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A relation between the K&3-decay form factors and the pion electromagnetic form factor is
derived by using only the hypothesis of asymptotic SU(3) symmetry. This relation enables us
to predict the complete behavior of the K»-decay form factors, once the behavior of the pion
electromagnetic form factor is given. For the choice of the. dipole formula, (1-t /~& ), «r
the pion form factor, we predict the following for the parameters of the g»-decay form fac-
tors: ((0) = -0.53, A,+ =0.023, and A, =0.0010. If we extrapolate the result from the physical
E&3-decay region 0~ t ~(m~-m~) to include the region 0~ t ~(m&+ m~)2, the presence of a
dip in the E»-decay scalar form factor in this region is indicated. The extrapolated form fac-
tor satisfies approximately the soft-pion constraint given at t =mz . The effect of particle
mixing between the usual pseudoscalar nonet and the possible higher-lying pseudoscalar me-
sons is not considered.

I. IM ROOUCnow is defined by

In the past years the K»-decay form factors have
been intensively discussed. ' We write the form
factors with the obvious notation [V~ (x) = Vt(x)
-iV„'(x)] The usual parametrization of the f, (t) in the phys-

ical region is given by

f,(t) = f (0)[1+l( t/m„'].

The ( parameter is usually defined by

$(t) =f (t)/f, (t),

where t= (k -P)'. The scalar —form factor, f(t),

In terms of this scalar form factor the mell-
known soft-pion prediction' is written as f (mE')
=fr/f, . Here f» and f„denote the form factors of
the K- p, + P and n- p. + v decays. This prediction
may be subject to some error due to the soft-pion
limit involved. The slope of f(t) at t=0 is given by
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f'(0) = f,'(0)+ f (0)(m '- m, ') '

0) ~+ $(0)
~ +

m7f m+ mg
(1.3)

The soft-pion constraint f(mz') =fz/f, = 1.28 and
the constraint f(0) = f„(0)= 1, imposed' by our
asymptotic SU(3) symmetry, predict a small posi-
tive value for f'(0) if f(t) is assumed to be a
smooth monotonic function throughout the region
0&t &mz' If. , in Eq. (1.3), we fix the value of A+

around A., = m, '/mx+' ——0.02, which is given by the
assumption of the K* dominance of the f,(t), then
f'(0) =0 gives a value $(0)= -0.28. For the more
realistic small positive value of f'(0), $(0) will
then be closer to zero. Thus, the constraints
mentioned above tend to predict a small value of
$(0) as long as the f(t) is a monotonic function in
the range considered. A typical example of such
behavior of f(t) is the curve 1 drawn in Fig. 1

(called case 1). Actually if the f(t) is approxi-
mated by essentially a straight line passing
through the points f(0) =1 and f(mx') = (fz/f, )
= 1.28 in the region 0&t & m ' (which may certainly
be an oversimplification), then

(1.4)

Then from Eqs. (1.3) and (1.4), a relation,

$(0) = (f~/f, 1)- (m»'- m-, ') m, 'x,

,'( f~/f, —f,/f~—)-(m~' m„')m-, 'A.„ (1 5)

l.5—

0.5

(~„ tn )z lnzK (mK+ln~)a
I i I s I I

O.l 0.2 0.5 0.4 t (BeV ~)

FIG. 1. Three typical possible behaviors of the scalar
%&3-decay form factor f (t). The cross denotes the soft-
pion constraint at t = m&2.

follows. Actually Eq. (1.5) can also be derived
from the theorem of Dashen and Weinstein which
uses a perturbation argument. ' Equation (1.5) ex-
plicitly demonstrates that for relatively small val-

ues of A., (i.e. , X,= 0.02), the value of $(0) is very
close to zero. If Eq. (1.5) is taken seriously, only
for unusually large values of A., (i.e., X, «0.08) are
large negative values of $(0) [$(0)&-0.5] possible. '
However, there is mounting evidence' for a large
negative va.lue of j(0).

Recently some authors have given theoretical ar-
guments in favor of a large negative ( value: Kang'
proposes a zero in the f(t) below the Kv threshold.
Brandt and Preparata7 prefer f(mx') = 0 from their
version of weak partially conserved axial-vector
current. These cases (called case 2) are typified
in Fig. 1 by the curve 2. They &astically violate
the usual soft-pion constraint.

