ,{2(K,5)}),
3(K,9) [ {u(k,9)},{v(K,9)}) =2(K,5) [ {u(k,s)},{2(K,5)}).

The notation | {u(k,s)},{v(K,s)}) is meant to emphasize that the states are functionals of u(k,s), v(K,s). We can
also make ‘“‘diagonal” representations of the density operator for the state of the field in terms of coherent states,
in the usual way.25-2

The formalism is therefore strictly parallel to the usual formalism for the quantization of the free electromagnetic
field in vacuum, except for the fact that the fundamental modes are different, and that each mode, although labelled
by one wave vector and one polarization index, always stands for three waves coupled via the Fresnel formulas.
As is to be expected, this difference becomes important when we treat the behavior of the field in configuration
space, via the mode expansions.

(71)

VI. CONFIGURATION-SPACE FIELD COMMUTATORS

By making use of the mode expansions (59) and (60), in which the fields E(r,f), B(r,f), and the mode amplitudes
u(k,s), v(K,s), are replaced by their corresponding Hilbert-space operators, together with the commutation rules
(65)-(67), we can form commutators of the F;(r,t) and Bj(r,t) operators. Since we are particularly interested in the
contributions from evanescent waves, we shall be mainly concerned with the fields in the empty right half-space,
for which

@L(kysyr) = @L(T) (k,s,r) ) (72)
Br(k,s,r) =B (ks,r), (73)

and
@R(K,S,r) = @R(I)(K)s;r>+(&l€ 2 (K;s:r) ) (74)
Br(K,s51)=Br"(K,s,r)+Br®(K,s,1). (75)

With the help of Eqgs. (59) and (65)-(67), and (24), (37)-(39), (47), and (48), we then obtain the following
expression for the electric field commutators at two space-time points in the right half-space:

k2

/ d%[ £ ftonae— — 1+ X fea)exconersi— }
1) eie—— 4+ —f(k,2)(c Xe)i(c* Xe)j———
ka>0 2n¢? ]‘k3+K3l 22 ’ | ks+no2Ks| 2

Xexpi[K-r—K*-r' —K(t—t')]—c.c.

E'¢ ot ,Ej ',l/ =
T B )= o

22 For a treatment of continuous Fock space see, for example, J. S. Schweber, An Iniroduciion to Relativistic Quanium Field
Theory (Harper and Row, New York, 1961), p. 159.

% Cf. R. J. Glauber, Phys. Rev. 131, 2766 (1963).

24 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274 (1965).

% J. R. Klayder, Phys. Rev. Letters 16, 534 (1966).
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K Kz—Fk3\?
-+ / 3K —-g(K,l)eiej{exp[iK-(r—r')]—l—( ) exp[iK®. (r—1')]
(27)%0 J k3<0 2 3t+R3
Kz—Fk3
+< >[expi(K-r—K(R)‘r’)—l—expi(K(R%r—K-r’)]} exp[ —1K(—1')]—c.c.
Ks+Fks
K %2K3—k3 2
b [ KR exoiexe) e -+ XX ) expiKe®- (1)
(2m)%0 J Ks<o 2 12K sk
1’1/2K3—k3
—i—(—————)[(c)(s)i(c(R)Xs)jexpi(K-r—-K(R>-r’)—}—(c(R)Xs)i(ch)jexpi(K(R>-r—K«r’)]}
112K3+k3

Xexp[ —iK(t—1")]—c.c. (76)

It is convenient to transform the integral over k in Eq. (76) to an integral over the vacuum wave vector K, with
the help of the relations (17), (18), and #¢*K32= k3> — (no>— 1) (K124 K »?). That part of the range of integration for
which k32> (ne>—1) (K124 K,%), or K52>0, then includes only homogeneous plane waves, while the part of the
range for which ks?<(n¢2—1)(K124K,?), or (1/n02—1)(K12+K,2) < K;2<0, includes only evanescent waves. It
is therefore natural to decompose the integral into separate integrals. We can also introduce a slight simplification
in some of the remaining terms in Eq. (76), by making the transformation K3 — — K3, which implies k3 — —&s,

K — K@% and ¢ — ¢®. With the help of these transformations, and on rearranging the order of the terms, we
then obtain the equation

