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The hard-pion effective Lagrangians of Arnowitt etal. are derived from a Lagrangian in-
variant under local chiral gauge transformations of the Yang-Mills type, except for a vector-
meson mass term, which leads to the field-current identity, and a a. term, which leads to
partial conservation of axial-vector current. The effect of other chiral-invariant terms,
which break the local gauge invariance, is discussed.

I. INTRODUCTION

The hard-pion current-algebra technique' was
invented in order to imbed the content of current
algebra' and partial conservation of axial-vector
current (PCAC) in a phenomenological theory of
vertex functions and scattering amplitudes. In the
formulation of Schnitzer and Weinberg, ' single-
particle dominance of N-point functions is as-
sumed, and certain postulates concerning the
smoothness of the so-called "primitive" N-point
functions (which involve only the spin-1 particles)
are introduced. The corresponding N-point func-
tions which involve the pion field are then deduced
using PCAC and generalized Ward identities. In a
previous work, ' we examined this formulation and
found that other models of this type, with a Priori
equally plausible smoothness assumptions, could
be introduced.

Arnowitt et al. ,
' 4 on the other hand, formulate

the method in terms of an effective Lagrangian, to
be used for calculations only in the tree approxima-
tion, which incorporates the single-particle-domi-
nance assumption in the field-current identities"

A A
~t =grog

A„"= g'„a„"—F,s„p"„ (2)

where V„" and A„" denote the isotopic vector and ax-
ial-vector currents, p"„, a„", and Q", are (renor-
malized) field operators for the p meson, A, me-
son, and pion, respectively, g~ and g„are param-
eters, and F„ is the pion decay constant. The in-
teraction terms in the Lagrangian are constrained
by the requirement that the current-algebra, con-
servation-of-vector-current (CVC), and PCAC con-
ditions are satisfied with the currents defined by

Eqs. (1) and (2) —included is the requirement that
the commutators between time and space compo-
nents of the currents contain only c-number
Schwinger terms. Additional assumptions, e.g.,
concerning the structure of the o commutator

[A,", Q,j =io„e,

are also conveniently expressed in this formalism.
Other authors' "have introduced phenomenolog-

ical Lagrangians which are chiral-symmetric
apart from certain well-defined symmetry-break-
ing terms, which lead to predictions similar (but
not identical) to those of the hard-pion technique.
In particular, the field-current identity is satis-
fied by constructing a Lagrangian invariant under
local chiral gauge transformations of the Yang-
Mills type, "except for a mass term for the gauge
fields. This leads to the field-current identity in
the mell-knomn way, ""'"and the resulting cur-
rents satisfy a current algebra with c-number
Schwinger terms (also known as an algebra of
fields' ). The chiral symmetry is broken by a o
term as in the original model of Gell-Mann and
Levy'4; this guarantees PCAC.

We show here that this procedure, properly gen-
eralized, leads to the general answer to the de-
mands of hard-pion current algebra. " To be pre-
cise, the hard-pion current-algebra effective La-
grangian can be obtained from a Lagrangian

(4)

where 2, is invariant under local chiral gauge
transformations, B„", B,"„are the vector and axial-
vector gauge fields, and o is an isoscalar spin-0
field, whose commutator with the axial charge Q,

"
is given by

to ensure PCAC.
The Lagrangian g, can be quite complicated. We

construct here the complete Lagrangian required
to evaluate the two-point and three-point functions
associated with chiral SU(2)SSU(2), and indicate
how to proceed further. This construction is sim-
pler than that of Arnowitt et al. ' 4; it also pro-
vides a basis for understanding possible simplify-
ing assumptions. It can also be generalized to
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SU(3)SSU(3) [or U(3)3U(3)], where nonlinear real-
.izations" of the algebra may be relevant (although
there now seem to be enough 0' mesons to com-
plete a nonet), and, in any case, there are a num-
ber of open questions. "

An additional chiral-invariant term, which
breaks the local gauge invariance (and hence the
field-current identity}, can be added to the La-
grangian; the coupling parameter in this term cor-
responds to the extra parameter in the "bnear
models" considered in our previous work. ' The
presence of this term may be observable experi-
mentally, as indicated below. This provides a se-
rious test of the field-current identities.

