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then one has to calculate explicitly the second sum of
the right-hand side of this equality by substituting in it
the expression of the functional derivative. Thus one
gets

by considering that the limit holds

(A16)

&I

+~21—1~

T2

X Vl ([xl(T1 ) x2(r2 )] )[xl(T1 ) 'x2(T2 )]
X[xi~(r,') —x2~(r2')]. (A15)

We can now take the limit (A11) of this last expression

where p,"(r,) is defined by the formula (2.5); substi-
tuting the expression (A15) in the definition (A11) and
making the limit, we obtain the expression of P"(ri, r2)
given in Sec. III. By applying this same procedure, one
can show that the definition (A12) of 0&" leads to the
expression (3.25) of Sec. III. We note that the deriva-
tion of the previous results has been only sketched; in
fact, the precise definition of the solutions of the
equations (A4) has not been discussed, and their
dependence on the parameters o.; has been omitted.
This method applies to a system of any number of
particles.
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The problem of the quantization of evanescent waves, which appear in the angular spectrum representation
of the electromagnetic field in a half-space, is discussed. Although evanescent waves are associated with
material sources, scatterers, etc., we are able to treat the electromagnetic field, including the evanescent
waves, effectively as a free field, by making use of the idea of the refractive index of a passive, macroscopi-
cally continuous medium. We consider a space which is filled with a homogeneous dielectric to the left of the
plane s =0, and is empty to the right of the plane. Triplets of incident, reflected, and transmitted waves at
the interface form the fundamental orthogonal modes of the space. By expanding the field in terms of these
triplet modes, we show that the field Hamiltonian reduces to the sum of independent harmonic-oscillator
Hamiltonians. The quantization is therefore straightforward. We introduce the creation and annihilation
operators for the triplet wave modes, and encounter Fock states, coherent states, etc. , for a field having
evanescent wave components. The field commutator at two space-time points in the right half-space is shown
to have an explicit contribution from evanescent waves, characterized by an exponential decay to the right
and a propagation parallel to the interface. We also examine the problem of atomic excitation by quantized
evanescent waves, and show that the results are of the form given by semiclassical treatments.

I. INTRODUCTION

A LTHOUGH evanescent electromagnetic waves
have been well known in optics and in the micro-

wave domain for many years, they have tended to be
something of a curiosity. They are perhaps most famil-
iar in connection with the total internal reQection of
light at a glass-to-air interface, and quantitative fea-
tures of the evanescent waves produced under these
conditions were studied experimentally by Quincke' and

by HalP as long ago as 1866 and 1902, respectively. In
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recent years they have been frequently encountered in

the context of diffraction, particularly in the angular

spectrum representation of the electromagnetic held, ' '
where the evanescent waves appear as a natural adjunct
to the spectrum of homogeneous plane waves. Expan-
sions involving evanescent waves have also proved val-

uable recently in the treatment of radiation from moving

~ C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).
4 E. Wolf, Proc. Phys. Soc. (London) 74, 269 (1959).
' P. C. Clemmow, The Plane Wave Spectrum Representation of
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' G. C. Sherman, J. Opt. Soc. Am. 57, 1160 (1967); 57, 1490

(1967).
7 J. R. Shewell and E. Wolf, J. Opt. Soc. Am. 58, 1596 (1968).
8 E. Lalor, J. Opt. Soc. Am. 58, 1235 (1968).
' A. Walther, J. Opt. Soc. Am. 58, 1256 (1968);59, 1325 (1969).
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charges, ' ' " and it has been shown that, when there
is no radiation, the field is describable entirely in terms
of evanescent waves. In this context, the evanescent
waves may be an alternative to the virtual-photon
approach for the representation of the field. "

However, in all problems in which evanescent waves
appear explicitly, the electromagnetic field has so far
been treated as a classical field, and, to the best of our
knowledge, no attempt to treat these waves quantum
mechanically has been made. It appears that questions
regarding the interaction of evanescent waves with
atoms cannot now be tackled except by semiclassical
methods, despite the fact that there has been some
experimental work in this area. ' In the quantization
of the free electromagnetic field, it is customary to
expand the field in homogeneous plane waves, and to
admit no evanescent components. But this is not a
valid procedure if sources, scatterers, apertures, etc. ,
are present, when the field is, in general, not represent-
able by homogeneous plane waves. "In that case we are,
of course, no longer dealing with a free field, and it
might seem that we cannot tackle the problem of
quantization without treating the coupled system.
Nevertheless, in the following we have succeeded in
treating the electromagnetic field, including evanescent
waves, effectively as a free field, by making use of the
idea of refractive index of a passive, macroscopically
continuous medium.

We consider the problem of quantization of the elec-
tromagnetic field in a space which is filled with a homo-
geneous dielectric of refractive index no to the left of the
plane s= 0, and is empty to the right of this plane. Such
a space allows the appearance of evanescent waves on
the vacuum side of the interface. Instead of introducing
the material medium and its interaction with the elec-
tromagnetic field explicitly, " we allow the material

» G. Toraldo di Francia, Nuovo Cimento 16, 61 (1960).
"R.Asby and K. Wolf, J. Opt. Soc. Am. (to be published).
"The problem of the interaction of an electron with an electro-

magnetic field and the radiation reaction has been the subject
of many investigations, among them P. A. M. Dirac, Proc. Roy.
Soc. (London) A167, 148 (1938); J. A. Wheeler and R. P. Feyn-
man, Rev. Mod. Phys. 17, 157 (1945); C. J. Kliezer, ibid. 19, 147
(1947); J. Schwinger, Phys. Rev. 75, 1912 (1949); F. Rohrlich,
Am. J. Phys. 28, 639 (1960); G. N. Plass, Rev. Mod. Phys. 33, 37
(1961); M. D. Crisp and E. T. Jaynes, Phys. Rev. 179, 1253
(1969)."C. F. Weizsacker, Ann. Physik 5, 869 (1933);E. J. Williams,
Proc. Roy. Soc. (London) A139, 163 (1933).' The 6rst qualitative experiments on the interaction of
evanescent waves with atoms appear to be due to Selenyi. See
R. W. Wood, Physical Optics, 3rd ed. (McMillan, London, 1934),
p. 420. More recently, measurements of fluorescence induced by
evanescent waves have been made by H. Forster LDiplomarbeit,
Philipps-Universitat Marburg/Lahn, 1967 (unpublished) g. See
also K. H. Drexhage, Sci. Am. 222, 108 (1970).

~' Under certain special circumstances it may be possible to
represent the effect of all the evanescent waves by a sum of
inward-travelling homogeneous plane waves, as has recently
been shown: A. Devaney, G. Sherman, and L. Mandel (unpub-
lished), see also J. Opt. Soc. Am. 60, 738 (1970).

"See, for example, D. A. Tidman, Nucl. Phys. 2, 289 (1956);
R, K. Bullough, J. Phys. A (London) 1, 409 (1968); 2, 477
(1969).

medium to determine the modes of the electromagnetic
field, which is then treated as a free field. We show that
the evanescent waves may be regarded as a consequence
of the spatial phase modulation of the incident and
rejected waves at the interface. When each transmitted
homogeneous or evanescent wave, together with the
incident and reflected waves which give rise to it, is
treated as one mode, the field Hamiltonian reduces to
the sum of independent harmonic-oscillator Hamilton-
ians for each mode. The quantization of the field is then
straightforward and proceeds in the usual manner. The
space-time field commutators are found to contain
explicit contributions from evanescent waves, which
decay exponentially with distance from the interface.

Since the evanescent waves constitute only a com-
ponent of a mode, this approach leads to the point of
view that there are no evanescent photons per se; there
are photons which behave as homogeneous plane waves
in the one half-space and as evanescent waves in the
other. Although the problem of the dielectric-to-vacuum
interface may appear to be a special one, the results
should be applicable to other problems involving the
field in a half-space. For the actual source giving rise to a
homogeneous or evanescent wave in the right half-space
is often equivalent to, and may be replaced by, a dielec-
tric together with a pair of homogeneous waves in the
left half-space, provided the three waves are coupled
via the Fresnel relations for the interface. '~

We begin by briefly introducing the angular spectrum
representation of the classical electromagnetic field, and
show under what conditions it leads to the appearance
of evanescent waves. We then introduce the transverse
electric and transverse magnetic triplet wave modes of
the dielectric-to-vacuum interface, and expand the
field in terms of these modes. The modes are shown to be
orthogonal, so that the field Hamiltonian reduces to
quadratures. We quantize the field by treating each
mode as a noninteracting harmonic oscillator, and
evaluate certain field commutators, which are found to
contain explicit contributions from evanescent waves.
We show that photon absorption and number operators
can be introduced as usual. Finally, we consider the
problem of the excitation of an atom in an evanescent
wave field, and find that the results are equivalent to
those given by semiclassical methods.