B, B ) )= — K K[f(k e S L ) exeiloxe) 4""%"1{3]
‘iryifr7 = A - 3 € ) CX iCX T
o0 Jxmo 2 I kot Ko)? O b nK)?
Xexpi[ K- (x—1t")—K(—t')]—c.c.
+ : U @K gD+ [ &K gK® 1>(K3—k3)2}K [K-(@—1)—K({—t)]
g(K, K g JD)———— "t —eej expi[ K- (r—1') —K(t—t')]—c.c.
€0(2m)8 ) ka0 K5>0 (Ks+ks)?) 2 7P
%02K3—k3 K
{ / BK g(K,2)+ d3Kg<K<R>,2>(*~——)}—<c><e>i<c><s>,-
€0(2m)% L) gsc0 K5>0 no?K stk 2

Xexpi K- (x—1r")—K({—t)]—c.c.
1

60(21!') 6
1
+
€o(2r)®

K

{ f @K gK,1)+ a*K g(K(’”,l)}—<
K3<0 K3>0 2

Ks—Fs;
Ks+Fks
K ’}’Losz—'k:;

{ / SK &)+ [ @K g<K<R>,2>[—(———w)(cxe)i(c(mxoj
K3<0 K5>0 2 \n?K3z+k;

)eie,- expi K-r—K® .r' — K (:—1¢')]—c.c.

Xexpi[K-r—K®.t'—K(t—1t")]—c.c.

1 /w [(1—1/n0?) (K12%+K22)]1/2 2ks| K| 2ksno?| K|
dﬁK/ d|K ]l:f(k,l)eie——————l- (k,2)(c><s)i(c*><s)——*—-————]
€(2m)®J 0 ’ Jka2+ | Ks|? / ]k32+n02iK3‘ 2

XK exp[ — | K3| (z+2")] expil Ki(x—«')+ Ko(y—y') —K(t—t')]—c.c. (77)

' It will pe seen thgt the terms under the first five which is anomalous in its dependence on the z coordi-
u}tegral signs in thx.s rather complicated expansion nates. The remaining terms depend on the space-time
(11ﬁer from the oth‘ers in t.hat they depend on the separa-  points via the factor exp[ — | K| (z+2")] expi[ Ki(x—x')
tion of the space-time pointsr,  and r’, ¢ in the familiar +Ky(y—y")—K(t—1')], which is again anomalous in a
- . )
way, via the factors expi[K-(r—r)—K ((=2)]. The gifferent way with respect to the z coordinates.
next four integrals, on the other hand, contain the factor However, the anomalous z dependence does have one
. )
expil Ki(x—a)+ Ko(y—y')+ Ks(z+2") — K(t—1')], benefit, which allows us to determine the functions
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f&s) and g(K,s). For the contributions of these
anomalous terms should become small compared with
the others as z2—w and 2’ —, when the difference
z—2z’ is kept constant. This means that only the first
five integrals should contribute to the field commutator
at a very great distance from the dielectric interface.
But at a great distance from the interface, it may
reasonably be argued that the commutator should re-
duce to the usual free-field commutator in empty space,?
which is given by

[Ei(r, ) ,Ej(f',i’)]vacuum

/)
= @K K(6:5—cic;
260(27!’)3/ (b 2

Xexpi[ K- (r—1")—K(—1')]—c.c.
ih

02 0?2
= -——[6” p—
€ atat (990,‘(9:)0]',

]A(r——r’, 1—t, (78)
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where A(r,f) is the usual singular function defined by

- 1 /de sinK¢ X (19)
Ar,t)= expiK-r. 9
(2n) Kk P

Comparison of the first five integrals in Eq. (77) with
Eq. (78) now shows that equality requires

S ) 4k;3Ks g 1)(1{3—]@3)2
g0 Kk
=g(K,1)=(2m)%, (80)
4k3%02K3 (’nozK:i—k:Z)Z
J&,2)———— +g(K®,2) —
ks+no?Ks (ﬂo2K3+k3)2
o —g(K,2)=(2m)%h, (81)
which is satisfied if
f&,1)= f(k,2)= (27)*%, (82)
g(K,1)=¢(K,2)=(2m)%%. (83)

With this choice, the commutator (77) reduces to the
somewhat more compact form

o 8 92 Eot K[ /Ks—ks
[:Ei(r,t),Ej(r’,t’)]= —I:a——* —_ ]A(r—r’, t —If,)—f— — /d3K —[(— )61‘6]‘
€ (27!')3 2 K3+k3

1y
€ 6talf/ axiax/

<1’L02](3-‘—k3
no*K3+ks;
o1

2ks| K|

———)(CX e)i(c(R)Xs)j:l expi[ Ki(x—a")+Ko(y—vy' )+ Ks(z+2") —K(—1') ]—c.c.