II. CHIRAL LAGRANGIANS, FIELD-CURRENT
IDENTITY, AND PCAC

Consider a group of local gauge transformations

U= exp I-inA(x)Q" ]

generated by charges QA which satisfy commuta-
tion rules

describing these fields (specifically excluded is
the appearance of B„BA„ in the Lagrangian). The
standard currents JA(x) are defined by

J„(x)=-iK„g
( )] g,(x)

6g
fABc 6[8 BB(x)]

These currents generate the charges

I~."( ), ~.'(y)]=~f~ ~.'( )5( -y). (18)

Currents j„"(x)can also be defined, according to
the prescription of Gell-Mann and Levy, "as the
response of the Lagrangian to a local gauge trans-
formation,

QA(t) = J,"(x, t) d'x (17)
x =t0

and, as a consequence of the canonical equal-time
commutation relations, the time components satis-
fy the local current algebra

ABC (7)
(19)

e, (x) —e, (x)+ iK,",o.„(x)e,(x), (8)

where, for the present, axial charges are included
in the Q without special notation. Under infinites-
imal transformations, ordinary fields transform
according to"

To understand the relation between these cur-
rents, consider the Lagrangian first as a function
of the fields and their ordinary derivatives, and
then as a function of BA&, F&„Q„D&pb. Denote
functional differentiation of Z in the first instance
by 5, in the second by 4. Evidently

(9)

vector gauge fields B„"(x)transform according to

where the matrices K" =(K,",) form a representa-
tion (in general reducible) of the algebra of the
gener ators,

[KA, K'] =if»CKC,

1
2 6(aqBA„) tbFq, '

Ml 4g

(20)

Bp(x) -Bp(x) fAscas(x)B—„(x)+g '8 go A(x), (10)
M

54» ~4'» ' (22)

F„",(x) -F"„,(x}—fA~cna(x)Fc„, (x) . (12)

The covariant derivatives of the ordinary fields,
defined by

D„pb(x) = &„Qb(x) igKA», B„"(x)p, (x), —

also transform simply, according to

D~pb(x) -D„p»(x) +iKA„n„(x)D„&,(x) .
Consider a Lagrangian

2 = Z(Bq, FP~~ Qb ~ Dang»)

(14)

with g an arbitrary parameter. The corresponding
field strengths F„"„(x), defined by

F„",(x) = apBA(x} —&„BA(x}+gfAscBs(x)Bc(x), (11)

transform simply according to

where, in Eq. (21), ZA„ is the standard current in-
troduced in Eg. (17). The Gell-Mann-Levy cur-
rent is then given simply by

1 ~Z
p g~BA '

P
(24)

The equations of motion for the gauge fields can
be written then as

Pgy A +g2p g~p ~

pv

The time components of these equations involve,
apart from j0A, only canonical variables, and a
careful manipulation of 6 functions shows that the
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j,"(x) satisfy the same local equal-time algebra a,s
the JA(x),

[j."(x),j.'(y)] = if .,j.'(x)5(x —y) .
The field-current identity requires

scribing a spin-1' particle, and a term proportion-
al to the derivative of the pion field follows in a
natural way from the structure of the Lagrangian,
as shown in Sec. III.

ABA™0 P )
P

(27)
III, GENERAL CHIRAL SU(2)SU(2)

LAGRANGIAN

whence the only explicit dependence of the La-
grangian on the gauge fields B„"must be contained
in a mass term, "

2 A Ag1= ~ma B~Bp . (28)

[Q,", Z „]= -iE,m, 'yA„ (29}

If this is the case, then also the commutators of
the j,"(x) with the spa, ce components j,"(x) at equal
times contain only c-number Schwinger terms,
and the space components commute with each oth-

85 18

In order to break chiral symmetry, the La-
grangian must contain a term 255 (which depends
only on F„"„Q„adnD„Q,); PCAC requires

ABC ~

[Q,",e]= -zs5„„
IQ", s]=0,

[Q,", s]=iBA,

with chir al-invariant

Q = 77 71' +ss

(32)

(33}

(35)

and a set of vector and axial-vector gauge fields
BA, B,"& with covariant fields

We begin with spin-0 fields mA and s which trans-
form under chiral SU(2)@SU(2) according to the
(-,', —,') representation,

where axial charges and a pion field are now intro-
duced explicitly. On the other hand,

E5v ——BpB"—BvBp +geABc(BpBu+B5pB5v), (37)

[Q,", Q, ] =ic6A +. . . (30)
F5~v —BpB5u —BvB5~ +gE'ABC(B5~Bu +BuB5v ) . (38)

where the omitted terms have isotopic spin 2.
Once it is assumed that these terms are not pres-
ent, then the identification

s, -+„m,'0 (31)

with (vac IcI vac) =F„can always be made within
the framework of single-particle dominance, since
the matrix element of o between the vacuum and a
single-particle state can be chosen at will by ad-
justing parameters in the symmetric part of the
Lagrangian.