II. CLASSICAL ANGULAR SPECTRUM REPRE-
SENTATION AND EVANESCENT WAVES

Let us consider an expansion of the electric field
E(r, t) to the right of some plane located at s=O. We
suppose that the right half-space is empty, and that
sources and scatterers, if any, are located in the left
half-space. We first make a two-dimensional spatial
Fourier decomposition of E(r, t) in some plane

~ See for example, M. Born and E. Wolf, Princip/es of Optics,
4th ed. (Pergamon, Oxford, 1970),p. 38.
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z= constant,

E(r, t) =
(2s.)'

C. K. CARNIGLIA AND L. MANDEL

the Helmholtz equation

(V'+k')u(ki, kg, s,k) exp[i(kix+ksy))=0,
dkidk, U(ki, k2, s, t) exp'(kix+k, y), (1)

throughout the right half-space. Then

where r—= (x,y,s), and then Fourier-analyze U(ki, k&,s, t)
in time by writing

QO

U(ki, kg, s, t) = — dk u(ki, kg, s,k)e—'".
27r

(2)

E(r, t) =
(2s)'

u(ki, ks, s,k)

Xexp[i(ki&+k2y —kt)]d»dk2dk. (5)

We choose our units so that the velocity of light in
vacuum is unity. In view of the reality of E(r,t), it
follows from Eq. (1) that

U( —ki, —k2) s) t)=U*(k ki) s)ts) (3)

and from Eq. (2) that

u( —ki, —k&, s, —k)=u*(ki, k2, s,k). (4)

With the help of Eqs. (1) and (2), we can now write

(
g2

—ki' —ks'+ —+k' iu(ki, ks,s,k) =0,
Bz' )

which has the solution

u(ki k2 s k) v(ki k2 k) exp('Lk3s)

+w(ki, krak) exp( —ik~s), (9)
for k3/0, where

k3 ——+Q(k' —kis —k, ') (10)

and may be real or imaginary according as k&'+k2'~& k'.
When ki= 0, the solution of Eq. (8) grows linearly with
z to ~, and is therefore not an acceptable solution,
unless it is a constant. From condition (4) we find

v( —ki, —ks, —k) exp(ikis)+w( —ki, —k, , —k)

Xexp( —ik3s) =v*(ki,ks, k) exp( —ik8*s)

+w(ki, k&,k) exp(ik, *s) .
When ks is real, this leads to

w*(ki)ks, k) =v( —ki, —ks, —k) )

Since E(r,t) satisfies the wave equatio~

82
vsE(r, t) — E(r, t) =0

8t~

while, when k3 is imaginary, we have

v"(ki,kg, k)=v( —ki, —kg, —k),
w" (ki,ki, k) = w( —kit —ki, —k) .

(12)

at all times everywhere in the right half-space, it seems

natural to require that the integrand in Eq. (5) satisfies
With the help of relations (9)—(12), we can now rewrite
Eq. (5) in the form

E(r, t) =
(2') ky +kg (k

[v(ki, k, ,k) expi(k, x+k2y+kss kt)+c c ]—dkidk, dk. .

(2m)
[v(ki, k2, k) exp( —

~
k8~ s) expi(kix+ksy —kt)+c.c.]dkidksdk

+ [w(ki, ks, k) exp(~ k3
~
s) expi(kix+k&y —kt)+c.c.fdkidk&dk. (13)

(2ir) iq'+iq'&k'

The first integral represents contributions to E(r, t) from ordinary homogeneous, plane waves. The second

and third integrals represent contributions from waves which propagate in a direction parallel to the xy plane

and decay or grow exponentially in the z direction. Since the contribution from the third integral represents a

field that becomes infinite as s ~~, we put w(ki, k&,k) =0 and discard this term. Finally, we rewrite the double-

sided k integral as an integral over the positive-frequency range. We may discard the homogeneous waves travel-

ling to the left, if there are no sources or scatterers on the right. "Ke then have

E(r, t) = — dk
(2ir)' 0 12+Is22(A; 2

dkidks[v(ki, ks, k) expi(kix+ksy+k~t —kt)+c.c.)

1
+—— dk dkidk2[v(ki, k&,'k) exp( —~kans) expi(kix+k, y —kt)+c.c.g. (14)

(2~)' 0 ii+k2'&a'

» It is worth noting~ that this is generally not possible when a representation including only homogeneous plane waves is used.I10 lllg
See Ref. 15.
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The terms contributed by the second integral, which
are characterized by exponential decay in the 2' direc-
tion, are known as evanescent waves. They appear
whenever v(kl, k1,k) WO for kI1+k21 &O'. Since v(kl, k2, k)
is simply a three-dimensional Fourier transform of the
6eM in the plane s= 0, we see that evanescent waves are
expected to appear, loosely speaking, whenever there
are spatial modulations of the field in the plane s=o
with periodicities shorter than about a wavelength.
Such R InodU1Rtloxi coUM bc bioUght RboUt by R diffrac-
tion grating of su%.ciently small line spacing. But the
most familiar example of such modulation occurs at a
dielectric-air interface, when a light beam is incident
on the interface from the dielectric side, at an angle
greater than the critical angle. Since the refractive
index I of the dielectric is normally greater than unity,
it is possible to satisfy the conditions kl2+k12(N'k'
and kI2+k11&k2 simultaneously at the interface. There
is therefore a phase modulation of the field with spatia1.
periodicity which is longer than the wavelength in
glass, but shorter than the wavelength in air. Accord-
ingly cvancsccQt wRvcs Rppcar oD thc ai' sldc of tllc
lntCI'f RCC.

Let us briefly examine the vectorial properties of the
representation, From the divergence condition for the
field in free space and Eq. (14), it follows immediately
that

k.v(kl, k1,k) =0,

where k is the wave vector, real or complex, with
components kg, k2, k3. So long as k is real and the cor-
responding wave is homogeneous, Eq. (15) implies
tI'RnsvcI'sRllty ln thc UsUR1. scDsc ill thRt thc I'cal RDd

imaginary parts of v(kl, k2,k) are normal to k. However,
when k3 becomes lIYlaglnary Rlid thc wave ls evanescent»
these conclusions no longer hold. In particular, v(kl, k2, k)
can be proportional to a real vector only if this vector
lies in the xy plane.

Although each component v(kl, k1,k) exp'(k r—kI),
with k real or complex, in the expansion in Eq. (14) is
a possible solution of the Helmholtz equation for the
right half-space, and may therefore be regarded as a
"mode" of the 6eld, these modes are not orthogonal in
the usual sense. The scalar product of two different
modes integrated with respect to r over the half-space
does aot vanish. As a result, the expression for the
energy of the 6eld in the right half-space in terms of
modes is complicated, and does not reduce to the sum
of contributions from each mode.

It is not difficult to see the origin of this complication.
For the field in the right half-space is not a free 6eld in
the usual sense, but may be generated by sources in the
left half-space. Thc 6CM throughout space is given by
the solution of the inhornogeneous wave equation and
is therefore coupled to the sources, scatterers, etc. It is
clear that the mere disregard of the left half-space does
Dot cllnllDRtc thc soUI'ccs RDd scattclcI's.

QL (k, s,r}

4FI (k, s, r)

index = no& l Index s l

FIG. 1. Illustrating the notation for the incident, reflected, and
transmitted components of each mode. All modes are labeled
by the wave vector of the incident vrave. For waves incident from
'the left the wave vector k ls ln the dI.electric» for w'aves incident
from the right the wave vector K is in vacuum. Although electric
fields were chosen for illustration, the notation is similar for the
mag etic 6elds.