If both the soft-pion relation' and the relatively
large negative value of E(0)' are to be accommo-
dated, then the acceptable behavior of the f (t) would
be the one similar to the curve 3 given in Fig. 1

(called case 3). That is, the scalar form factor
f(t) will have a dip in the range 0 & t &(m~+ m, )'.
The dip in the scalar form factor occurs in the
theory of Hara, ' which uses the Veneziano model
and other assumptions. The experimental large
negative value of ](0) may thus force us to choose
one of the two alternatives distinguished qualita-
tively by the curves 2 and 3 in Fig. 1.

In this paper we point out that the hypothesis of
a.symptotic SU(3) symmetry' enables us to predict
the complete behavior of the K» form factors in
the physical region once the information on the
pion electromagnetic form factor f,' (t) is given.
A relatively large negative value of $(0) is then
obtained if the dipole formula. is assumed for the

f,' (t). The result for f (t) is indicative" of the be-
havior of f(t) similar to ca,se 3 in Fig. 1. We de-
liberately avoid the use of the assumption of sin-
gle-pole dominance for the form factors. It cer-
tainly failed in the case of nucleon form factors.

The hypothesis of asymptotic SU(3) symmetry
implies that for the system of particles with in-
finite momenta, the generator of SU(3) group, V„
acts as if it were the generator of exact SU(3)
symmetry. To be more explicit, consider, for
example, the annihilation operator of the physical
pseudoscalar meson, a„(k), where cL stands for
7T", E", K", g', arid 7J", and k denotes their
momenta. We write (omitting the time-dependent
factors)

[V, ,a„(k)]= jPqu;„~(k)a~(k)+ 5u;„(k). (1.6)

The first term on the right-hand side of (1.6) picks
up all the terms linear in the a's (but not in the
a 's) and the remainder is denoted by the second
term 5u;„. The possible effect of SU(3) particle
mixing (such as the q-q mixing) is contained in the
first term. The 5u;„ term is of the order of SU(3)
breaking.
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The asymptotic SU(3) symmetry is then ex-
pressed by

6u;„(k)-0 when lkl-~. (1.7)

&~'(p)
I
v„' (0) IK+(k)& = -(—') (K (p) I v„(0)IK+(k)&

—(ri'(p) I
V„' (0) I

v"(k)&

Although the precise form of the asymptotic be-
havior of 5u;„(k) is not very well known (except for
some soluble models), it has been shown' that the
above hypothesis of asymptotic symmetry can be
made consistently in the presence of the Gell-
Mann-Okubo (GMO) hadron mass splittings. Con-
versely, exact validity (not as a lowest-order ap-
proximation) of the GMO mass formulas (including
the important effect of particle mixing) is required
if the asymptotic symmetry formulated above is
correct.

From this hypothesis of asymptotic SU(3) sym-
metry alone, we can derive a relation between the
K„-decay form factors and the pion electromag-
netic form factor. The derivation is given in Sec.
II. It enables us to relate the K»-decay form fac-
tors in the region t&(mz- m, )' to the pion electro-
magnetic form factor in the spacelike momentum
transfer region. Consequences of the relation are
discussed in Sec. III. The analytic continuation of
the relation to the whole complex t plane is ex-
amined in Sec. IV. When the analytic continuation
of the K„-decay form factors is allowed up to the
Kw threshold, the appearance of a dip in f(t) is
predicted and the behavior of the f(t) in this range
turns out to be similar to the case 3 shown in
Fig. 1. Some relevant remarks are also added in
Sec. V.

