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Differential distributions in lepton triplets v&p p, , v, p, e+, v, e e produced from neutrinos
through the point four-fermion interaction and single-photon exchange with a nuclear target
have been calculated using a Monte Carlo method. These are fundamental processes which
can be calculated to arbitrary accuracy, and which test aspects of the leptonic weak interac-
tions, in particular diagonal processes, which are not accessible to other tests. The calcula-
tions cover energies from 1.5 to 40 GeV, and targets of mass 1, 12, 56, and 208. Salient
features of the results are that typically the negative lepton is energetic, the positive one
much less energetic, and transverse momenta of the charged leptons are quite large (100—
200 MeV/c at 15 GeV).

I. INTRODUCTION

%e shall discuss the processes

(a) v&+Z Z+ p, + p,++ v»

(b) v„+Z- Z+ p. +e'+ v, ,

(c) v, + Z- Z+ e + e'+ v, ,

(d) v, +Z- Z+e +p, ++ v&,

mhere Z indicates that production takes place in
the Coulomb field of a nucleus or nucleon of charge
Ze.

Czyz, Sheppey, and Walecka' have discussed
these processes earlier and stressed their impor-
tance as a testing ground for the theory of weak
interactions. They calculated the total cross sec-
tions and could then use some tricks to simplify
the trace calculations and phase-space integrations
involved. They also shomed that the cross sections
are unchanged if the leptons are replaced by their
antiparticles.

Of the four processes (1), (d) is least interesting
because it is nondiagonal (see below) and difficult
to observe (requiring an incoming electron neutri-
no). We consider only the first three processes to
have practical interest, and our purpose is to cal-
culate characteristic kinematical spectra of the
charged lepton pair. We base our calculations on
the Fermi point interaction described by the phe-
nomenological interaction Lagrangian

(2)

where G is the Fermi constant, given in terms of
the proton mass as

G = 1.01x 10 '/M ~

J is the hadronic weak current, which does not
contribute in our case, and j is the lepton current,

given as

j„=g,iy (1+y,)g, +g iy„(1+y,)g„„, (4)

where the g's are the lepton field operators, and
the y's the usual Dirac matrices. [We use a metric
where a=(a, ia, ) and y matrices which are Hermi-
tian, satisfying y„ya+y& y~= 25„s .j

Equations (2)-(4) together with the usual electro-
magnetic interactions give a unique prediction for
these processes, which, together with muon decay
and neutrino scattering on electrons, probably con-
stitute the only possibilities available in practice
to study four-lepton interactions where no form
factors enter at the weak vertex to obscure the
picture. Reactions (1) are, however, the only ones
which have an off-mass-shell lepton entering the
weak vertex, allotting, in principle, more informa-
tion to be extracted. They also provide greater mo-
mentum transfers than neutrino-electron scattering
and especially muon decay.

Gell-Mann, Goldberger, Kroll, and Low' have
caused a revival of interest in these types of reac-
tions by proposing a class of theories for weak in-
teractions wherein the mell-known divergence prob-
lems of the higher orders appear only in what they
call diagonal interactions, which operate between
particle pairs of the same type, e.g. , (ev, )(v,e),
(P v„)(v„p.), etc

One way to realize such a theory is to have a set
of vector mesons of mass M~ with propagators

(5„s+k„ks/M~')/(MN, '+ k')

and a second set of gradient-coupled spin-zero me-
sons of mass p, with effective propagators

k„ks/(V, '+k'),

where k is the momentum transfer. Couplings can
then be so arranged that the divergent parts (stem-
ming from the terms k„k&) cancel a.s k- ~ for all
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nondiagonal interactions, but add for the diagonal
ones.

In lowest order, however [Fig. 1(a)], the terms
kz will only give contributions of order m, '/m~',

which we know are small because

it can be produced via a semiweak process

v, +Z Z+8' +l

and then decay to leptons:

W+- &++ v, .

(6a)

(6b)
Mw ~1.8 GeV,

according to the CERN neutrino experiments. '
Since the higher orders are divergent, there exists
no reliable way of predicting their contribution.
Stothers4 has discussed the astrophysical evidence
and concluded that the interaction for electron-type
leptons is in agreement with (2)-(4), with an uncer-
tainty in the coupling constant of one order of mag-
nitude either way. Perkins' concluded on the basis
of the CERN experiments that the absence of the
process

v, +e -v, +e

implies
G„~10G

if G is replaced by G„ in (2) for the calculation of
the cross section. Since there was no significant
evidence of process (a) during the CERN experi-
ment, one can similarly conclude

Gp~ & 100G.