The decomposition of the axial-vector gauge
field into a term proportional to an A, field, de-

(The relation of these fields to the particles will
become clear presently. ) The cova.riant deriva-
tives of the spin-0 fields are given by' '"

+geABcBp m' —gB5~ s )
A A B C A

&
p s = &p s +gB5„m" .

(39}

(40)

In order to satisfy the field-current identities
and PCAC, the Lagrangian describing these fields
must have the form

(41)

where 2, is invariant under local chiral gauge
transformations. 2, has the general structure

25= 5(F&,F&, +E5-&,E»„)(1+r,Q) —Ar5[(F"„,F~, —E»„E»,)v"B —F„",F"„,v v 2EABcE„"vE55v 7I' s——E'5pgF, „uss]

+ —,'[(n, „vA)'+ (A„s)'](1+ X,Q) + ,' A, (BAL„BA + sn, „s—)'——', p, 'Q + —,
' AQ'

+~(eABcF~A„S„m n. ,vc+2E,"„,a, vAn. ,s)(1+n,Q)

+ Kc5,[eABcEqvnqv v +F,"~v(&qw"s —v"bqs)](m bum +sb„s)+ heABc(Eq, E„+3E,"q,E„v)Eqv(1+P,Q)

+ @P5[~ABCEflu(EvXEkp+ 2F5ukEBXp )v v + 2(EfluEuX+ 5p E5vvEX)E5X5 v s ~ABCEu E5 XFu5kgu] + t (42)

where Q is the invariant introduced above in Eq.
(36).

We have included all terms which give rise to ef-
fective two-field and three-field couplings even in
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the presence of symmetry breaking, when

(vac ~s ( vac) -=s, 4 0 (43)

(1 + A.iso )gs2
mo +(1+miso )g so

(5'f)

(44)

(45)S = S(}+Z,y Oy

gA Z I/2PA
p V py

@A Z 1/A2t2+gD,
where

Dt 4. S2 iti. =-+ g&Aso&p gati. ~
A — A B C

(46)

(47)

(48)

[This definition of a„and the one implicit in Eq.
(2) differ only by a point transformation. ] Let

A — A A
PIfv—= ~PPv —evPP P

A — A A
QPP = ~P Qf/ —~PQP ~ (50)

The parameters appearing here are determined
by (i) elimination of terms linear in a from the La-
grangian, which requires

(and we have retained the appropriate number of
terms in the expansion of the arbitrary functions
of the invariant Q, which can appear as factors
multiplying the various couplings). Additional
terms for four-field and higher couplings can be in-
cluded in a straightforward way, using the isomor-
phism between SU(2)IISU(2) and SO(4) [and, in par-
ticular, the correspondences between (ii", s) and

components of a four-vector, and between

(F&„F,"&„)and components of an antisymmetric
second-rank tensor] to generate chiral-invariant
couplings. In general, it is necessary to include
terms which involve the product of N+2 fields, two
of which are from the spin-0 multiplet, in order to
generate all the effective N-field couplings in the
presence of symmetry breaking.

To interpret the fields in terms of particles, in-
troduce renormalized fields QA, and o for the pion
and the o meson, p„"and Q„" for the p and A, me-
sons, with

sA z 1/2yA

The particle masses are then given by

2= 2Bl
p

—Zv Alp

m„' = Z„[m,'+(1+x,s,')g's, '],
m, ' = Z, (p,

2 —Xs,'),
m, ' = Z, (p,

2 —3XS,2),

(58)

(59)

(60)

(61)

and the constants gv, g„ in the field-current identi-
ty are given by

g» = Z» mo /gi

g„=-Z„"m, '/g,

(62)

(63)

whence (g„/g»)' = Z„/Z». Since the parameter r,
is arbitrary, (g„/g») is arbitrary, so g„=g» is no(
a general requirement of chiral Lagrangian mod-
els.

The pion decay constant is given by

2 2p2 gV
m' mp A

(Weinberg's first sum rule" ). Then also

(64)

(65)

(66)

The three-point functions for this Lagrangian re-
duce to those given by Arnowitt et Ql.2 We remark
that the p-n-m and A, -p-n. vertices depend only on
the single parameter

a' = -Z,z» g»(1+ o.iso )(1 —ggso}

in addition to gA, gv, E„and the particle masses.
This parameter is related to the parameter ( of
Ref. 6.by

Fm, '= (p,
2 —As,2)s„ (51) m„ Ii m„g (68)

and (ii) reduction of the kinetic energy terms to
the standard form

2 (Pp~ P». +vS pv v&j)+ 2 i(vSp i' v S
p 4 v + S

p OS it &) i

The p-p-p and Ay Ay p vertices contain additional
parameters (with some relations between them);
the vertices involving the 0 are similarly undeter-
mined.