IH. MODES OF INTERFACE

%c coDsldcI' R space which ls 611cd with R nonmag-
netic» transparent» homogcDcoUs» lsotI'oplc medium of
refractive index no to the left of the plane x=0, and is
empty everywhere to the right of this plane. Then the
I'cflactlvc index fu11c'tloll s(r) llas tile p'l'opclty

n(r) =n~ for s&0
for s&0.

As is well known, a plane wave incident on the interface
from the left or the right will, in general, give rise to a
rcQcctcd and a transmitted wave, and we label these
three components by supclscI'lpts /, E., T, respectively
(scc Flg. 1). I't ls collvclllcllt to make a spcctl'Rl dccom-
posltloD of each wave» Rnd» 1D Rddltlon» to decompose
the incident beam into transverse electric (TE) and
transverse magnetic (TM) components, which behave
somewhat differently.

In ox'der to describe a 6eld having evanescent com-
poQcnts RDd yet Rvold thc cxpllclt introduction of
sources, we will make use of the idea of a macroscopi-
cally continuous medium of refractive iadex n, which is
located in the left half-space. Evidently this is an ab-
straction which takes the place of certain secondary
sources or scatterers. However, a passive medium allows
a simple connection to be made between the 6eMs
inside and outside the medium, and therefore permits
us to express the energy of the 6eld throughout all space
in terms of the component modes. By including the left
half-space in the expansion of the held, we can formally
dlspcDse with souI"ccs RDd scattcI'cI's RDd tx'cRt thc 6cM
as a "free" 6eld. %c shall see that the formalism will
then allow quantization of this free 6eld in a straight-
forwRl d IQRnncI'.
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We denote the wave vectros for one spectral com-
ponent of the wave inside the medium and in the
vacuum by k and K, respectively, and note that they
are connected by the formulas'~

Eg ——kg,

KQ k2

E= k/no,

E3 +Q——(E' EI2 —EP)—,

k3 ——+Q(50'E' —kg —422), (21)

Sz&I&(k,l,r) = e exp(ik r)
ceo

=0 for s~)0, (22)

j. ks —E3
Sz,&~&(k,i,r) = -s — exp(ik&"'r) for s(0

V2n0 k3+Eg

when no is real. X is of course the frequency of the light,
but whereas k is always a real vector, K will be complex
when EI2+E22&E'. We adopt the convention that
the positive sign is chosen in Eq. (20) when k3 is positive
and the negative sign when k3 is negative. As is well

known, the complex amplitudes of the electric and
magnetic fields S and S of the incident, reflected, and

transmitted waves are connected via the Fresnel rela-

tions, '~ which become, for a TE wave incident from the
left,

evidently satisfy the Helmholtz equation

v'SI, (k)1)r)+E'n'(r)SI, (k) 1.,r) = 0,

and can therefore be used for the representation of
solutions of Eq. (26)."

We must now brieAy discuss some properties of the
refractive index no. In general it will be a complex func-
tion of the optical frequency E. As is well known, the
causality requirement imposes constraints on the
allowed forms of 50(E), so that the real and imaginary
parts of no(E) —1 are coupled by Hilbert transform
dispersion relations. "But the introduction of an imagi-
nary component of the refractive index is somewhat
unfortunate for our purpose, since it involves energy
dissipation and prevents waves launched from in6nity
with 6nite amplitude from arriving at the interface.
For this reason, we will make the simplifying assumption
that the imaginary part of the refractive index vanishes
over all frequencies in the optical region or below with
which we shall be concerned, and does not become non-
zero until much higher frequencies, say in the x-ray
region, are reached. Under these conditions the real

part of the index will be nearly constant over the fre-

quencies of interest, and we may treat no as a real con-
stant which is greater than unity. Such an assumption is
certainly valid at this stage. Later on, when we en-

counter integrals over frequencies ranging to in6nity,
we shall have to re-examine the implications.

The magnetic 6elds associated with the foregoing
electric 6elds follow immediately from Maxwell's

equation

—0 for s ~& 0, (23)

Sz&r&(k, i,r) = s —exp(iK r) for s~&0
%200 k3+E3

=0 for s(0. (24)

We have written k&~& for the wave vector (~I, 4, —~3)

of the reflected wave. s= s(k) is a leal uIllt vector lvIIlg

in the plane s= 0, which is orthogonal to both k and K
and. characterizes the polarization of the wave. The

scale factors 1/(v2&IO) are introduced for later conveni-

ence in the normalization. The label 1 in SI,&I&(k,l,r),
etc., identihes the waves as TK waves, and the suffiix J
indicates the incidence from the left. Notice that we

have chosen to label all three waves SI,&I&(k,i,r),
SI,'~&(k, i,r), SI,&r&(k, i,r) by the wave vector k of the

incident wave, even though they represent waves

propagating in three di6erent directions, in order to

emphasize that these three waves belong together (see

Fig. 1). Indeed, they form an elementary "mode" of

the system under consideration, for the functions

formed by adding the three wave components,

SI(k, i,r) =SI&I&(k, i,r)+SI &s&(k, i,r)
+SI,&r&(k, i,r), (25)

when the real f&elds are obtained from Eqs. (22) to (24)
by multiplying by the time factor exp( —iEt) and adding
the complex conjugate. In the corresponding notation
the magnetic 6elds are given by

j.
SI,&I&(k, l,r) = —(~Xe) exp(ik r)

V2
for $+0

=0 for s &~0, (28)

k3 —E3
SI,&a&(k, i,r) = —(x&s& Xe) exp(ik&» r)

V2 k3+E3

=0

for a&0

for s && 0, (29)

203
Sz&r&(k, i,r) = (cyr) exp(iK r)

W2eo k3+K~

=0 for s (0, (30)

'9 See, for example, Jan Hilgevoord, Dispersion Relakioes and
Cagsg/ Desni ptjow (NArth-Holland, Amsterdam, 1960).
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where x and x&~) are unit vectors in the directions of k
and k ~&, respectively, and c is a (possibly complex)
unit vector in the direction of (possibly complex) K.
Since x and x&~) are real, IL, ( ) and 81,(~) are both
proportional to real vectors. However, the situation is a
little more complicated for SL,& '. When Ã3 is zeal,
81,~~) is also proportional to a real vector. But when
E3 is imaginary, IL,(~) is a complex vector, whose real
and imaginary parts point in different directions. It is
once again convenient to denote the sum of the three
foregoing magnetic fields by

=0

for z~&0

for s(0 (37)

for the TM waves incident from the left,

1
5~&z)(K, 1,r) = —e exp(iK r)

v2
fol s~&0

1 2k3
$1."'(k,2,r) = ——(cX e) exp(iK r)

K2 k3+e0'E'3

Sz,(k, 1,r) =Sz,&z)(k, 1,r)+Sz, &s&(k, l,r)
+81,&r) (k,1,r) . (31)

=0 for s(0, (38)

The relations (22)—(24) and (28)—(30) hold for trans-
verse electric waves incident from the left, but we can,
of course, write down similar equations for transverse
magnetic waves, and for waves which are incident from
the right. Each of these triplets forms another funda-
mental mode. Ke use the label 2 for the transverse
magnetic components and- the suffix E for the modes
excited by waves incident from the right, which are
labelled by the wave vector K. Unlike the first set of
modes, this last set contains only homogeneous plane
waves, and all the wave vectors are real, by virtue of
the fact that the waves are passing from a low-index to
a higher-index medium. The complex amplitudes of the
other mode functions are given by

1 E3—k3
ps&~&(K, 1,r) = —e exp(iK&" & r)

v2 K3+k8

=0

for s&~0

for s(0, (39)

=0 for s &&0, (40)

1
8~&'&(K, i,r) = —(cXe) exp(iK r) for s&0

V2

1 2E3
Sz")(K,1,r) = —e — exp(ik r) for s(0

V2 X)&+k3

1
Sz, &'&(k, 2,r) = —e exp(ik r)

K2

=0

for s(0

for s &~0, (32)

=0 for s(0, (41)

1 E3—k3
Ss&s)(K,1,r) = —(c&s'Xe) exp(iK&"& r)

V2 %3+k,

1 k3 —eo'E3
Sz, &s&(k, 2,r) = —e exp(ik&"& r)