We do want to stress that electrons and muons may
behave differently with respect to diagonal interac-

- tions; indeed, if the muon mass has origin in the
weak interactions [Fig. 1(c)], it is the only evidence
of "strong" weak interaction ever seen. Since reac-
tion (a) probably is the most promising (or only
feasible) way to observe muon-type diagonal inter-
actions, experiments to detect it should be pushed
regardless of what becomes known about the corre-
sponding electron reactions.

If some kind of an intermediate boson ~ exists,

(b)

(c)

FIG. 1. Diagonal weak interactions. (a) Lowest-order
neutrino-muon scattering. (b) Higher-order contribution
to neutrino-muon scattering. (c) Muon mass contribution.

Cross sections for (6a) have been given by Lee,
Markstein, and Yang, ' Bell and Veltman, ' and oth-
ers. ' The S' can also decay into other channels,
and no reliable estimates for its branching ratio
into leptons are known.

Since processes (1) and (6) lead to the same final
state, no direct experimental separation between
the two modes of production is possible (the W is
very short-lived), and one has to rely on a fit to
characteristic distributions in the kinematical vari-
ables of the products. We return to this question
in Sec. V.

Baltay and Wachsmuth' have discussed an experi-
ment to detect processes (1) in a 25-ft. neon bubble
chamber, and they conclude that the background
from the two-step process

(7a)

(7b)

is very serious, and can only be reduced to a level
that makes the experiment feasible by a knowledge
of the characteristic spectra.

One of the most remarkable results from the
CERN neutrino experiment is that the total neutrino
cross section goes as'

o„,=0.6(e,/GeV) x10 "cm',
where ~, is the neutrino energy. Most of the in-
crease at high energies is due to multipion events,
whereas both theory and experiment' indicate that
the one-pion cross section levels off. CSW showed
that the asymptotic cross section for reactions (1)
goes as &ylncy The best chances for seeing them
should therefore be in "clean" reactions with only
two charged particles at the highest available ener-

Our main emphasis is therefore to calculate cross
sections and spectra for (1) when the electromag-
netic interaction with the nucleus is coherent. Re-
sults are also presented for reactions off single
nucleons, with and without an exclusion principle
correction, to allow an account of quasielastic
scattering on individual nucleons. Using informa-
tion from electron scattering, other inelastic exci-
tations of the nucleus (or nucleon) could also have
been included, but this was not attempted.

In Sec. II we discuss the principal methods and
assumptions behind our calculation and give the for-
malism, in Sec. III we describe the Monte Carlo
calculation, and in Sec. IV we give the results,
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which are discussed in Sec. V. The square of the
matrix element and details of the phase-space in-
tegration are given in Appendices A and B, respec-
tively.

II. TOTAL CROSS SECTION AND DISTRIBUTIONS

Our main concern is to obtain distributions for
the processes (I). However, rather than trying to
calculate a set of differential cross sections, each
in principal with a different phase-space integral,
we do this by calculating a total cross section. The
points in phase space where the matrix element is
evaluated are picked quasirandomly to allow appli-
cation of statistical methods. Each such point cor-
responds to a physical event, with known values of
all parameters. %e separate the events in histo-
gram bins according to values of the variables in
which we are interested, each "event" having a
weight given by the appropriately spin-summed-
squared matrix element and phase-space factors.
Thus, in calculating the total cross section by scan-
ning the phase space in a systematic way (described

in Sec. III), we will at the same time collect histo-
grams vs relevant kinematical quantities. These
histograms are the same quantities which one would
observe in an experiment.

The two diagrams which we will take into aeeount
are shown in Fig. 2. Because we only consider one-
photon exchange, the hadronic and leptonic parts
will factor out and, in much the same fashion as
CSW, we can write the total cross section

2Z~~Q' d'I" ~'P, d'P~ d'P,
(2m)'4M', 2E' 2e, 2e, 2e,

& V'(P+P, —P' —p, —p, —p, )H„,I.„. .. (8)0)
The notation for the momenta is indicated in Fig. 2;
M is then the target mass, E' is the final target
energy, and cy 64 are the lepton energies;

O' = 9' ' 0 =
Vp 9'p p

and L„& is the square of the lepton current summed
over spins:

I„=Tr[y (I+y,)p, y, (I+y,)p,]»f[y (&p -&0+~,) 'y~(I+y )+y~(I+y, )(1)—zp +pg ) y ]