(p -~, k- ~). (2.2)

By considering the matrix element

&K'(p)ll:V,
" (0),vzoll~'(k)& =0 (p -, k- ) (2 3)

and again using the asymptotic symmetry, we ob-
tain

&K'(p) IV,
" (o) IK'(k)& =-(-')"'&a'(p) IV; (o) l~'(k)&

= &~'(p)lv„"I&'(k)&

(p 00, k ao). (2 4)

The last equality is due to SU(2) symmetry. From
Eqs. (2.2) and (2.4), therefore, we finally obtain

&~'(p) IV„' (o) IK'(k)&=(0)" &~'(p)lv„"(o)I~'(i )&

(p-~, k ~). (2.5)

This relation was first derived by Matsuda and
Oneda. " Equation (2.5) leads to

(4P.&.)
' '[f,(t)(&+P)„+f (t)(&-P)„]

= (4P.q. ) "f." (t')(e P+)„, (2.6)

where

II. RELATION BETWEEN THE Eg, -DECAY

FORM FACTORS AND THE PION

ELECTROMAGNETIC FORM FACTOR

By using the assumption of asymptotic SU(3)
symmetry, we now derive a relation between the
Kg 3 decay form factors and the pion electromag-
netic form factor. We follow the prescription'
given by Eqs. (1.6) and (1.7). We of course ne-
glect the effect of SU(2) breaking. First we sand-
wich the commutator

and
t = (z —1)(m, ' —zm, ')/z

t' = —(z —1)'m, '/z.

(2 7)

(2.8)

These relations are shown in Fig. 2. In this case
Eq. (2.6) reduces to

k =(k'+ m ')'t'

with q=k- oQ and p -~.
When p =zk (z &0) and k -~, t and t' are found to

be finite and are given by

(2 1)
(1+z)f,(t)+(1-z)f (t) =(1+z)f.' (t'). (2 9)

between the states &m'(p)l and IK'(k))." Then we
let p-oQ and k —~, in which limit, according to
the asymptotic symmetry, the generator V~0 con-
nects &v'(p)l to IKO(p)) alone and IK'(k)& to &m'(k)l
alone. [If higher-lying pseudoscalar mesons exist,
the effect of particle mixing between these mesons
and the usual pseudoscalar mesons must be con-
sidered according to Eq. (1.6).] We then obtain

and

f.' (-")=f.(- )+f (-") (2.10a)

~OQ ~OQ ~ ~OQ

These equations can be satisfied only if

(2.10b)'

For the case p = —zk (z & 0) and the case where p
and k are not parallel, t and t' are infinite and Eq.
(2.6) reduces to
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which turns out to be 0.89 if we assume the fol-
lowing dipole formula for the f; (t'):

t
-{m„+m )

2,

f," (t') =(1—t'/m, ') ',

and 0.94 for the simple-pole formula for the
f: (f'):

(3.3)

I

l
/ (

24m~.

m~ 0

m„

~QO ~oQ

and

f (-m) = 0.

(2.11a)

(2.11b)

[Here we note that Eqs. (2.11a) and (2.11b) are also
inferred from Eq. (2.9) with (2.7) and (2.8). The
limits f - -~ and t' —-~ can be realized in (2.7)
and (2.8) by letting either z-+0 or z-+~. Equa, —

tion (2.9) with z-+0 and z-+~ gives Eqs. (2.11a)
and (2.lib)."] Equation (2.9) is the relation we
wish to investigate in detail in the present paper.
It is valid only for z & 0. The variables t and t'
are the known functions of z given by Eqs. (2.7)
and (2.8}, respectively. For positive z the re-
gions of t and t' are the following (see Fig. 2):

FIG. 2. Relations between the squared four-momentum
transfers t and t' and the ratio z. The solid curve repre-
sents the relation t versus z and the broken curve that of
t' versus z.

f,' (t') =(1—f'/mp') '. (3.4)

For the value z = m, '/m»', we get

f,(0)+ f (0)=f,' (-m„'). (3.5)

From Eqs. (3.5) and (3.1), ((0) turns out to be ap-
proximately -0.5 and -0.3 for the choice of f,' (t')
given by Eqs. (3.3) and (3.4), respectively. We
thus see that the dipole formula. (3.3) may be pre-
ferred to the simple-pole formula (3.4) since it
predicts a larger negative value of $(0). We al-
ready know that the nucleon form factors are bet-
ter fitted by the dipole formula. In this connec-
tion the determination of the behavior of the pion
electromagnetic form factor f," (t) is very inter-
esting.