2k37202| Kg\

© [(1—1/mno?) (K124 K22)]1/2
- ———-———/ d2K / d‘Kg' K[ eiej-‘f-
€o (27r)3 — 0 k32+1K3! :

<c><s>i<c*><e>]]
k32+’ﬂ02] K:s‘ 2

Xexp[ — | Ks| (z+2')] expi[ Ki(x—a")+Ka(y—y") —K({—1')]—c.c. (84)

The first term on the right-hand side is the usual free-
field commutator, which vanishes off the light cone
connecting the two events r, ¢ and r’, ¢/. It is the domi-
nant term at a great distance from the dielectric inter-
face, and is obviously due to homogeneous light waves
directly connecting the events. The next term contains
the factor

expil Ki(x—a")+Ka(y—y')+Ki(s+2) ]

under the integral, and therefore connects one space-
time point with the image of the other in the dielectric
interface. This contribution is evidently due to homo-
geneous light waves connecting the space-time points
r, t and 1/, ¢’ by reflection in the interface. Due to the
dispersive nature of the reflection, this term has a differ-
ent structure from the first, and is nonzero also off the
light cone. The last term containing the factor
exp[ — | K3| (z+2)] under the integral falls off ex-
ponentially with distance from the interface, and is
evidently due to evanescent waves connecting the two
events. Since the evanescent waves propagate parallel

to the interface, only the x, ¥, and ¢ coordinates appear
in the oscillatory factor. This term is complicated and
is also nonzero off the light cone connecting the two
events.

While causality would seem to require that the entire
commutator vanish for two events having a spacelike
separation, we must remember that an element of non-
causality was introduced right at the beginning of our
treatment, when we chose to ignore the high-frequency
behavior of the refractive index, at frequencies in the
region of anomalous dispersion and beyond. For this
reason the commutator given by Eq. (84) cannot be
expected to be strictly causal, although any noncausality
might be expected to extend only over distances and
time intervals of the order of the anomalous dispersion
wavelength and period, which can be made as short as
desired. It is clear that commutators for the magnetic
fields, and for mixed electric and magnetic fields, may
be derived in a strictly parallel manner.

Finally we note that, if we define photon num-
ber operators by integrating #'(k,s)d(k,s)/2 or
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T (K,5)9(K,s)/% over finite domains Ak or AK,

N 1
N@AKk,s)= —— / 4t (k,s)d(k,s)d%k,
(2m Ak

(85)
N(AK,s)=

/ 7 (K,$)9(K,s)d*K

AK

(2m)3h
then it follows from the commutation relations (66) and
(67) with (80) and (81) that

[a(k' ,s"), N(Ak,s) ]= (k' ,5") b, U (K CAK)
[ﬁ(K’,S'),N(AK,S)] = ﬁ(K/)S,)ass’ U(K/C AK) ’

where U(k'CAk)=1 or 0 according as k'CAk or
k' Ak. Moreover, from the form of 3., given by Eq.
(68), we have

[A(K',s"),3Cop )= AK'A(K',5),
[6(K',5"),3Cop ]= 1K' (K ,s") .

(86)

87

VII. CONFIGURATION-SPACE PHOTON
ABSORPTION OPERATOR

In the usual treatment of the free electromagnetic
field in vacuum, it has been found convenient to intro-
duce a configuration-space photon absorption operator,
which we call V;(r,t), such that the integral over all space
of Vi f)Vi(r,t) gives the total number of photons.2
Vi(r,H)Vi(r,t) is therefore the photon density per unit
volume, and the operator Vi(r,f) plays a role in con-
figuration space which is somewhat similar to the role
played by the usual annihilation operator in the con-
jugate space. Moreover, it has been shown that the
integral of V1 (r,)V;(r,t) over a finite volume also has
a physical significance,? provided that the linear dimen-
sions of the volume are large compared with the wave-
lengths of all modes contributing to V;(r,?).