&&(-~, -ip. )[yII(id-~p. +~.) y.(I+y.)+y.(I+y,)(&p4-&&+~4) 'ys](~4-&p46,

where we followed CS%' and made a Fierz transformation. " Also, m, and m, are the outgoing lepton mass--
es, and H & is the square of the matrix element of the hadronie electromagnetic current. For single-nucle-
on states we have

&P'l~: IP)=If(P') ~y. P,(e')+ 2~ io.aea ~(P),&,(~').

where u are the Dirac spinors and E„E,are the usual form factors. Summing over final spin and averag-
ing over initial spin gives

2 2

H „8= " (P+P')~(P+P')g+G„'(q25„8+2P„P8+2PBP'),1+x

Q)

FIG. 2. Diagrams for trilepton production by the point four-fermion interaction.
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where
x= q'/4l',

G„=E,+E, = p~G

2.792 for protons
-1.913 for neutrons

6 =E —xE =zG

H„()= F'(q')(P+ P')„(P+P')8, (12)

which agrees with the Coulomb part of the one-
nucleon tensor when all spin corrections are omit-
ted. %e will assume that the nuclear form factor
is given as a Fourier transform of the charge dis-
triblItlon evalllated ln the BreLt frame (q'() = 0):

) (q') Jg( )~''''d'~ f s(&)&'~ (.(s)

We are at this stage only interested in a descrip-
tion of the average A behavior for nuclei, and will
assume a two-parameter Fermi distribution for the

1 for protons
0 for neutrons

G = (1+4.88x) '.
The dipole fit for the for'm factors adopted" agrees
well enough with the data for our purpose. For co-
herent scattering from a spin-zero nucleus, one
has

charge density,

and denote the corresponding form factor (18) by
EJ,-. %e evaluated E~ by means of a numerical
Gaussian integration. Data from electron scatter-
ing" indicate that

c = (1.182'i' -0 48) F

t=0.55 F (A &8).
(15)

In Fig. 3, E~ is compared with the experimental
data of Sick and McCarthy, "together with the two
other form factors

(18)

With this choice of a, the quantities E„, E&, and

E&& have all approximately the same expansion to
first order in q', for all values of A. . E& and E&&

are equivalent to the form factors used by CSW
with

a=0.93A'~' F.

where a, the root-mean-square radius of the charge
distribution, is given approximately by'

a=(0 58+0 822'~') F

FIG. 3. Comparison of form factors
for ~~O. F~ andF~~ are given by Eq. (16),
vflth Eq, (17). Fy is given by (13) with
(14) and (15). The filled circular points
are experimental data of Hef. 3.

O.OI

O.OOI

0 0.2 09 0.4
q (GeV/c)
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Evidently, the phenomenological form factor E~
based on the Fermi charge distribution gives an
excellent fit through the first (forward) diffraction
maximum, which turns out to be overwhelmingly
the most important region in our case, making the
slight miss on the second maximum insignificant
for our purposes. We return to this question in

Sec. IV.
Gauge invariance of the electromagnetic current

means

q L =q L =q H„=q II„=O.
Since P' = P —q, the effective part of H„& can be
written as

g
—4P PsE (q ) (18a)

for coherent reactions on a spin-zero nucleus and

H'„~ = 4P„Ps(Gs'+xG„')/(1+x)+ 5 Eq'Gu' (18b)

for single nucleons. We therefore only need to
know the contractions P L P and 6 8L 8. To evalu-
ate the traces, extensive use was made of the
tricks given by Chisholm, '4 in particular, all y, 's
can be eliminated by contracting the product of
traces to one trace.

The result of the trace calculation is given in

Appendix A, the phase-space integration is dis-
cussed in Appendix B, where we also give expres-
sions for the invariants in terms of the integration
variables.

Calculation of the coherent reaction (1), for any
spin-zero nuclear target, using (18a), gives a re-
sult independent of any nuclear model, since the
form factor I' is experimentally measured by elec-
tron scattering. Nuclear excitations may be taken
into account only in a model-dependent fashion. If
quasielastic excitations are included, the cross
section for scattering off a nucleus with Z protons
and N neutrons can approximately be written as

muthal integration, the total cross section will be
proportional to a seven-dimensional integral of the
type

I= dQ1 du q L BH gJ Q

1

(21)

(22)

f((u]) (q'=) '(L 8H„8)J((u))g(u, -u;).
t=l

An unbiased estimator of the corresponding vari-
ance is

N7

0 =
2

''' Q 1
— Q 2 . 23

&7=1

To keep the variance small, which means an effi-
cient evaluation of I, the variables ul Q7 should be
chosen such that the corresponding Jaeobian makes

f ((uj) vary as little as possible through the integra-
tion region.