We have drawn the relations given by Eqs. (2.7)
and (2.8) in Fig. 2. From Fig. 2 we can see that
for any given value of t in the range t& (m»- m, )',
there correspond two z's (z, and z„0&z,&z, ).
Therefore, Eq. (2.9') actually gives two equations
for each value of t in the range f& (m»- m, )';
therefore both the f,(t) and f (t) can be expressed
in terms of the corresponding f,' (f'). The values
of t' corresponding to the z, and z, are given by

t,' = -(z, - I)'m, '/z, (2 =1,2), (3.6)

where

t & (m» —m, )',
t' &0.

(2.12a)

(2.12b)

z, = (I/2m»') [m~'+ m„' —t

—[((m» + m, )' —t)((m» —m„)' —f)]'~'] (3.7)

In Sec. III we examine consequences of the rela-
tion (2.9) for z & 0, namely, for f and t' in the
range (2.11). In Sec. IV we study the possibility of
continuing Eq. (2.9) over the whole complex z

plane.

z, =(I/2m»')[m»'+ m, ' —t

+ [((m» + m, )' —t}((222» —m, )' —t)]'~']. (3.8)

Then

III. PREDICTIONS FOR THE K)3-DECAY
FORM FACTORS

Now we investigate the implication of Eq. (2.9).
When z = 1, we get, with our normalization f,' (0)
=I, that and

2m»'(z, —z,)
(3 9)

f(o) =f,(o) =I, (3.1)
2 2

f (t)=[f." (fl) -f: (tl)]

f((m —m„)') = f; (-m, (m —m, )'/m }, (3 2)

which is consistent with the assumption of asymp-
totic symmetry For z = m. ,/m» we obtain from
Eq. (2.9}

Once f,' (t') is given for f'&0, we can determine

f,(t) and f (t) for t& (222» —m„)' by Eqs. (3.9) and

(3.10).
From Eqs. (3.9) and (3.10) we predict also that



K, 3-DECAY FORM FACTQRS. . .

f,(f)-f-" andf (f)-I-" as f--, iff; (f')-(t')-"
as t'- -~.

The parameters $(0), X, , and X can also be
determined if f," (t') is given. Since the dipole
formula for f," (f') seems to be preferred, we
choose the following parametric form for f,' (t'):

f; (f'}=(1—t/M'} '.
By expanding (3.9) and (3.10) around t= 0, we

then get

(3.11)

(3.12)

A.,=
~ m, '(mr'+ rn, ')(1 —A ')/(m~' —m, ')', (3.13)

(3.14)

A = 1+(m„' —m, '}'/mr'M'. (3.15)

For various choices of the parameter M' we have
calculated $(0), X, , and X from Eqs. (3.12),
(3.13), and (3.14), respectively. The result is
given in Table I. (M'=O. V10 BeV' corresponds to
the best fit for the nucleon electromagnetic form
factor. ) Numerical calculation of Eqs. (3.9) and
(3.10}in the case of the dipole formula Eq. (3.11)
with M = m~ has been carried out. It shows that
f(t) has a small curvature [f"(f)&0] for 0& f
& (m~ —m, }'. The f (f) is almost constant in the

physical decay region. The result is depicted in
Fig. 3. It is worthw'hile to note that the value of
A+ turns out to be around 0.02 for the choice M'

'th t '
g y pt b tth K*

contribution to the f, (I). Our result suggests that
$(0) could take a large negative value, even if the
value of A+ is relatively seal/. Compare with the
remark given in Ref. 5.

In order to obtain more insight from our sum
rule, Eq. (2.9}, we try to continue it analytically

to the whole complex ~ plane. This will be dis-
cussed in Sec. IV.

Fi(z) = (I + z)f,(t) + (I -z)f (f}. (4.1)

In order to see the analytic structure of E~(z), we
examine the mapping from the t plane to the g
plane by means of Eq. (2.7). In Fig. 4(a) (t plane),
cuts are drawn from (mr + m, )' to +~ and from -~
to (mr —m, )'. The upper (lower) edge of the right-
hand cut in the t plane maps onto the segment
-m, /mr &s &0 (-~ &a & -m, /mr) of the real nega-

IV. ANALYTIC CONTINUATION OF Eq. (2.9)

Before making the analytic continuation we wish
to emphasize the fact that Eq. (2.9) is not an exact
equation. If higher -lying pseudoscalar mesons
exist, they certainly give a contribution through
mixing even in our asymptotic limit. The many-
particle contribution 'to Eq. (2.9) which we denote
as f(z, IkI), is a function of z and IkI and vanishes
according to our asymptotic symmetry, in the
limit IkI- ~» but only for ~ +o. Therefore it is
not very surprising even if a sizable discrepancy
is encountered for the region of large negative z
which is far from the original region z & 0.