In the present situation we may again introduce a
configuration-space absorption operator, although the
somewhat more complicated mode structure limits the
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interpretation of V.(r,f)Vi(r,!). Consider the operator
defined by

. Nz 1
i<r’t)=§<};> (2m)?

><|: / a3k i(k,s)CLi(k,s,r)n(r)e K
k3>0

+ / BK ﬁ(K,s)@Ri(K,s,r)n(r)e“"K‘]. (88)
K3<0

With the help of the orthogonality relations (50)-(52),
we readily find that

/ Vi) Vi(r,)dsx

1
-5 / & 4t (k,s)a(k,s)
s ﬁ(27.—)3 k3>0

+ a*K v"(K,s)v(K,s)
N K3<0

=N, (89)
where N is the total number of photons. We see that
Vi) Vir,t) again has the dimensions of photon
density, although its integral over a finite volume is less
readily interpreted. In view of the relations (86), it
follows at once that

[Vi(r)t)fzv]: Vi(r;t) ) (90)
[ViT(r5l)>N]= - vif(r;i) . (91)

By making use of the relations (22)-(24), (28)-(30),
and (32)-(49), together with their Hermitian adjoints,
and the commutation relations (65)-(67) with (82) and
(83), we can evaluate the commutator of V(r,t) with
Vit (t’,t"). For two points r and t’ in the right half-space
we find, after introducing a transformation of variables
and proceeding as in the derivation of Eq. (84),

1
[Viw,0), Vit @t ]= — / @*K (8i5—cic;) expi K- (r—1") —K(i—1') ]

(2m)?

1 K:;—ks ’}’L02K3——k3
“+ — /dsKl:eiEj< >+(st)i(c(R)><s)j< >:]
102K 3+ks

Xexpil Ki(x—a')+Ks(y—y")+Ks(z+2) —K(t—1) ]

(2m)? Ks+ks

2 e [(1=1/n0?) (K124 K2)] /2 2ks| K| Yeane?| K|
- / d2K/ dlel[éiéj —'—__—“>+(CXS),‘(C*XS)]‘(‘—‘—‘—“—'>:]
(27")3 —o0 0 k32+ { K:;l 2 k32+n04l th 2

Xexp[ — | Ks| (z42")] expi[Ki(x—2")+Ka(y—y') —K(t-1')],

(92)

in which the three terms can be identified as before as due to direct waves, reflected waves, and evanescent

waves, respectively.

i 26 L. Mandel, Phys. Rev. 144, 1071 (1966).
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VIII. PHOTOELECTRIC EMISSION IN
EVANESCENT WAVE FIELD

So far we have been treating the electromagnetic
field effectively as a free field, despite the presence of
the dielectric in the left half-space. But the questions
which are of most physical significance obviously relate
to the interaction of this field with atoms and charges.

Let us therefore consider the problem of a bound
electron, located in the right half-space, interacting
with an electromagnetic field having evanescent wave
components in the right half-space. We shall calculate
the probability, to the first order in perturbation theory,
that the electron makes an upward transition to the
continuum of positive-energy states, after a short time
T following the turn-on of the interaction. Since the
electron is then free, we refer to this as the problem of
photoelectric emission. However, the calculation is
substantially similar for upward transitions to a broad
band of bound states, which is the situation often en-
countered in radiation-induced fluorescence.

If 5(¢) is the density operator of the combined system
at time / in the interaction picture, and Hy(¢) is the
interaction at time {, which is turned on at time #,,
then we have from the usual perturbation expansion,
up to the second order in H;,

to+T

1
S T) =p(t)+ — / [A0), 5 it
1ﬁ 17

0

+

(1;)2 /;:0+T di </t:1 dt2[ﬁ1(h),[ﬁl(t2>’ﬁ(10)]] . (93)

exp[iHo(t—10)/BIA(xo,t0) exp[ —ill o(t—10)/E]=A(ro)t)
i 1

—1
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We suppose that the electron is initially in some
bound state |¢o) with energy Ey,<0 and — Eo/#% in the
range of optical frequencies, and that the field is in a
coherent state | {u(k,s)},0) [cf. Eq. (71)], in which the
modes labelled by left-going waves are all unoccupied.
Moreover, it is convenient to suppose that the field is
quasimonochromatic, with frequencies centered on
some optical frequency. Then

plte)= [Yo)Wol | {u(k,$)},00(0,{u(k,s)}|.  (94)
We take the interaction to be of the usual form
Hy(t)= —(¢/m) exp[iHlo(t—to) /A ]p- Alro o)
Xexp[ —iH(t—t0) /], (95)

in which P is the electron momentum, r, is some fixed
point within the potential well wherein the electron
is bound, A is the vector potential in the Coulomb
gauge, and H, is the noninteracting part of the Hamil-
tonian. In taking A in the interaction H; at a fixed point
1o, we are making the usual assumption that the dimen-
sions of the well are small compared with the wave-
lengths of all occupied modes of the field.
From the expansion (59) and the relation