For reactions (a) and (b), we have used

u, = E'(x)dx,
a

where u, (i = 1, ..., I) are the integration variables,
the choice of which we discuss below, and u; and

u; their upper and lower limits, respectively. u„
and u„are in general functions of ul Q, , J con-
tains the Jacobian factor of the transformation from
d'p, d'p, d'p, d'P'5'(P+ p, —P' —p, —p, —p ) to du,

du 7 ~

We follow the same method as CSW and divide
the ith integration range into ¹ equal parts. Thus
the phase space is divided into

7

N=QN,
4=1

elements. Within each element two points are
picked at random. A statistically unbiased esti-
mate for the integral is then

1
Nl N7

I= '' u 1 +. u
nl=l n7=1

do „,= do„„+X(IqI)[Ndo„+ Zdc, ], (19) u, = —(p, +p, +p, )' —(m, + m, )',
where X is an exclusion-principle factor and da„~
is a partial cross section for a free neutron (pro-
ton) target. For the numerical evaluations we have

used

1 5(lql/2') -o.5(lql/2')', Iql & 2'
Iql »p, (20)

P& =235 MeV/c

which is correct for an ideal Fermi gas having the
same density as that of protons (or neutrons) in the
nucleus. " This model is known to work fairly well
for electron scattering. "

III. MONTE CARLO CALCULATION

After eliminating the 5 function and a trivial azi-

u, =ln(q' —2p, q)
—= lnD, ,

u, =[-(p, +p,)' —m, ']'=-(W, '-m, ')',

u5 = cp3,

u, = ln (q' —2p~ q) —= ln D, ,

(24)

Q7 @4.

The Jacobian factor corresponding to u, elimi-
nates the form-factor dependence in (22). For
reactions on single nucleons, E(q') was, of course,
replaced by G(q'). For E=Ez [Eqs. (13-15)], the
problem of inversion was solved by creating a cat-
alog which gives the value of q' corresponding to a
particular value of u, . This catalog must of course
be large enough that no systematic errors are
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TABLE I. Total cross section and average values of kinematical quantities for Processes (a)-(c), Eq. (1).

E'g cr~/Z2

(GeV) Nucleus (10 44 cm2)
~4 +~113 +P ll4 Pts Pt4

(GeV) (MeV/c) (MeV/c) (MeV/e) (MeV/e) (GeV/c)2

Coherent reaction (a) v& + Z && + Z+ p + p

1.5
4.0
8

15
40
1.5
4.0
8

15
40
1.5
4.0
8

15
40

Pb
Pb
Pb
Pb
Pb
Fe
Fe
Fe
Fe
Fe
C
C
C
C
C

0.00883
0.180
0.877
2.94

15.2
Q.300
0.431
1,83
5.48

27.0
0.0768
0.877
3.43

10.1
45.2

0.394
1,39
3.13
6.38

18.4
0,433
1.47
3~27
6,57

18.9
0.462
1.53
3 37
6.72

19.2

0.378
0,947
1.73
2.94
6.73
0.348
0,872
1.60

6.34
0.320
0,817
1.51
2.59
6.08

0.516
1,45
2,93
5.47

14.7
0.508
1.44
2.92
5.48

14.6
0.506
1.44
2.91
5.48

14.5

7.29
6.70
6.46
6.26
5.90

10.5
9.89
9,44
9.12
8.62

16.0
14.7
13.9
13.4
12.8

6.84
6.26
6.00
5.80
5.51
9.91
9.19
8.75
8.44
8.01

14.7
13.4
12.7
12.2
11.6

67.5
93.7

118
146
204

78.6
108
136
168
235

92.3
126
157
194
275

74.8
110
146
189
287
89.2

131
173
225
341
107
156
206
265
405

0.00631
0.00421
0.00348
0.00307
0.00269
0.0102
0.00769
O.OQ665

0.00604
0.00536
0.0182
0.0146
0.0130
0.0120
0.0110

0.0738
0,104
0.143
0.202
0.383
0.0831
0.124
0.177
0.259
0.509
0.0963
0.152
0.224
0,338
0.691

Incoherent reaction (a) v& +N v& +N + p++ p,

1.5

15
1.5

15
1.5

15
1.5
4

15

p
p
p
pC
pc
pC

n

n
n'

c

n'