For small positive (negative) z, I and f' become
large negative (positive), and Eq. (2.9) becomes
f,(+~) +f (w~) = f;m(w~). This may represent a re-
lation 0=0. The case where the form factors f, (t)
and f,'~(t') satisfy unsubtracted dispersion rela-
tions seems to be preferable, both from the theo-
retical and experimental viewpoints. Therefore,
the result of asymptotic symmetry, Eq. (2.9),
seems to be reasonable also around z =0.

I et us first consider the left-hand side of Eg.
(2.9}. We write it as E~(s):

TABLE I. The parameters $(0), A, +, and A, of the E&3-
decay form factors calculated by the formulas (3.12)-
(3.15) for several values of the mass parameter M. The
physical p-meson mass squared is 0.585 BeV~ and the
best-fit value of j/12 in the case of the nucleon electro-
magnetic form factor is 0.710 BeV2.

(NK —m }
I s i

O.iO O.is ~ (BeV~)

M
(BeV2)

-0.62
0.027
0.0077

-0.53 -0.47 -0.33
0.023 0.021 0.014
0.0010 -0.0038 -0.015 FIG. 3. Predicted form factors of the%&3 decay when

the dipole formula is used for the pion electromagnetic
form factor.
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tive z axis; see Fig. 4(b). The region (m» —m, )'
& t& (m„+ m, )' maps onto the circle (with the origin
at z =0 and the radius m, /m») in the z plane. The
whole physical sheet of the t plane maps onto the
upper half z plane; the upper (lower) half t plane
maps inside (outside) of the half-circle of the

upper half z plane. The value of the function E1(z)
in the lower half z plane is determined by means
of the reality relation because E~(z) is real for
real positive z:

In the z plane the elastic cut extends from 0 to -~.
The analytic structure of the right-hand side of
Eq. (2.9) [denoted by Ez(z)] is the same as above if
one replaces IFFY& by f8~.

Now, we examine the consequences of the equal-
ity Fz(z) =E~(z) for negative z. Let us first set z
= (-m, '/m~')+i@ (e &0). Then the corresponding t'

and t are given by t'= m~'+i~ and t = m~'+ m~'
+is. The function Fz(z) has a singularity at this
point, t', due to the. presence of the p meson.

C A
I

1nK (ln„+m~)

(For simplicity we neglect the widths of reso.—

nances. ) Then, for the same z, E~(z) must also
develop a, singularity if Eq. (2.9) were to be valid
for smaL/ negative value of z. %e note that the
value of t corresponding to t' = mz' is

t —PE + Ply —Plgk2 2 ~ 2 (4.3)

Therefore, we see that Fi(z) develops a singular-
ity at the correct place, i.e. , t = m»*'. [For the

possible singularity of F~(z) due to the existence
of the» meson, see Appendix A.] This relation,
Eq. (4.3), is the well-known nonet formula and is
well satisfied experimentally. (m, ' is small com-
pared with the other masses squared. ) The same
relation holds also for the recurrences of the K*

and the p mesons. These results seem to indicate
strongly that Eq. (2.9) may be valid at least in the
neighborhood of z =0, i.e., -m, '/m~'&z &0.