W2 k3+No'K3 =0
fol s~&0

for s (0, (42)

=0

for s(0 fl'0 2E3
S~")(K,1,r) = —(~Xe) exp(ik r)

2k3
Sz &r&(k, 2,r) = —e exp(iK r)

W2 k3+no'E)& =0
for s(0
for s &~ 0 (43)

=0

for s~&0

for s (0, (34)

for s &~ 0, (35)=0

g~&z)(k, 2,r) = — (~Xe) exp(ik r) for s(0
v2eo

1
Sg&')(K,2,r) = —e exp(iK r)

W2
for s~& 0

=0 for s(0, (44)

for the TE waves incident from the right, and

1 k3 —eo'E3
g~&s)(k, 2,r) = — (~&»Xe) exp(ik's& r)

v2eo k 3+No'E3

Ro E3—k3
Sg&~&(K,2,r) = —e exp(iK&" & r)

v2 k3+np'E3

=0

for s(0
for s &&0, (36) =0

for s~&0

for s(0, (45)
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LSg(K„s,r) 6g(K', s', r)N'(r)

+Sg(K,s,r) Is(K,s,r)]d g=do@=0, (57)

LSI,(k,s r) 5~(K',s',r)n'(r)

+81,(k,s,r) I (Ks,s,r) jddoe =0. (58)
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B(r,t) =
(2~)' ~3&0

(E "'
d'k g ~

— [u(k,s)Sr, (k s r)e-'x'+c. c.]
s=l q0

+
(2')'

i/2

d'EQ '— [v(K,s)Sg(K, s,r)e—'x'+c.c ] (60)
3&0 s=l g0

This shows that the total energy of the electromag-
netic field is expressible as the sum of contributions
from independent harmonic oscillators, one for each
mode. The situation is therefore exactly the same as for
the free 6eld in vacuum, although we must not lose
sight of the fact that the modes are very different in
this case, and that each mode consists of three waves,
one of which (for k3)0) may be an evanescent wave.

where e0 is the vacuum dielectric constant, and the
factor (E/e, )"' is introduced for later convenience. We
have labelled the complex amplitudes of the modes
generated by right-going and left-going waves u(k, s)
and v(K,s), respectively, in order to emphasize the dif-
ference between these modes.

We shall not here enter into the question of complete-
ness of the set of modes with respect to solutions of the
Helmholtz equation, which appears to be a dificult
problem. However, if ~alidity of the expansions (59)
and (60) is assumed, the amplitudes u(k, s) and v(K,s)
for any given 6eld may readily be derived. Thus, on
taking scalar products of both sides of Eqs. (59) and
(60) withe'(r)$1. *(k',s',r) and S~*(k',s',r), respectively,
and integrating over all space, we 6nd with the help of
Eqs. (53)-(58)

V. QUANTIZATION OF FIELD

The simple expression (64) for the electromagnetic
energy now leads to a straightforward procedure for
quantizing the Geld, which is essentially the same as
that for the free 6eld in vacuum. "We regard the field
as a collection of independent quantum oscillators. The
complex amplitudes u(k, s), u*(k,s) and v(K,s), v*(K,s)
are replaced by Hilbert-space operators" u(k, s),
ut(k, s) and v(K,s), iF(K,s), which can be given the
usual interpretation of annihilation and creation opera-
tors for quantum excitations, or photons, labelled by
the mode k, s and K, s, respectively. Since the different
harmonic oscillators are independent, all operators
belonging to different modes commute. In addition, all
annihilation operators and all creation operators com-
mute among themsleves. We therefore have the follow-
ing commutation relations:

u(k', s') =(eo!E')"'e'x' [I'(r)E(r t) SL,*(k' s' r)

+B(r,t) Sl.*(k',s',r)]d'x. (61)
Similarly we have

v(K', s') = (eo!E')"'e'x' [u'(r) E(r, t) $&*(K',s',r)

+B(r,t) Ss*(K',s',r)]d'g. (62)

[6(k,s),u(k', s')]=0= [ut(k, s),ut(k', s')],
[i(K,s),i(K',s')]=0= [v'(K, s),v'(K', s')],
[u(k, s),v(E', s')]=-0= [u'(k, s),it (K',s')],
[u(k, s),vt(E', s')]=0= [ut(kps), v(K', s')],

(65)

while

[u(k, s),u'(k', s')]= f(k,s)8,.8'(k —k'), (66)

[v(K,s),vt(K', s')]=g(K,s)8,.8'(E—E'), (67)

in which the functions f(k, s) and g(K,s) are assumed to
be c numbers, but are undetermined as yet. The expres-
sion for the energy of the quantized 6eld can now be
written in the normally ordered form

in which E(r,t) and B(r,t) are given by Eqs. (59) and.
(60), and the electric displacement D(r, t) may be de-
rived from E(r, t) by multiplying by on'(re) On intro. -
ducing the mode expansions under the integral in Kq.
(63), and making use of the various orthogonality con-
ditions (53)—(58), we readily obtain the result

1
d'k Etta(k, s)u(k, s)

~ (2~)' as&o

The amplitudes appearing in the expansions (59) and
(60) can therefore be found. In particular, we may use
the expansions to represent a 6eld which is composed
only of evanescent waves in the right half-space, by tak-
ing v(K, s) =0, and u(k, s) =0 for (kg+kg) (No' 1)&ks2-

Finally let us consider the energy K of the electro-
magnetic field in the whole space. As usual, for a non-
magnetic medium this is given by the integral

K= — [D(r, t) E(r,t)+(1!uo)B'(r t)]d'x (63)
2

d'k Q E
~
u(k, s)

~

' d'E Evt(K, s)v(K,s), (68)

+
(2v)'

d'E Q E
~
v(K, s)

~

'. (64)

%3&0
'o See, for example, %. H. I ouisell, Radiatioe and Noise jn

QNanAvn J /ecIromcs I'McGraw —Hill, New York, 1964).» We use the caret A to denote a Hilbert-space operator, or,
when this is not available, the subscript op.
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these operators are the Fock states of the field, which
we can form in the customary way by allowing the
operators ut(k, s), 8t(K,s) to operate on the vacuum
state

~
{0})."Thus

ki)sl) ~ ~ ~ )k)))s))) + )1 ))lr~) ~ )E)))))r))))

1 n! ns!)ju"(kisi) u'(k„,s„)
Ki,o i) 8"(K,o.„)

~ {0}), (69)

in which possible zero-point contributions have been
omitted. As usual, the operators

L1/(2sr)'jd ku" (k,s)u(k, s)/ss

L1/(2)r) s7dsE8t (K,s)8(K,s) /It

and

L /(v' v'
behave as number operators for the excitations, or Xv'(
photons, of type k, s and K, s, within the differential
ranges d3k and d'E, respectively. The eigenstates of with the normalization

( I. 1 I I 1 I II1Ksr )0'M ). . .)Ki )0'i ) kz )$N ) ~ ~ ~ )kl )sl ~kl)si) ~ )kn)sn) kl))rl) ~ ~ ~ )EN)))rs))

=8„„8„Mp 8s(k, —k,')8„„"~ 8s(k„—k„')8,„,„.8s(K,—K,') 8...,' 8 (K„—K„')8.„... (70)
e~mI &

where Ps denotes the sum over all n! permutations of the k, s modes and all ns! permutations of the K, o. modes.
Similarly, we can define coherent states of the field, "labelled by a set of complex functions u(k, s), v(K,s), as the

eigenstates of the annihilation operators u(k, s) and 8(K,s):

u(k, s)
~
{u(k,s) },{v(K,s) })=u(k, s)

~
{u(k,s)},{v(K,s)}),

8(K,s) i {u(k s) },{v(Ks)})= v(K,s) i {u(k s) },{v(K s)}).
(71)

The notation
~
{u(k,s)},{v(K,s) })is meant to emphasize that the states are functionals of u(k, s), v(K,s). We can

also make "diagonal" representations of the density operator for the state of the held in terms of coherent states,
in the usual way. ' '

The formalism is therefore strictly parallel to the usual formalism for the quantization of the free electromagnetic
field jn vacuum, except for the fact that the fundamental modes are different, and that each mode, although labelled
by one wave vector and one polarization index, always stands for three waves coupled via the Fresnel formulas.
As is to be expected, this difference becomes important when we treat the behavior of the field in configuration
space, via the mode expansions.