. 9
E,‘(I',If) =— —A,-(r,t)
at

between the electric field and the vector potential,
together with the commutation relations (87), it follows
at once that

= A —iK (t~10) —H.c.
(2m)? /> Ph L gt Bulksioe c]

—i

X

(27*')2 K3<0

@Ky,

[3(K,5)Er(K,s,ro)e K¢ —H.c.]. (96)

Y (Keo)?

It is convenient to denote the positive- and negative-frequency parts of A(I,t), which are Hermitian conjugates
of each other, by A (r,t), and A (r,f), respectively. If we denote exp[iHo(t—1)/#1p exp[ —iH(t—1t)/%] by

p(0), we may write

CHL(0),5(t0) 1= — (e/ m)LB:(2) [ o) ol Ai(ro,t) | {u(le,5)},00(0,{u(ls,s)} |

and

— | o) (ol Bi(t) | {2e(le,5)},00(0,{uelle,5)} | Alro,)]  (97)

[ (), [H1(1),5(t0) 1= (e/m) 2 pi(t)pi(te) o) Wol A (ro, 1) A s(xo o) | {u(k,5)} ,0>A<{“(k,3)},01
—Di{ta) [o) ol Bi(ta) A j(ro,tr) | {(k,5)},0)0,{u(k,s)} [AA i(To,t2)
—Pilla) |[Wo) ol (1) A s(rota) | {u(ke,s)},0)(0,{u(k,s5)} [ A;(xo,t1) ) )
+ [Yo)Wo| Pilt)Pitr) | {u(k,5)},00(0,{2e(k,8)} | Au(xo,ta) As(xo,tn)} . (98)

In order to evaluate the probability that the electron ends up in some unbound energy eigen§tate |¢¥q) at a time
to+T following the turn-on of the interaction, we take the expectation value of p(fy+T) with respect to |¥a),
and trace over all field variables. When these operations are performed on the commutators given by Egs. (97)

and (98), we find
Trp@al [H1(0),5(t0) ]| ¥a)=0 (99)
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and

Tre(a| [H1(t),LH1(t2) (o) ]| ¥e) = — (¢/m)*{exp[i( Ea—Eo) (1 — 1)/ 7] a| B[ 0) (ol Dil o)
X Trp[ A j(ro,tr) | {u(k,s)},0)(0,{u(k,s)} | Ai(to,t2) ]+ exp[i(Ea— Eo) (t—t1) /7]

X Wal bilWo)ol D;l¥a) TrelA(ro,t) | {u(k,s)},0)(0,{u(k,5)} | As(ro, )]} . (100)
Now the initial electron state is a bound state, with — Eo/% somewhere in the range of optical frequencies, and
the final electron state is free, so that (E,— Eo)/% is always a positive frequency. If first-order photoelectric emis-
sion is to take place, it is necessary for the electromagnetic field to have frequency components which are at
least as high as — E¢/#. If we decompose the A(ro) operators into their positive- and negative-frequency parts,
and substitute in Eq. (100), we find that most of the terms are highly oscillatory in {; or {; or both, so that their
contributions under the integral in Eq. (93) are very small for any 7" which is great compared with the optical

period. If we eliminate these terms and retain only the contributions which, at least for some E,>0, are more
slowly varying, we obtain

TrrWa| (A1), [H1(t),6(t0) 11| ¥a)
= — (¢/m)*{exp[i(Ea— Eo)(t1—1t2) /710 a| B; o) ol BilWa) Trr[A ;P (xo,ta) | {u(k,s5)},0)
X (0,{u(k,5)} | A: (ro,t2) ]+ expli( Ea— Eo) (ta—11)/ 7 e| B W) ol i W)
X Trel A0 (ro ko) | {u(k,5)},000,{u(k,5)} | A, (x0,0)]}, (10D

in which the second term is the complex conjugate of the first.
Now, in view of Eq. (71), the coherent state | {u(k,s)},0) is a right eigenstate of A (ry,t) with eigenvalue