Next, let us take z=-m, /m»+to (e&0). Then

Eq. (2.9) gives

f((m„+ m„)')=f; (m, (m»+ m, )'/m»), (4.4)

wl11cll 'tul"118 Gilt to 11e 1.54 (and 1.24) fol" tile dipole
formula of f; (t'), Eq. (3.3) [and for the simple-
pole formula of f (t') Eq. (3.4)]. Ill F1g. 5 we

have plotted f(t) for the case of the dipole formula
of f;~(t') including the information obtained from
Eq. (4.4). We see now that our result essentially
reproduces the case 3 in Fig. I mentioned in the
Introduction«The soft-pion theorem ls approx1. -
mately satisfied in contrast" to the theories dis-
cussed in Refs. 6 and 7 and the deviation (in the
dipole fit case) is around 20'%%uq. A deviation of this
order of magnitude is not very serious, since the

A

, N~ C
I m„

FIG. 4. Mapping from the t plane (a) to the z plane (b)
according to Eq. (2.7). The images of the points A, J3,
and C ln the t-plane are denoted by the same letters 1n

the s plane. The thick (thin) solid line in the t plane
maps onto the thick (thin) solid line in the s plane. The
two kinds of broken lines in the t plane map onto the
corresponding lines in the z plane.

0
(~K —N71. ) & }(

2 2

FIG. 5. A tentative behavior of the scalar X&3-decay
form factor f (t), The broken line denotes the extrapola-
ted form factor by using Eq. (4.4).
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soft-pion prediction itself involves off-mass-shell
extrapolation.

When we continue Eq. (2.9) to the region z &-2,
there appear difficulties. This can be seen as fol-
lows: For z =z, +to (e &0),

ZP 2 Pl@ + Biff Big g2~ '

—[(~,*' —m, ' —~')' —4m, 'm, '] 't') = -2.1,

we f111d t= m»w —1f aIld t = tÃ»e + (tB» —m~ )
&: (z11 —1) —t» = 0.09 BeV' —ie. Therefore, if Eq.
(2.9) were still valid for z & -2, there should be
another p meson around 300 MeV. Thus we see
that Eq. (2.9) cannot be extended, at least, beyond
z & -2. It is possible that even the result, Eq. (4.4),
may already contain an appreciable error because
of the extrapolation.

In passing we note that the form factors f,(t) and

f (t), as given by Eqs. (3.9) and (3.10), do not have
branch points at t= (m» —m, )' in spite of the ap-
pearance of Eqs. (3.7) and (3.8). In fact, for
(m» —m. )'» t» (m»+ m, )', z, and z, are complex
conjugates and therefore t,' and I2 are also complex
conjugates. Then Eqs. (3.9) and (3.10) tell us that
f,(t) and f (t) are real for (m» —m, )'» t»(m»+ m, )',
which implies the absence of the branch point at
t={m» —m, )' in f,(t) and f (t). Strictly speaking,
the threshold behavior of the form factors f,(t) in
the extrapolated region is not correct. In fact, in
Eq. (4.4), m, (m»+ m, )'/m» &4m, ' and therefore the
right-hand side has an imaginary part, while the
left-hand side should not have an imaginary part.
In the numerical calculation of the right-hand side
of Eq. (4.4), we simply neglected the imaginary
part, which is expected to be very small.

In Sec. V we discuss further the problem of ex-
trapolation.

V. DISCUSSION

If we take our asymptotic symmetry [Eq. (I.'I)]
strictly, corrections to Eq. (2.9) in the physical
region (z &0) come from the possible higher-lying
pseudoscalar meson states which will contribute
when we sandwich the commutator [Eq. (2.1)) be-
tween the states (m'~ and g'). Then, on the right-
hand side of 'Eq. (2.9), we expect, for example, a
term f,"+(t")which denotes the pion electromag-
netic transition form factor, where w' is a heavy
pion. The momentum transfer I;" is given by Eq.
(2.7) with m» replaced by m~. The analytic struc-
ture of the form factor f,""(z) is, however, differ-
ent from those of the f,(z), f (z), and f,' (z). In
general, the analytic structure of each correction
term coming from heavy pseudoscalar mesons is
different for each intermediate state. Therefore

the correction terms coming from particle mixing
do not seem to remove the difficulty of the analytic
continuation encountered in Sec. IV for large nega-
tive values of z. That is, the cancellation of the
unw'anted singularities may not be achieved by in-
cluding such correction terms.

As remarked before, there is another argument
which may invalidate the analytic continuation of
Eq. (2.9). Before we take the limit of infinite mo-
menta, there exists a term f(z, ~k~) which vanishes
only when k tends to infinity for positive z. This
term f(z, (k ~), however, may not vanish when ana-
lytic continuation with respect to z is first carried
out before the limit of infinite momentum is taken.
In this respect, the fact that the extrapolation
achieves an attractive result only for small z and
fails for large z seems quite reasonable.