VI. CONFIGURATION-SPACE FIELD COMMUTATORS

By making use of the mode expansions (59) and (60), in which the fields E(r,t), B(r,t), and the mode amplitudes
u(k, s), v(K,s), are replaced by their corresponding Hilbert-space operators, together with the commutation rules

(65)—(67), we can form commutators of the E;(r,t) and B,(r,t) operators. Since we are particularly interested in the
contributions from evanescent waves, we shall be mainly concerned with the fields in the empty right half-space,
for which

aiid

@J.(k,s,r) =Sr,&r&(k,s,r),

8i,(k,s,r) = 8r, "&(k,s,r),

Sa(K,s,r) = Sis "&(K,s,r)+Saic&(K,s,r),

8a(K,s,r)=San i(K,s,r)+8is&"&(K,s,r).

(72)

(73)

(74)

(75)

With the help of Eqs. (59) and (65)—(67), and (24), (37)—(39), (47), and (48), we then obtain the following

expression for the electric field commutators at two space-time points in the right half-space:

1 E 403' E 443'
$E,(r, t),g, (r', t') j= dsts f(k, 1)o,o, — + —f(k, 2)(cXs);(c Xe),

(2sr) s&o ss)o -2no'
~
&s+Es I

' 2
~
&s+nosEs

~

'-

Xexpi[K r —K* r' —E(t—t')]—c.c.

» por a treatment of continuous Pock space see, for example, J. S. Schweber, An Introdmction to Relativistic Quantum Field
Theory (Harper and Row, New York, 1961),p. 159.

"Cf. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
'4 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 8274 (1965).
~' Js R. Klagder, Phys. Rev. Letters 16, 534 (1966).
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+
(2m') Pp K &p

+
(23r) 0

00 K,&p

E /E3 —koq'
O'K —g(K, 1)p, p; exp[iK (r —r')]+1

1

exp[iK&K& (r —r')]
2 (K3+koi

E3—k8
[expi(K r —K&K'r')+expi(K&" & r —K r')] exp[ —iE(t —t')]—c.c.

KB+&3

E tn'E3 —k3 '
d'E —g(K, 2) (cXe),(cXs), expiK (r —r')+(c&"&Xs);(c&"&Xs),

~

expiK&K& (r—r')
2 En'E3+kp

n2E3 —k3
+ [(cXs),(c&"'Xe);expi(K r —K&K'r')+(c&"&Xe),(cXs);expi(K&~&.r —K r')]

n'E3+kp

Xexp[ —iK(t —t')]—c.c. (76)

It is convenient to transform the integral over k in Eq. (76) to an integral over the vacuum wave vector K, with
the help of the relations (17), (18), and np'E3'= k33 —(npo —1)(Eq'+K33). That part of the range of integration for
which ko') (npo 1)(K&3+—Eoo), or E3')0, then includes only homogeneous plane waves, while the part of the
range for which ko'&(np' 1)(—Kp+Eoo), or (1/np' —1)(E33+K33)&'E,'&0, includes only evanescent waves. It
is therefore natural to decompose the integral into separate integrals. We can also introduce a slight simpli6cation
in some of the remaining terms in Eq. (76), by making the transformation K3 —+ E3, whic—h implies kp~ —kp,
K —& K(~) and c —+ c'~'. With the help of these transformations, and on rearranging the order of the terms, we
then obtain the equation

I E,(r, t),Z, (r', t')] =
00(23.)3

E 4ASK3 4ep'ksKS
d'K —f(k, 1)0;0, — +f(k,2)(cXs),(cXe),

,&p 2 (k3+Eo)' (ko+npoE3)'

Xexpi[K (r —r') —E(t—t')]—c.c.

+
00(2m.)0

d'E g(K, 1)+
(E3—k3)' E

O'K g(K&"~, 1) — — —0;0; expi[K (r—r') —E(t—t')]—c.c.
3)0 (E3+k3)' 2

+ d'E g(K,2)+
00(23 ) Ko&0

eo'E3 —k3 ' E
O'E g(K&K', 2) —(cX3);(cXe),

3)0 np'K3+k3 2

Xexpi[K (r —r') —K(t —t')]—c.c.

00(2~)' K,&o

K E,—koanO'E g(K, 1)+ d'E g(K&», 1) — 10;0, expi[K r —K&"& r' —K(t—t')]—c.c.
Ko&0 2 K3+kp&

+
00(2~)' K,&o

E/no'K3 k3)d'E g(K,2)+ O'E g(K ~,2) —
I

. 1(cXe),(c&K'Xe),
X3&0 2 «n03K3+koi

O'E
00(23r) 0

Xexpi[K r K&K' r'——E(t—t')]—c.c.
t (1—3./nP2) (~&2+~22)] 1/2 2k, 1E,1

2k n, 1E,1—
d1E31 f(k, 1)o;0, +f(k,2)(cxe);(c*xs)g

k3 +1E31 k3 +np 1E31

XE exp[ —1K31(s+s')] expi[K&(x —x')+Eo(y —y') —E(t—t')]—c.c. (77)

It will be seen that the terms under the 6rst 6ve
integral signs in this rather complicated expansion
di6er from the others in that they depend on the separa-
tion of the space-time points r, t and r', t' in the familiar
way, via the factors expi[K (r —r') —E'(t —t')]. The
next four integrals, on the other hand, contain the factor

expi[K&(x —x') +E,(y —y')+ E'3(s+s') —E'(t —t') ],

which is anomalous in its dependence on the s coordi-
nates. The remaining terms depend on the space-time
points via the factor exp[ —1E31(s+s')) expi[K~(x x')—
+Eo(y —y') —K(t—t')], which is again anomalous in a
difterent way with respect to the s coordinates.

However, the anomalous s dependence does have one
bene6t, which allows us to determine the functions
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[Ec(rqt) qgt(r &t )]vacuum

2pp(2pr) P

O'E E(5; c,c,„,)—

f(k,s) and g(K,s). For the contributions of these
anomalous terms should become small compared wit
the others as s —+~ anh th s —+~ and s' —+~, when the difference
s—s' is kept constant. This means that only the rst
five integrals should contribute to the field commutator
at a very grea is anct distance from the dielectric interface.
But at a great distance from the interface, it may
reasonably be argued that the commutator should re-
duce to the usual free-field commutator in empty space, "
which is given by

expix. r.

which is satisfied if

where A(r, t) is the usual singular function defined by

sinEt
a(r, t) —= (79)

(2pr)' K

Comparison of the first five integrals in Eq. (77) with
Eq. (78) now shows that equality requires

4kpEp (Ep —kp)'
k, 1 +g(KP"&, 1)

(k +K )' (K +kp)'
=g(K, 1)= (2pr) 'k, (80)

(~p'E, —k,)'
f(k, 2)—+g(K"'»)

k, +npPEp (ptp'Ep+kp)'

=g(K,2) = (2pr)'k, (81)

Xexpi[E (r —r') —K(t —t') j—c.c.

lA 8 I9

A(r —r', t —t'),
pp ptt8t' pjxcp7xj'

f(k, 1)= f(k, 2) = (2pr)PIt, (82)

g(K, 1)= g(K,2) = (2cr)'b. (83)

(78) lt, t is c olcW' h th' h ice the commutator (77) reduces to the
somewhat more compact form

iA
[E;(r,t),E,(r', t') j= —6,,

~o-

1
a(r —r', t —t')+-

Ox;Bx,' pp (2m.)'
E E3—k3O'E- Ej
2 E3+k3

1

pp (2pr)'

K —&'+ ——(cXe);tc Xe, exp');( P"~ ) ex i[E&(x—x')+Kp(y —y')+Ep(s+s') —K(t —t))—c.c.
km pPE, +k p/