0.488
4.93

51.0
0.346
3.46
3.54
0.0605
0.610
6.32
0.504
0.529
5.61

0.477
1.57
6.82
0.479
1.56
6.84
0.509
1.61
6.85
0.505
1.60
6.82

0.280
0.731
2.41
0.270
0.715
2,38
0.273
0.729
2.40
0.270
0.731
2,42

0.477
1,42
5.48
0.470
1.42
5.47
0,422
1.33
5.39
0.416
1.32
5.38

46.0
45'.2
52.6
56.2
56.3
64.0
72.4
75.2
69.8
77.9
79.9

38.8
39.1
38.4
46.2
47.4
47.7
57.9
62.0
64.3
63.9
66.7
68.2

144
208
338
15S
234

, 386
177
274
462
186
287
480

166
258
458
183
289
523
194
321
608
205
334
629

0.102
0.125
0.144
0.130
0.165
0.196
0.161
0.223
0.284
0.184
0,249
0.313

0.143
0.300
0.856
0.156
0.346
1.04
0.168
0.405
1.32
0.176
0.428
1,.40

Cohe1'ent reaction (b) vp + Z~ P~+ Z + g + p,

1.5
4.0
8

15
4Q

1.5
4.0
8

15
40
1.5
4.0
8

15
40

Pb
Pb
Pb
Pb
Pb
Fe
Fe
Fe
Fe
Fe
C
C
C
C
C

0.198
1.46
4.71

12-2
46.6
0.349
2.35
7.28

18.4
68.9
0.550
3.49

10.6
26.0
97.5

0.498
1.56
3.36
6.60

18.7
0.519
1.59
3.43
6.71

19.0
0.530
1.63
3.49
6.84

19.1

0.124
0.304
0.576
1.04
2.66
0.142
0.343
0.639
1.14
2,87
0.159
0.376
0.704
1.26
3.20

0.782
2.03
3.96
7.25

18.5
0.733
1.96
3.83
7.04

18.1
0.704
1.89
3.70
6.79

17.6

8.89
7.29
6.55
6.01
5.45

12.5
10.4
9.35
8.66
8.01

17.1
14.6
13.2
12.6
11.5

4.78
4.86
4.81
4.71
4.64
7.17
7.09
7.01
6.84
6.74

10.6
10.3
10.1
9.98
9.60

33.1
42.4
52.2
64.8
92.9
42.S
54.9
67.8
83.4

121
54.3
70.0
86.4

108
156

71.4 '

108
145
187
287
84.2

127
169
219
338
99.1

147
197
259
390

0.00273
0.00223
0.00202
0.00190
0.00178
0.00511
0.00436
0.00404
0.00386
0.00368
0.00941
0.00852
0.00806
0.00798
0.00760

0.0310
0.0495
0.0748
0.114
0.243
0.0380
0.0641
0.0997
0.157
0.346
0.04.68
0.0833
0.134
Q.220
0.482
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TABLE l (Continued)

E'g T/ 2 3 7 4 +p ll3 +p li4 pt3 pcs q2 w342

(GeV) Nucleus (10 4 cm ) (GeV) (GeV) (GeV) (MeV/c) (MeV/c) (MeV/c) (MeV/c) (GeV/c) (GeV )

Incoherent reaction (b) v& +N v~ +N + e++ p

1.5

15
1.5
4

15
1.5
4

15
1.5
4

15

p
p
p
pC

pc
pC

n
n

n
n'
n'
n'