As a final remark we add a comment on the ap-
parent difficulty of the expression (2.5) when the
four-divergence of both sides of Eq. (2.5) is taken
blindly:

(4 y )1/2 (111» -111» )f(t)
Pp 0

=(4 „„f," (t')(m„'-m, '),
4P q) /2 em (5.1)

Equation (5.1) appears to lead to f{t)= 0. However,
the procedure taken to derive Eq. (5.1) is not
justified. In fact, the four-divergence of the com-
mutator (2.1) reads

[v;, v,' (o)] = 3„v"„(0), (5 2)

where VE0 denotes the time derivative of VE0.
When we take a matrix element of Eq. (5.2) and
use asymptotic symmetry, we may no longer re-
tain only the terms coming from the one-particle
states selected by the charge V~, as was done in
deriving Eq. (5.1). This is because we acquire an
extra power of ~k] from the presence of the time
derivative of V~p. To see this explicitly, consider
a solvable model of a pseudoscalar nonet whose
members have different physical masses but no
other interactions. In the case of charge-current
commutators involving the divergence of the cur-
rent and the time derivative of the charge, such as
Eq. (5.2), the so-called Z diagrams cannot be ne-
glected, and in fact, they give contributions of the
same order of magnitude as the terms coming from
the diagonal terms selected by the charge VEp in
the asymptotic limit. In the case of a charge-cur-
rent commutator without time derivative of the
charge, the model shows that the contribution from
the Z diagrams vanishes as I/~k. ( when k-~, com-
pared with the diagonal terms retained in the as-
ymptotic limit. (This model provides some illus-
tration of the real mechanism of asymptotic sym-
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metry. ) Therefore, greater care is necessary
when we treat the charge-current commutator in-
volving the time derivative of Vgo.

Finally, we emphasize the fa,ct that we did Qot

make any assumption as to the mechanism of
SU(S) breaking, except that it should be compatible
with the asymptotic SU(S) symmetry W. e have
demonstrated that it is not impossible to derive a
relatively large negative value of $. In this con-
nection, further experimental study of the pion
electromagnetic form factor is very interesting
and important.
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The momentum transfers t and t' are given by Eqs.
(2.7) and (2.8) in terms of z. We write

m»g'= (z, —l)(m, ' —z m»')/z, (A4)

mp'= —(z -1)'m, '/z, , (A5)

~ PSp t, 2 1 ~ 8 Pgg ~ /pe
2 I 2 2

28=—lim
2

— in@+ +- (-m»g) .
&g m~q2 —t - ].+g

z„=z, (t = m»g') .
The function z, (t) is defined in Eq. (S.8). From
(2.V) and (2.8) we have a. relation among f, f', and z,

f' = f + (m»' —m, ') (z —1) .
Now we calculate the following quantity:

APPENDIX A Using (A4), (A5), (AV), (2.'I), and (2.8), we get

If the» meson exists, its singularity ln E~(x)
may require the existence of another p meson [Eq.
(2.9)] . This can be avoided if m»s = mK or lf the
residue of the I(:-meson pole becomes vanishingly
small.

Actually, one can show that if m~~ = m„and if we,
furthermore, assume simple-pole formulas 'for
the form factors f, (t) and f; (t'),"

1-zg,
(dt/dt') „»' 1+z„' »

2
mp

We write

g„= lim (m» ~' —f)f(f).
g~m g2=mK

(Alo)

f, (f) = m»g'/(m»P —f),

f; (f') = arcs'/(mp' —f'),

(Al)

(A2)

8l0
(AS)

P

then the scalar form factor f (t) has a vanishing
residue at f =m»P. In this case Eq. (2.9) reads

From Eqs. (AS) and (A9) we conclude that

(All)

This result is actually in line with the usual result
of current algebra where single spin-zero- and
spin-one-meson dominance ls assumed fol the
matrix elements of the currents. There, usually,
the relations f» =f, and f„=0 hold. " In a realistic
case, where f, (f) and f,' (f') are no longer given
by the simple-pole formulas, one cannot conclude
Eq. (All).
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