[(] ] / rt02) (+12++22)] 1 /2

k, +(E, i kp'+~p')Ep)'
I

&(exp[ —
l
E,

I
(s+s')) pex[Et,( xx')+K, (y y') K(—t t ——c.c—. 84

The first term on the right-hand side is the usual free-
field commutator, which vanishes off the light cone
connecting the two events r, t an d r' t'. It is the domi-
nant term a a great reat distance from the dielectric inter-
face, and is obviously due to homogeneous light waves
directly connec ing el t' the events. The next term contains
the factor

expp[Ei(x —x')+ E&(y—y')+ Ep(s+ s') j
under the integral, and therefore connects one space-
time point wi e

' t 'th the image of the other in the die ec ric
interface. This contribution is evidently due to homo-
geneous light waves connecting the space-time points
r tan r, yd ', t' b reflection in the interface. Due to t e
dispersive na ure ot f the reAection this term has a differ-)

ent structure rom ef th first and is nonzero also off the
light cone. e asTh l t term containing the factor
exp[ —~Kp~(s+s')] under the integral falls off ex-

'
ll with distance from the interface, and isponentia y wi is

evi en y'd tl due to evanescent waves connecting e w

events. Since e eva. S' th nescent waves propagate paral el

to the interface, only the x, y, and t coordinates appear
in the osci atory ac or.'ll f t This term is complicated and
is also nonzero off the light cone connecting the two

the entireWhile causality would seem to require t at
commutator vanis or wh f two events having a spacelike
separation, we mus remt emember that an element of non-

causality was in ro ucet d d right at the beginning of our
treatment, when we chose to ignore the high-frequency

h
'

f the refractive index, at frequencies in t e
. For thisre ion of anomalous dispersion and beyond. For

reason the commutator given y q.
expected to be strictly causal, although any noncausality
might be expec e ot d t extend only over distances and

~ ~

ls of the order of the anomalous dispersiontime interva s o e or
wavelength and period, which can be ma e as s or as
desired. It is c ear a cl that commutators for the magnetic
fields, and for mixed electric and magnetic e s, may
be derived in a strictly parallel manner.

Finally we no e a,t th t if we define photon num-

ber operators y inb integrating ut(k, s)t1(k,s)/t't or
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tpt(K, s) g(K,s)/t't over finite domains Ak or AK,

N(Ak, s) —= — u'(k, s) u(k, s)d'tt,
(2s)'A

P(XK,s)= — 8~(K,s)8(K,s)d'E,
(2pr) Ptt

then it follows from the commutation relations (66) and

(67) with (80) and (81) that

interpretation of U,t(r, t) V;(r, t). Consider the operator
defined by

2~«' 1
V*(r,t) =-E —

I

t't (2s.)'

d'k fi(k,s)Sc,(k', s,r)u(r)e

d'E 8(K,s)SR;(K,s,r)u(r)e 'x' .—(88)

[u(k', s'),P(A k,s)]=u(k', s') 8„U(k'Q4k),
[8(K',s'),P(aK,s)]=8(K',s') b„U(K'CcLK),

3(0

where U(k't rhk)=1 or 0 according as k'+4k or
k'QLk. Moreover, from the form of K,„given by Eq.
(68), we have U,"(r,t) U;(r, t)d'x

86
With the help of the orthogonality relations (50)—(52),
we readily find that

[u(k', s'),K.,]= hE'u(k', s'),
P(K', s'),X,p] = t'tE'8(K', s') .

(87) d'k ut(k, s)u(k, s)
~ It(2x)' i,)p

VII. CONFIGURATION-SPACE PHOTON
ABSORPTION OPERATOR

In the usual treatment of the free electromagnetic
field in vacuum, it has been found convenient to intro-
duce a configuration-space photon absorption operator,
which we call V;(r,t), such that the integral over all space
of Vt(r, t) V,(r,t) gives the total number of photons. "
V,t(r, t) V,(r,t) is therefore the photon density per unit
volume, and the operator U, (r, t) plays a role in con-
figuration space which is somewhat similar to the role
played by the usual annihilation operator in the con-
jugate space. Moreover, it has been shown that the
integral of V;t(r, t) V,(r,t) over a finite volume also has
a physical significance, "provided that the linear dimen-
sions of the volume are large compared with the wave-
lengths of all modes contributing to U, (r,t).

In the present situation we may again introduce a
configuration-space absorption operator, although the
somewhat more complicated mode structure limits the

K3(0

d'E p" (K,s)p(K, s)

(89)

where N is the total number of photons. Ke see that
V,t(r, t)l, (r, t) again has the dimensions of photon
density, although its integral over a finite volume is less
readily interpreted. In view of the relations (86), it
follows at once that

[V,(r,t),P]= 0;(r,t),

[V,t(r, t),P]= —V;t(r, t) .

(90)

(91)

By making use of the relations (22)—(24), (28)—(30),
and (32)—(49), together with their Hermitian adjoints,
and the commutation relations (65)—(67) with (82) and

(83), we can evaluate the commutator of V;(r, t) with
V;t(r', t'). For two points r and r' in the right half-space
we find, after introducing a transformation of variables
and proceeding as in the derivation of Eq. (84),

[V,(r, t), V,t(r', t')] = O'E(p, , c,c,) expi[K (r——r') —E(t—t')]
(2m)'

j. E —kq eo'E3 —k3
+ — d'E p, p, I+(cXe),(c&~&Xe),

(2m)' Ep+tpp) upPEp+kp

Xexpi[Ei(x —x')+Ep(y —y')+Ep(s+s') —E(t—t') ]
2 2u, lE, I

d K dl Ep
I

p;e, +(cXe),(c*Xe),
0 & '+IE I' ~ '+up'IE I'—

Xexp[ —IEp I
(s+s')] expi[E, (x—x')+E, (y —y') —E(t-t')], (92)

[(1—I/n02) (K12+K2) ~
1/2

(2s.) '

"L. Mandel, Phys. Rev. 144, 1071 (1966).

in which the three terms can be identified as before as due to direct waves, reflected waves, and evanescent
waves, respectively.
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VIII. PHOTOELECTRIC EMISSION IN
EVANESCENT WAVE FIELD

So far we have been treating the electromagnetic
field effectively as a free field, despite the presence of
the dielectric in the left half-space. But the questions
which are of most physical significance obviously relate
to the interaction of this field with atoms and charges.

I et us therefore consider the problem of a bound
electron, located in the right half-space, interacting
with an electromagnetic field having evanescent wave
components in the right half-space. We shall calculate
the probability, to the 6rst order in perturbation theory,
that the electron makes an upward transition to the
continuum of positive-energy states, after a short time
T following the turn-on of the interaction. Since the
electron is then free, we refer to this as the problem of
photoelectric emission. However, the calculation is
substantially similar for upward transitions to a broad
band of bound states, which is the situation often en-
countered in radiation-induced fluorescence.

If p(t) is the density operator of the combined system
at time t in the interaction picture, and Hi(t) is the
interaction at time 3, which is turned on at time 3p,

then we have from the usual perturbation expansion, "
up to the second order in Hq,

t0+7
t"(to+ T) =t"(to)+ —. [»(t),t"(to)]«

ZS t0

We suppose that the electron is initially in some
bound s~a~e

I y,) with energy Z,(0 and —Z,/It in the
range of optical frequencies, and that the 6eld is in a
coherent state 1{u(k,s)},0) [cf. Eq. (71)], in which the
Inodes labelled by left-going waves are all unoccupied.
Moreover, it is convenient to suppose that the 6eld is
quasimonochromatic, with frequencies centered on
some optical frequency. Then

t"(to) =
I A&Q o I I {u(k,s)},0&&0 {u(k,s)}I (94)

We take the interaction to be of the usual form

Hi(t) = —(e/nz) exp[iHo(t —to)/&]y A(ro, to)

&(exp[—iHO(t —to)/h], (95)

in which p is the electron momentum, ro is some 6xed
point within the potential well wherein the electron
is bound, A is the vector potential in the Coulomb

gauge, and Ho is the noninteracting part of the Hamil-
tonian. In taking A in. the interaction» at a fixed point
I'0, we are making the usual assumption that the dimen-
sions of the mell are small compared with the wave-
lengths of all occupied modes of the 6eld.