—1
W(to,t) = —— kY

k3>0 s ( 50)/

u(k $)Cr(k,s,r) exp[ —iK(t—t0) ], (102)

and a left eigenstate of A)(ro,!) with eigenvalue W*(ro,f). On making use of these properties in Eq. (101), and
taking the trace over the field variables, we obtain

Trr@a| (A1), [H1(12),6(t0) 11| ¥a)= — (¢/m)? exp[i( Ea— Eo) (h—12)/ %]

X Wal il Vo) Wol il )W i (Xo,t) W ¥ (ro,ta)+c.c.,  (103)
so that, from Egs. (93) and (102),

TrrWal 8to+T) [¥a)

e\? ~ A 1 37,7357 1 * (1! o *(1 o
= “(;) (llfal?jl%)(%lpil%)@ / / d*kd’k Z:. ? m u(k,s)u* (&', )E 1i(&,s,70)C* (K ,5",r0)

to+T t
X D) / diy / dly expi (Ea— Eo)(t1—12)/h— K1+ K'to+ (K — K")to]+c.c.
1 T 2
;*(ll/uipﬂlllo)( 7r)3 fd3k Zs: W(k,”@“(k’s’m)/; dty eXp[i(E,,—EO—K)tJ
}_“<‘pa|Pa i‘//o> k2 u(k )€ 1;(k,s,70) eXIL)("'i’LKT\Sln[7 (Eem B O] ? (104)
(2m)? s (Keo)t'? 1(E.—E)—K)

The second line follows from the first when the changes quency. From Eq. (102) we then see that Eq. (104)
of variables K <> K’, s <> §’, and #; <> {; are introduced  reduces to

in the complex-conjugate term. If the time interval T

is short compared with the reciprocal frequency spread  Trp{We|p(to+T) | ¥a)

of the incident electromagnetic field, we may replace

the factor e\’ N 1
= — . . L 2
(Sin} (Fam B KT T (Eam o= )] (5 1100 47
by
(Sin} (o= Eo— Ko 71}/ [H(Ea—Ea—K )] [Em T oy
to a good approximation, where K, is some midfre- 3(Ea—Ey—Ky) ’
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Finally, in order to arrive at the probability of photo-
electric emission P(ly+T), we sum over free electron
states, or integrate over positive electron energies E,,
with the density of states o(E,) as a weight function.
If o(E.) and the matrix element (¥ |H;|¢o) vary slowly
with E, in the neighborhood of the peak of the function
{sin?[H(Es—Eo—K o) T} /[3(Ea— Eo—Ko) 12, then we
have the usual result given by the golden rule,

Pltot-T) = / Tr ol 5t T) [Wado(E)dEn

=2xT(e/hm)?| Wa(Ea=Eo+1Ko)| pj¥o)

XWi(to, to+3T) | 2o (Eg+1Ko).  (106)
If W (ro,t) is proportional to a real unit vector 1, as for
a TE wave, we can write

Pllo+T) = 22T (e/hom)?o (Eo+ 1K o)
X | W Ea= Eo+1Ko) | P-1|¢0)|?

X\ W (xo, to+37) ]2, (107)

which shows that the emission probability is propor-
tional to the intensity | W (to, fo+37)|? of the field, at
the midtime {,+%7" within the interval.

We emphasize that the results embodied in Egs. (106)
and (107) were obtained for an electromagnetic field
which is in a pure coherent state. But since an arbitrary
state of the field can be given a diagonal representation
in terms of coherent states,?3—2% with a certain weighting
functional, we can derive the emission probability for
the general case from Eq. (106) by “averaging” with the
same weighting functional. It is interesting to note that
the same result would also be obtained from a semi-
classical treatment, in which the electromagnetic field
is represented by.a c-number analytic signal W (ro,f).”
We may also point out that, for a quasimonochromatic
field, W (ro,) is proportional to V(ro,), where Vi(ro,)
is the eigenvalue of the operator V;(ro,t), defined in Eq.
(88), belonging to the coherent state |{u(k,s)},0).
|W(to, to+4T)|2 is therefore proportional to
| V(to, to+3T)]|2, which is the photon number density.