1.40
9.51

79.0
0.722
5.18

44.4
0.0853
0,725
6.87
0.0670
0.608
5.97

0.527
1.62
6.82
0.523
1.62
6,89
0.542
1.65
6.91
0.534
1.63
6.89

0.214
0.523
1.73
0.243
0.606
1.99
0.302
0.729
2.30
0.311
0.749
2.35

0.623
1.71
6.29
6.58
1.70
5.94
0.474
1.41
5.54
0.459
1.39
5.49

36.9
38.4
38.0
51.5
54.1
54.4
65.6
72.5
75.0
73.1
79.3
80.6

26.8
29.1
30.7
38.4
41.6
44.4
55.3
59.8
62.9
62.4
65.5
67.5

98.7
146
244
129
194
327
16.5

256
436
178
274
460

145
228
414
175
278
518
196
320
610
209
336
635

0.0566
0.0790
0.102
0.0928
0.130
0.169
0.141
0.205
0.272
0.169
0.236
0.305

0.0810
0.192
0,629
0.106
0.263
0.879
0.124
0.337
1.19
0.135
0.365
1.28

Coherent reaction (c) v~ +Z~ v~+Z+ e + e

1.5
4

15
1.5
4

15
1.5
4

15

Pb
Pb
Pb
Fe
Fe
Fe
C
C
C

1.13
4.20

20.9
1.48
5.56

29,2
1.82
7.30

37.9

0.736
2.02
7.78
0,720
1.98
7,69
0,716
1.96
7.69

0.195
0.479
1.56
0.207
0.493
1.67
0.215
0.499
1.78

0.568
1.50
5.66
0.571
1.53
5.65
0.568
1.54
5.53

5.38
5.25
5.31
7.57
7.66
7.54

11.0
10.8
11.1

4.39
4.39
4 47
6.23
6.31
6.42
8.74
8.80
9.40

30.3
44.1
76,2
37.1
54.8
94.8
47.5
66.2

121

46.5
73.2

140
55.9
88,4

167
67.0

106
205

0.00124
0.00134
0.00149
0.00247
0.00279
0.00308
0.00493
0.00555
0.00641

0.00823
0.0203
0,0733
0.0118
0.0304
0.105
0.0174
0.0439
0.159

Subscripts 2, 3, and 4 refer to the three outgoing leptons as indicated in Fig. 2.
These results may be used to account for incoherent reactions in a nuclear target (Z,N). One weights the proton

results by Z, the neutron results by N (the coherent results by Z ). The exclusion-principle corrected' results should
be used for this.

An exclusion-principle correction factor (20) has been applied inside all phase-space integrations.

4.0 —
f ~

l.5 Gev

Xo-I

———l5

I-
2.0

lt-

FIG. 4. Distributions in charged-lepton
kinetic energy from the coherent process
(a), for a Pb target and three values of
neutrino beam energy e&. (These curves,
as are all of Figs. 4-16, are actually
smooth-drawn envelopes of histograms
having about 100 bins. The shapes of the
curves within 1-2% of the endpoints are
therefore necessarily conjectural. )

l.0

0
0.0 0.5 1.0
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introduced, but this causes no problem.
The form factor is indeed the dominating factor

in this integration, and cuts off the integration in
q' at such a low value that the photon propagator is
approximately canceled by factors from phase space
and the matrix element, and needs therefore no ex-
tra treatment to reduce variance.

The variables u3 and u, were found to be very ef-
fective for the two-muon case. They completely
eliminate the lepton propagators, which appear in
the cross terms of the squared matrix element, and

apparently also effectively cancel the propagator
dependence in the direct terms.

However, for the two-electron case,
u, =D, ,

(25)
u, =D4,

was found more efficient, because in the region
D, «q' which is large in logarithmic scale for the
2-e case, the propagator effect is canceled by
phase space. With the choice (24) for variables,
the total cross section can be written

2m D,
8~,MP'(e') I6(-e p, )~.'" 8 ~q~'~,

(27)

the successive square brackets stemming from the
d'P', d'p„and d'p~d'p, 6'( ~ ~ ~ ) integrations in (8).
The phase-space integral is worked out in detail in
Appendix B, where also the limits are given.

For a given neutrino energy and nucleus, a com-
puter run to produce eight single distributions and
five double distributions with a statistical standard
deviation in the total cross section of about 1% took
less than one minute on the Stanford IBM 360/67,
which is much faster than we dared to hope for
when we started this calculation.

IV. RESULTS

We calculated distributions for the following
quantities:

Q2(y 2g2

2(2w)6Mc
(26)

p„=2 ~p; ~sin-,'8;, i = 3, 4 (=- l', l )

~p((& —= lyil(I cos~l) I (28)

where I is defined in (22), and the Jacobian is Ws4
——-(p~+ p4) /f2

IO

Te+

I5.0 GeV
——---- 40

I 5

I.O

FIG. 5. Distributions in charged-lepton
kinetic energy, T&+ and T&, from the co-
herent process (b), plotted with a logarith-
mic ordinate scale. The target is Pb;
the energies labeling the curves are e&.

O. l

bb
II—

O.OI

O.OOI

0.0 0.5
T/T
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where T; are the lepton laboratory kinetic energies,
~p; ~

are the momenta, and 9, is the angle in the lab
frame with respect to the incoming neutrino.

For small angles, p„.=p;0; thus nearly coincid-
ing with the usual definition of transverse momen-
tum P;.