which requires
(52} IV. DISCUSSION

Zv ——1+wisp

Z„'= 1+(r, —r,)s,',
Zv = 1+(Ai+Q)SO

(53)

(54)

(55)

Z, '= (1+A.,s,2)(1 —ilgso)'+@2m, ', (56)

and, in order to eliminate a term proportional to
A A

The general Lagrangian Zo leads to a rather lim-
ited set of predictions; hence it is desirable to
look for simplifying assumptions which restrict
the parameters. The experimental data" on the
colliding-beam reaction

e'+ e - Tt'+ 7t

do not permit ~= 0, but it may be possible to elim-
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inate the remaining anomalous couplings (so that
', =A, =O, r, =r, =0, n, =n, =0, p, = p, =0), since
g„=g» (or r, =0) is consistent with the analysis of
Ref. 6, in view of the limitations both of the ap-
proximation and of the present experimental data
on A. , decay. The remaining parameters are not
well determined by present data.

An alternative attempt at simplification is to in-
sist on the absence of effective couplings of the
type

and

A B C
eABCPfl~ p47l w~.

A A
&pu pA. u'»

which is chiral-invariant, but not invariant under
the local gauge transformations. Evidently the

which lead to form factors which have undesirable
behavior at large momentum transfer. It is debat-
able whether such restrictions on phenomenologi-
cal Lagrangians, intended for use at low momen-
tum transfer, are really warranted, but the ab-
sence of the first coupling is quite consistent with
experiment, and the A. , decay seems to proceed
through the p-m channel.

There are two derivative couplings of o-w-w, and
to eliminate both of them, it is necessary that

F„'&g~'/2m p' ~

This is a strong restriction (the Kawarabaya. shi-
Suzuki-Riazuddin-Fayyazuddin relation gives equa-
lity here), but not necessarily wrong. A weaker
assumption, that the 0-n-m vertex function is inde-
pendent of the off-shell a mass, is consistent with

a o width -200-300 MeV. However, in the ab-
sence of deeper theoretical motivation for this
type of assumption, we defer further speculation
along these lines.

It is interesting to consider the effect of adding
to the Lagrangian of Eqs. (41}and (42) a term

2'= f(e„scBqw ~„w +8,"q(w"~ps —she w")],

Gell-Mann-Levy currents are given by

2
'A mOAf ~ 0BP &AqC Vr (70)

j,"„=- ' &" ——(w"~ s —sS w") .5p + p. p (71)

The renormalization and diagonalization can be
carried through as before, except that now

mz =Zz[mo +(1+%&so)g so +2fgso]~

Z, '=(1+A.,s,')(1-qgs, )'

2qfs, (-1 —qgs, )+q'm, ',
and the parameter g is given by

(1+A, s,')gs, +fs„
mo +(1+ i(~so )g so +2fgso

(72)

(74)
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A relation between the K&3-decay form factors and the pion electromagnetic form factor is
derived by using only the hypothesis of asymptotic SU(3) symmetry. This relation enables us
to predict the complete behavior of the K»-decay form factors, once the behavior of the pion
electromagnetic form factor is given. For the choice of the. dipole formula, (1-t /~& ), «r
the pion form factor, we predict the following for the parameters of the g»-decay form fac-
tors: ((0) = -0.53, A,+ =0.023, and A, =0.0010. If we extrapolate the result from the physical
E&3-decay region 0~ t ~(m~-m~) to include the region 0~ t ~(m&+ m~)2, the presence of a
dip in the E»-decay scalar form factor in this region is indicated. The extrapolated form fac-
tor satisfies approximately the soft-pion constraint given at t =mz . The effect of particle
mixing between the usual pseudoscalar nonet and the possible higher-lying pseudoscalar me-
sons is not considered.

I. IM ROOUCnow is defined by

In the past years the K»-decay form factors have
been intensively discussed. ' We write the form
factors with the obvious notation [V~ (x) = Vt(x)
-iV„'(x)] The usual parametrization of the f, (t) in the phys-

ical region is given by

f,(t) = f (0)[1+l( t/m„'].

The ( parameter is usually defined by

$(t) =f (t)/f, (t),

where t= (k -P)'. The scalar —form factor, f(t),

In terms of this scalar form factor the mell-
known soft-pion prediction' is written as f (mE')
=fr/f, . Here f» and f„denote the form factors of
the K- p, + P and n- p. + v decays. This prediction
may be subject to some error due to the soft-pion
limit involved. The slope of f(t) at t=0 is given by