The formulas (106) and (107) hold regardless whether
the occupied modes of the field in the right half-space
are homogeneous plane waves, evanescent waves, or
both. In particular, Eq. (107) therefore holds for a
single evanescent wave produced by a TE wave of
complex amplitude #(k,1) which is incident from the
left at an angle greater than the critical angle, for which,
according to Eqgs. (24) and (102),

2

Wik, ty+-3T) | 2o |l 1) ] >
W e D) D]

Xexp(—2|Ks|z0). (108)

27 See for example, L. Mandel and E. Wolf, Rev. Mod. Phys.
37, 231 (1965).
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The photoemission probability therefore falls off ex-
ponentially with distance z, from the dielectric inter-
face, in a manner characteristic of evanescent waves.
This result is to be compared with the expression

2

k
| W (o, t0+3T) | 2oc | (i, 1) | >———,  (109)
K(kot-Ky)?

for a TE wave of the same complex amplitude incident
from the left below the critical angle. The two expres-
sions of course coincide at the critical angle. The cor-
responding photoemission probabilities for TM waves
are a little more complicated, but can be obtained from
Egs. (37) and (106).

Although we have treated this as a problem of photo-
electric emission, the results are substantially similar
for upward transitions of the electron to a band of
bound states, as in some situations of radiation-induced
fluorescence.

IX. CONCLUSION

We have developed a description of a quantized elec-
tromagnetic field, which includes evanescent waves and
allows the properties of the field and its interactions with
atomic systems to be studied. The essence of the treat-
ment is the introduction of a set of modes, labelled by a
continuous wave vector index, each of which consists
of three waves, including evanescent waves. With the
help of these modes the development closely parallels
the usual one for the electromagnetic field in empty
space, and we can define Fock states, coherent states,
etc., in an analogous manner. Although the field com-
mutators in configuration space are considerably more
complicated in the present case, they have the usual
form in the conjugate space.

Since evanescent waves extend only over a half-
physical space, and only over a limited range of modes,
there are no excitations of the field corresponding to
completely evanescent photons. A one-photon state like
| k,s), with ks>-[ (me2—1)(k124k2) ]2, is a state with
only an evanescent wave in the right half-space, but a
homogeneous plane wave in the left. If we attempt to
form a more localized one-photon state in the right
half-space we need the nonevanescent components also.

In the treatment of the photoelectric emission of a
bound charge under the influence of an evanescent
wave, we find, as in other photoemission problems,??
that the result is identical with that obtained by treating
the electromagnetic field as a classical, ¢c-number field.
In this respect the evanescent waves are no different
from homogeneous waves.

28 L, Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys.
Soc. (London) 84, 435 (1964).
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APPENDIX: PROOF OF ORTHOGONALITY
OF TRIPLET MODES

By expanding @.(k,s,r) in terms of the three com-
ponents defined by Egs. (22)-(24) and (35)-(37), we
see that every term under the integral on the left-hand
side of Eq. (50) contains the factor

/fdxdy exp—il (k1—Fk1)x+ (ka—k2")y]

= 28k~ )o(ka— ), (A1)

which implies that k, k’, K, and K’ differ only in their
z components. From this fact and the definitions of e
following Eq. (24), it follows immediately that e(k)
=¢(k’), and therefore e(k)-e(k’)=1, and that

e(k)-[«'Xe(kK')]=0,
e(k)-[x®"Xe(K)]=0,
e(k)-[¢'Xe(k')]=0.

The orthogonality of the mode functions for the two
polarizations TE and TM follows immediately from this.
Thus each scalar product on the left-hand side of Eq.
(50) gives rise to the factor 8.

As an example, let us now evaluate the integrals in
Eq. (50) for the TE (s=1) case. Using Egs. (22)-(24)
to expand the @r(k,1,r) function, we have

(A2)

[dax (gL*(kJ’r) : @L(k',l,r)n2(r)
— (o) S(k1—ky)o(ka—k2)
2%02(k3+K3*)(k3I+K3l)
X[ (ks+Ks5*)(ks' + K5 Yne*[*I4- (ks — K5*)
X (ks’ '—Ksl)%ozR*R"‘l— (k3+K3*) (kg’ —Kzl)ﬂozl*R