From the expansion (59) and the relation

8
P,(r, t) = ——A ;(r,t)

8)

(i')'

between the electric 6eld and the vector potential,

dt,[»(t,) [H,(t,) p(t )]] (93) together with the commutation relations (87), it follows

at once that

exp[iHO(t —to)/A]A(ro, to) exp[ —iHO(t —to)/Ii]—=A(ro, t)

d'k P [u(k, s)6i, (k,s,ro)e 'x&' "i—H.c.]
(2sr) ' &„)0 ~ (Kep) "'

y, dsEQ [i(Ks)g (Ksr)s ' " "'—Hc] (96)
(2~)' x,(0 ~ («0)"'

A

It is convenient to denote the positive- and negative-frequency pa, rts of A(r, t), which are Hermitian conjugates
of each other, by A&+i(r, t), and A.& '(r, t), respectively. If we denote exp[iHO(t —to)/ts]y exp[ —WHO(t —to)/tt] by

y(t), we may write

[»(t) t"(to)]= —(s/~) [P'(t) I A&&A I ~'(«, t) I {u(k,s)},0)(0,{u(k,s)}I

&'p, I p;(t) 1 {u(k,s)},0&(0,{u(k,s)}I A(ro, t)] (97)

Tire«l [»(t),P(to)]14-&=o (99)

[»(ti) [»(ti),p(to)]]= (e/m) '{p,(ti&p, (t2) I A&&A I
~ '(ro ti)~'(« t2) I {u(k s)}0&&{u(»s)}01

—p (ti) IA&Q o I P'(ts)4(ro ti) I {u(k,s)}o&&o,{u(»s)}l~'(ro, t2)

—p'(ts) I po) O'o
I pt(ti)A, (r„tm)I {u(k~s)}o)(o {u(k»)}IAi(ro ti)

+ lko)QoIP'(t )0'(ti)1{u(k,s)},0&&0,{u(k,s)}l~'(ro, t )~ (ro, t )}.
In order to evaluate the probability that the electron ends up in some unbound energy eigenstate If ) at a time

to+7 following the turn-on of the interaction, we take the expectation value of p(t~+7) with respect to 1&p ),
and trace over all field variables. When these operations are performed on the commutators given by Eqs. (97)
and (98), we find
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» (0-IN (I ),[If (I ),f(I.)7j)0-&= —(~/~)'{exp[i(E- —Eo)(I —I )/@&Q.IP;Ifo&64)P'[II-&
XTrr[A;(r„r)[ {u(k s)},0&(0,{u(k s) }[3;(r„I,)j+exp[i(E.—E)(I,—I )/aj

XQ-IP'IA&&IIolAI&-& Trr[~'(ro, r )1{u(ks)}0&«{u(ks)}l~ (ro,ri)3 (Ioo)

Now the initial electron state is a bound state, with —Eo/h somewhere in the range of optical frequencies, and
the final electron state is free, so that (E —Ep)/II is always a positive frequency. If first-order photoelectric emis-
sion is to take place, it is necessary for the electromagnetic field to have frequency components which are at
least as high as —Ep/h. If we decompose the A(rp J) operators into their positive- and negative-frequency parts,
and substitute in Kq. (100), we 6nd that most of the terms are highly oscillatory in Ii or Ip or both, so that their
contributions under the integral in Kq. (93) are very small for any T which is great compared with the optical
period. If we eliminate these terms and retain only the contributions which, at least for some E &0, are more
slowly varying, we obtain

».9-IN (I ),[& (I ) f(Io)jllIt-&
= —(~/~)'{«p[i(E-—Eo)(Ii—Ip)/~j&II" I 4 I It o&&It ply'le -& T»[~ "'(ro Ii) I {u(»s)}o&

X &0,{u(k,s)}I-4"-'(ro, Ip) j+«p[i(E-—Eo) (4—Ii)/8&4-I i'I II o&&II pl A I 4-&

XTrr[A, i+'(rp, 4)
~
{u(k,s)},0)(0,{u(k,s) }~A, I &(ro,ti)g}, (101)

in which the second term is the complex conjugate of the first.
Now, in view of Kq. (71), the coherent state

~
{u(k,s)},0) is a right eigenstate of AI+i(rp, I) with eigenvalue

W(r, ,t) = — d'Ip g u(k, s)Sz(k, s,r) exp[ —iE(I—Ip)g,
(2~)' »o * («o)"'

and a left eigenstate of AI '(rp, I) with eigenvalue W*(rp, I). On making use of these properties in Kq. (101), and
taking the trace over the field variables, we obtain

T"Q.l[& (I ),[II (I.),u(Io)ZI~. &= -(/ )'-pL (E-—E.)(I -I.)/~j
x&II.IPJIPo)&14lf'III-&Iir;( o,I )Iv'*( o I )+, (103)

so that, from Kqs. (93) and (102),

Trr8. I P(Io+T)14.)
(&l

a j 0 0 s a(~)
d'l'od'O' P P u(k, s)u*(k', s')Kl, ,(k,s,ro)Sr„'(k',s', ro)" (KopK'po)"'

X
(i7i')

dIi d4 expi[(E —Ep)(Ii —Ip)/A —KIi+K'Io+(E —E')IpJ+c.c.

e
&~.li;l~.)

ilrio (2or) '
O'Io P u(k, s)gz;(k, s,ro) , dIi exp[i(E —Ep —E)til

~ (Epp)"' o

e sin[ip(E —Eo—E)Tj '
(y ~ p;~Po) d'k P u(k, s)(Rr,,(k,s,rp) exp( ——,'iKT)

Arrl (2pr)' ~ (Epp)"' -', (E.—Eo—E)
(104)

The second line follows from the erst when the changes quency. From Kq. (102) we then see that Kq. (104)
of variables K+-+ K', s~ s', and ti &—+ t2 are introduced reduces to
in the complex-conjugate term. If the time interval T
is short compared with the reciprocal frequency spread Trrg~~ p(tp+T) ~PN&

of the incident electromagnetic field, we may replace
the factor

{sin[o(E —Ep —E)Tj}/[o(E —Ep —K)]

{sin[—,'(E —Ep —E'o)Tj}/[o(E —Eo—Ko)j
to a good approximation, where Eo is some midfre-

-sin-', (E.—Eo—Eo)T- '
X — — . (105)

-,'(E —Ep —Eo)
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Finally, in order to arrive at the probability of photo-
electric emission P(tp+T), we sum over free electron
states, or integrate over positive electron energies E,
with the density of states p.(E ) as a weight function.
If o(E ) and the matrix element Q Ip, ipp& vary slowly
with E in the neighborhood of the peak of the function
(sin'I ~o(E,—Ep —Ep)T]}/[p(E —Ep —Ep)], then we
have the usual result given by the golden rule,

I'(to+T) = Trig I p(to+T) IP )o(E )dE

= 2pr T(e/km) '
I (y-(E.=Eo+@&o)

I P~ I 6&

XW, (r,, t,+ ', T) I

'0.(E-o+kzo) . (106)

If W(rp, t) is proportional to a real unit vector 1, as for
a TE wave, we can write

P(tp+ T) = 27rT(e/Am)'o (Ep+ AECp)

x
I Q.(E.=E.+kIt.) I p II4.& I

X I W(rp, to+-,'T)
I
', (107)

which shows that the emission probability is propor-
tional to the intensity I W(rp, tp+ —',T) I

' of the field, at
the midtime to+ —,'T within the interval.

We emphasize that the results embodied in Eqs. (106)
and (107) were obtained for an electromagnetic field
which is in a pure coherent state. But since an arbitrary
state of the field can be given a diagonal representation
in terms of coherent states, ""with a certain weighting
functional, we can derive the emission probability for
the general case from Eq. (106) by "averaging" with the
same weighting functional. It is interesting to note that
the same result would also be obtained from a semi-

classical treatment, in which the electromagnetic held
is represented by a c-number analytic signal W(r, ,t)."
We may also point out that, for a quasimonochromatic
field, W(rp, t) is proportional to V(rp, t), where V;(rp, t)
is the eigenvalue of the operator V;(ro, t), defined in Eq.
(88), belonging to the coherent state

I (n(ks))0,),
W(rp, tp+ ',T) I

' is theref—ore proportional to
V(rp, to+ oT) I

', which is the photon number density.
The formulas (106) and (107) hold regardless whether

the occupied modes of the field in the right half-space
are homogeneous plane waves, evanescent waves, or
both. In particular, Eq. (107) therefore holds for a
single evanescent wave produced by a TE wave of
complex amplitude n(k, 1) which is incident from the
left at an angle greater than the critical angle, for which,
according to Eqs. (24) and (102),

k3'
IW(ro to+'T) I' In(»1) I'

x(k,o+
I
z, i

o)

Xexp( —2IKpisp). (108)

» See for example, 1.. Mandel and E. Wolf, Rev. Mod. Phys.
3'7, 231 (1965}.