The average values of these quantities together
with the total cross sections for processes a, b,
and c are given in Table I for proton (with and with-
out an exclusion principle factor), neutron, and
three nuclei "C "Fe, and "'Pb. The exclusion-
principle-corrected neutron and proton results,
weighted by N and S, respectively, may be used
to correct the coherent results (for nuclea, r targets)
for incoherent reactions off single nucleons; one
uses the prescription (19). The neutrino energies
(three or five values) are chosen to be relevant for
the spectra at CERN, Serpukhov, and MAL. The
total cross section is given in units of

Q'~= g $O cm

The values given in Table I have statistical error
(standard deviation) of about 1% or less. For inter-
polation to find the total cross section for an A. in-
termediate to those given the formula

c/0'o = c~/cP + c2 (29)

can be used where a is the rms radius (17) and c,
and c, are the constants. to be fitted to the two adja-
cent nuclei. The first term on the right-hand side
follows from the cutoff in the form factor. c, is a
small correction to take into account variations in
the matrix element apart from the form-factor de-
pendence.

The distributions in kinetic energy of the charged
leptons produced off "'Pb at three different neutrino
energies (1.5, 4.0, and 15.0 GeV) are given in
Figs. 4 and 5 for processes (a) and (b), respective-
ly. (Figure 5 has the ordinate plotted logarithmi-
cslly. ) The same distributions are graphed 1n

Fig. 5 for process (a,) occurring at the one energy

208pb

56Fe

5.0

5.0
b

II-

FIG. 6. Distributions in charged lepton
kinetic energy T&+ and T&-, from the co-
herent process (a). The neutrino beam en-
ergy is 15 GeV.
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0,0 0.5
T/T
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208P
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The abscissa i 11 th ese cases is the labor-
ine ic ener ii i-

1T; —,W„((M+@ )IW '+m ' —MT — W ' » +m,. —(M+m, .)']
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FIG. 12. Distributions in transverse
momentum p&4 of the pe from coherent
reaction (a), at e& =15 GeV.
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where P„ is the angle in the lab frame between p,
and p4.

Figures 17 and 18 display the histograms of dou-
ble distributions in T, and P«(i =3 for Fig. 17,
i=4 for Fig. 18) from process (a) off 2O'Pb at e,
= 15 GeV. In each figure ten histograms are plotted,
with successively shifted origins, and histogram
k pertains to kinetic energies from (k-1)/10 of the
maximum to k/10 of the maximum. Each of the ten
histograms contains fifteen bins, and the nth bin
contains transverse momenta from (N-1) &&0.05
GeV/c to nx0. 05 GeV/c. The height of a given bin
in a given histogram is proportional to the fraction
of the total cross section which consists of events
having T; and P„.within the specified limits for that
bin and histogram.

V. DISCUSSION

To test our programs, we used the same form
factors as CSW and we then reproduced their re-
sults to within 1/0 accuracy for several energies.
We consider this to be a critical check on our cal-
culation of the matrix element and the phase-space
integrations. We made a further check by invert-
ing the order of the phase-space integrations d'p,
and d'P4 and ascertaining that this had no effect on

the results of a trial computation.
All the results presented here are calculated with

the phenomenological form factor E~ [Eqs. (13)-
(15)] based on the Fermi distribution. Apart from
the form factor, do/dq' is peaked inside the first
diffraction minimum. This is fust where the form
a t rs E~ ' l s tha" both I'r and +&, Thus our

results for the total cross sections are some 10%
smaller than those of CS%' based on their form
factor Z„."

As is apparent from Figs. 7-14 and Table I, the
transverse momenta of final charged leptons are
disappointingly large, of the same order of magni-
tude as for strong interactions. The widths of P,
distributions increase with energy; yet those of bpll
do not, even decreasing slightly.

This behavior may perhaps be understood, in a
very rough fashion. We have seen that the q' be-
havior dominates. We can express q2 as

= (p 2 +p is +p i4) + (&p ii2 + n'p g~ + &p H ~ + & )

(31)

where p~; are the transverse momenta of the final
leptons. One has the strict inequalities

&p(( & lql,

Phase space, however, favors large p~, which are
best attained for given q' if p»+p~, +p~, in (31)

l0.0—

l.5 GeV——40——l5.0

N
I

5,0—

b

b

FIG. 16. Distributions in invariant
mass-squared S'342 =—(ps+ p4) of
charged leptons from coherent pro-
cess (a) off 208Pb target.