+(k3—Ks*)(kgl+K3I)'}’L02R*I+4k3k3'T*T] 5 (A3)
where
0
I*I=(R*R)* =/ expl —i(ks—ks')z]dz
1
=1r5(k3—k3’)+iP< —/) , (A4)
3 —R3
.
I*R=RI* =/ exp[ —i(ks+ks")z1dz
1
=1r§(k3+k3')+1P< —)
ks+kd
1
=P <———> . (A3)
kstks'
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P denotes the principal part. §(ks+ks") drops out in
Eq. (AS) because both wave components are incident
from the left, and k3 and k3" are both positive. The term
T*T is given by

T*T= / expl —i(K3*—Ky')z1dz
0

<K3+K3*><K3/+K3'*

>7|'5(K3—K3’)
2K 2K

1
—ir(
Ks*—K

3/). (A6)

Notice that in Eqgs. (A3)-(A6), ks and k3’ are taken to
be real, but K3 and K3’ are given the option of being
real or imaginary, according as the transmitted waves
are homogeneous or evanescent.

With the condition that k=%’ and ky=£ks' ,we have
from Egs. (20) and (21)

K2—K,?= (ksz—kzlz)/”oz, (A7)

and on replacing K; by K;* in (A7) we obtain the
relation

1/(Ks*—K§)=nX(Ks*+ K5)/ (ks —ks'?) . (A8)

If in Eq. (A6) K; and K3 are both real, then, since they
have the same sign, we have

5(K3“K3I)= 6(K3—K3,)+6(K3+K3,)
= ZIKal 5(K32—K3/2) 5

and from Eq. (A7)

=2| K| o[ (ks> —ks'%) /no?]

=7’L02(K3/k3)5(k3—k3/) . (A9)

With the help of Egs. (A8) and (A9), Eq. (A6) now

becomes

T*T=[(Ks+K:*)/2K s Ino?wdé(ks—ks')

—ing?P(Ks*+Ky')/(ks2—ks'?), (A10)

where the factor (Ki'+K3'*)/2K3 has been dropped
since it does not affect the value of the result.

Substituting from Egs. (A4), (AS), and (A10) into
Eq. (A3), we see that there are two kinds of terms:
those containing the 8(k;—Fk3") function and those con-
taining the principal parts; we readily find

/ B 6.4 (k,1,1) -G (K, 1,r)

=%(2m)%*(k—Kk’)+principal-part terms. (A11)

To show that the sum of the principal-part terms
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vanishes, we group them as follows:
(2m)20(ky—k1")6(ke—ks)iP
2(ks+K5*) (ks' +K3') (ks —ks'%)
X{[(ks+Ks*) (ks +Ks') — (ks— Ky') (ks' — K5') ]
X (ks+ks') [ (ks+Ks*) (ks — K3')
— (ks—K5*)(ks'+K3') J(ks—ks')
—4ksks'(Ks*+K4')},

principal-part terms =

(A12)

when the term in the curly parentheses is readily seen
to vanish. Thus Eq. (50) has been verified for the TE
case. The TM case is treated in essentially the same way.

The derivation of Eq. (51) proceeds exactly as above,
except that the roles of k and K are interchanged and
there are no evanescent waves involved. The algebra
for the corresponding expressions for the magnetic
fields is almost identical to that for the electric fields,
except that the TE magnetic field behaves as the TM
electric field and vice versa. Addition of the electric
and magnetic field contributions results in Egs. (53)-
(55).

Turning our attention to Eqgs. (56)-(58), we nete that
the integrals over x and y yield é functions implying
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k1= —kl,, k2= —'kz’, and thUS

(i)-e(l)=—1, (AL3)
%' = —k2—hotksks (A14)

kB = — 2~k —ksks (A15)
c*-¢'= —ki2—k2+ KKy,  (A16)

Proceeding as above for both waves incident from the
left and s=1, we obtain the relations

jf@L(k31:r) . (S/;L(k,’1>r)”2(r)d3x

=—3(2m)%(krtk1)d(katks)
X 8(ks—Fks')(ks—K3)/(ks+Ks)  (A17)

and

/!B (k1) - BrK,1,r)d%

=5(2m)3(k1+k1) 6 (kot-ks")
X 6(ks—ks')(ks—Ks)/ (ks+Ks),

which add to give zero. The results for s=2 are similar
and the terms also add to give zero, as they do in the
remaining cases covered by Egs. (56)-(58).

(A18)