The photoemission probability therefore falls o6 ex-
ponentially with distance so from the dielectric inter-
face, in a manner characteristic of evanescent waves.
This result is to be compared with the expression

i W(rp, tp+-', T)
i

'
i n(k, 1) i

'—,(109)
E(ko+Eo)'

for a TE wave of the same complex amplitude incident
from the left below the critical angle. The two expres-
sions of course coincide at the critical angle. The cor-
responding photoemission probabilities for TM waves
are a little more complicated, but can be obtained from
Eqs. (37) and (106).

Although we have treated this as a problem of photo-
electric emission, the results are substantially similar
for upward transitions of the electron to a band of
bound states, as in some situations of radiation-induced
fluorescence.

IX. CONCLUSION

We have developed a description of a quantized elec-
tromagnetic field, which includes evanescent waves and
allows the properties of the field and its interactions with
atomic systems to be studied. The essence of the treat-
ment is the introduction of a set of modes, labelled by a
continuous wave vector index, each of which consists
of three waves, including evanescent waves. With the

help of these modes the development closely parallels
the usual one for the electromagnetic field in empty
space, and we can de6ne Fock states, coherent states,
etc., in an analogous manner. Although the field com-
mutators in configuration space are considerably more
complicated in the present case, they have the usual
form in the conjugate space.

Since evanescent waves extend only over a half-
physical space, and only over a limited range of modes,
there are no excitations of the field corresponding to
completely evanescent photons. A one-photon state like

I
k,s), with kp)+P(np' 1)(ki'+—ko)]"', is a state with

only an evanescent wave in the right half-space, but a
homogeneous plane wave in the left. If we attempt to
form a more localized one-photon state in the right
half-space we need the nonevanescent components also.

In the treatment of the photoelectric emission of a
bound charge under the inhuence of an evanescent
wave, we find, as in other photoemission problems, '8

that the result is identical with that obtained by treating
the electromagnetic field as a classical, c-number 6eld.
In this respect the evanescent waves are no different
from homogeneous waves.

'8L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys.
Soc. (I ondon) 84, 435 (1964}.
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APPENDIX: PROOF OF ORTHOGONALITY
OF TRIPLET MODES

By expanding Sz,(k,s,r) in terms of the three com-
ponents defined by Kqs. (22)—(24) and (35)—(37), we
see that every term under the integral on the left-hand
side of Kq. (50) contains the factor

P denotes the principal part. B(kp+kp') drops out in
Kq. (A5) because both wave components are incident
from the left, and k3 and k3' are both positive. The term
T~T is given by

exp[ —i(X3*—E3')s]ds

dxdy exp —i[(k&—kz')x+(kp —kp')y]
Es E3* E3' E3'*

= (2x)'h(k3 —ki') 6(kp —kp') I (A1)

which implies that k, k', K, and K' di6er only in their
s' components. From this fact and the definitions of e

following Kq. (24), it follows immediately that e(k)
=e(k'), and therefore e(k) e(k') =1, and that

e(k) [~'Xe(k')]=0,
e(k) [x&s&'Xe(k')]=0,

e(k) [c'Xe(k')]=0.

The orthogonality of the mode functions for the two
polarizations TE and TM follows immediately from this.
Thus each scalar product on the left-hand side of Eq.
(50) gives rise to the factor 8„.

As an example, let us now evaluate the integrals in
Kq. (50) for the TK (s= I) case. Using Kqs. (22)—(24)
to expand the Sr,(k, l,r) function, we have

d'x Sr,*(k,1,r) Sr,(k', I,r)n'(r)

5(k3 —kg') 6(kp —kp')
= (23r)'

2np'(k3+E3*) (kp'+E3')

1
(A6)

X,*—E,'P

3' — 3"=( 3' —3")/ P' (A7)

and on replacing E3 by E3* in (A7) we obtain the
relation

1/(X'3*—X3') =np'(X3"+X3')/(k33 —kp") . (A8)

If in Kq. (A6) X3 and E3' are both real, then, since they
have the same sign, we have

b(E3 E3') = b(X—3 E3')+ 5 (E3+—E3')
=2~X3~&(X3 -X,"),

and from Kq. (A7)

Notice that in Kqs. (A3)—(A6), kp and kp' are taken to
be real, but E3 and E3' are given the option of being
real or imaginary, according as the transmitted waves
are homogeneous or evanescent.

With the condition that k~= k~' and k~= k2', we have
from Kqs. (20) and (21)

X[(k3+X3*)(kp'+X3')nppI*I+ (kp —E3*)

X (kp' —E3')np'R "R+(kp+Ep*) (kp' —E3')nppI "R

= 2] X,
(
a[(kp' —k,")/n, ']

=npp(E3/kp) B(kp —k3') . (A9)

+(kp —E3+)(kp'+Ep')nppR+I+4kpkp'T+T], (A3) With the help of Kqs. (A8) and (A9), Kq. (A6) now
becomes

where

I*I= (R*R)*=

I*R=RI*=

exp[ —i(kp —kp') s]ds

=7rp(kp k,')+iP ——,(A4)
A'3 —k3'

exp[ —i(kp+kp') 3]ds

T*T= [(E3+E3")/2E3]np'm. b(k3 —kp')
—inp'P(X3*+X3')/(kp' —k3") (A10)

where the factor (E3'+Ep'*)/2X3' has been dropped
since it does not affect the value of the result.

Substituting from Kqs. (A4), (A5), and (A10) into
Kq. (A3), we see that there are two kinds of terms:
those containing the 8(k3 —kp') function and those con-
taining the principal parts; we readily find

1
=~6(kp+kp')+iP

kp+kp'

=iI
k 3+k 3

d'x Sr,*(k,l,r) Sl,(k', 1,r)

=3(2x)353(k—k')+principal-part terms. (A11)
(A5)

To show that the sum of the principal-part terms
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vanishes, we group them as follows:

(2m) 'b(ki —ki') b(k, —k2') iP
principal-part terms =—

2 (ka+Eg*) (k3'+Ea') (kg' —k3")

X ( [(k3+E3*)(kg'+Eg') —(ka —E3') (kg' —Eg') g

X (k8+k3')+ [(ks+E3*)(k3' —E ')

—(ka —Ea*)(kg'+E g')](k3 —kg')

k&= —k&', k2= —k2', and thus

e(k) e(k') = —1,
x x'= —ki' —k2+k3k3',

c* c'= ki2 k—p+E—S*E3'.

(A13)

(A14)

(A15)

(A16)

Proceeding as above for both waves incident from the
left and s= 1, we obtain the relations

—4kika'(E3" +E8')), (A12)

when the term in the curly parentheses is readily seen
to vanish. Thus Kq. (50) has been verified for the TE
case. The TM case is treated in essentially the same way.

The derivation of Kq. (51) proceeds exactly as above,
except that the roles of k and K are interchanged and
there are no evanescent waves involved. The algebra
for the corresponding expressions for the magnetic
fields is almost identical to that for the electric fields,
except that the TE magnetic field behaves as the TM
electric field and vice versa. Addition of the electric
and magnetic field contributions results in Eqs. (53)—
(55).

Turning our attention to Eqs. (56)—(58), we note that
the integrals over x and y yield b functions implying

6r(k, 1,r) $1.(k', 1,r)n'(r)d'x

= —-', (2m.)'8(ki+ki') 8(kg+k2')

X r(k, —k, ')(ks —Ea)/(ka+Eg) (A17)

Ir, (k, l,r) Pr, (k', 1,r)d'g

,' (2~) '-b(ki+ki') b(k 2+k 2')

X&(k3—ka')(k3 —E3)/(ks+Es), (A18)

which add to give zero. The results for s= 2 are similar
and the terms also add to give zero, as they do in the
remaining cases covered by Eqs. (56)—(58).