G,G
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cancels down to terms of order hpll. One may then
expect to see the hP,

~
upper limit in (32) be attained

by average values of b.pll, i.e. , to see

& ~~ ii& -= 3 & 141&.„
& pi&., = (s& p&.,& I41 &.,)'" (33)

I2,6
.. j, I,8-

A look at Table I shows that these very rough equal-
ities are satisfied within more or less constant fac-
tors of 5 and 3, respectively, for process (a); at
least the trends in energy dependence of the widths
of distributions in p, and hpll are correctly given.
Of course this reasoning is very loose, and wholly
inadequate when the charged leptons are different
in mass.

The Fermi interaction processes we consider
will probably never be a serious background for
8' production, if the intermediate boson exists in a
form close to what has been proposed. If one is
right at threshold, the characteristic distribution
for the transverse momentum of the final positive
lepton will be broader than for the production mode

considered here, although this lepton is emitted
preferentially backwards in the W center-of-mass
system due to polarization effects connected to
helicity conservation. If one is well above thresh-
old, then, since W production is a semi-weak pro-
cess, its cross section is much larger than the
cross sections we have been considering here
(which then corresponds to an intermediate virtual
W) and more detailed comparative calculations
would have to be done to see to what extent they can
be distinguished from the real "background. "

The separation of the two-muon process (a) from
process (7), where one has an intermediate v' may
turn out to be very difficult, both because the trans-
verse momenta in process (1), (a) are large and
because the p,

' carries away a relatively. small
fraction of the tota. l available energy, down to 16'%%up

at 40 GeV.
The pions will presumably come mostly from two

different production modes, either via a nucleon
resonance [Fig, 19 (a)] or through some diffractive
process [Fig. 19 (b)]. In the first case, it is known
from analysis of electron data by Walecka et al.""
that

&'=-(p. —p„-)2=(p, —p *)'=2lp.lip„-l(l-co»„-)
is limited by the nucleon form factors. The CERN
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FIG. 17. Double distribution in transverse momentum

p&3 versus kinetic energy T3 of the p+ from coherent re-
action (a) off Pb at e&

——15 GeV. Each of the ten histo-
grams (1-10 as labeled on the right and displayed with
successively shifted origins) has fifteen bins. The
height of the n th bin in the k th histogram gives the frac-
tion 60'/o of the events having (k —1)/10 & T3/T3 ~ k /10
and (~ —1) && (0.05 GeV) —n ~ (0.05 GeV).
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FIG. 18. Double distribution in transverse momentum
p&4 versus kinetic energy T4 of the p from coherent re-
action (a) of Pb at e& ——15 GeV. Compare Fig. 19; the
histogramming scheme is the same as here.
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(b)

FIG. 19. Diagrams for experimental background to pro-
cesses (1). (a) Resonant production. (b) Diffractive pro-
cess. N and N' are single nucleon states, and N + is a
nucleon resonance.

experiments indicate the axial-vector form factor
to be not very different from the vector ones, so
that k'&1 (GeV/c)'. Purely from kinematics we

know that

Z, & (k'+M +M*')(m '+M*' -M')/2MM*'
(34)

where M* is the mass of the resonance and M that
of the nucleon. For the b, (1236) one finds, putting

8 = 1 (GeV/c)' into (34), that

E,+&0.8 GeV.

One has also, therefore,

p,„'& O' 61(GeV/c)',

E~+ &E~+ &0.8 GeV .
This class of pions should therefore not be a very
serious problem at NAL energies (e, = 15 GeV),
since a cut on E„+ at 1 GeV would eliminate nearly
all of them, and only about 20% of the events (1),
(a). Higher resonances decay mainly to multipion
events, and peripheral or diffractive processes do
not seem to be important at CERN energies. -How-

ever, since the cross section for production of one
pion is 10' to 10' times the cross section for pro-
cess (a), it is clear that a careful experimental
study of the one pion spectrum will have to be done
with the same neutrino spectrum and the same
target as one wants to use to detect the double muon
process, (a) of Eq. (1).

To conclude, lepton triplets produced through the
four-fermion interaction may not have the outstand-
ing kinematical characteristics one could have
hoped for. Nevertheless, we certainly feel that it
is worthwhile to push experiments to detect them.
They are still the best hope for observing diagonal
weak interactions and virtual weak interactions in
processes for which the predictions of weak-inter-
action theory may be calculated to arbitrary accu-
racy independent of strong-interaction models.
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APPENDIX A

The results of completing the traces in (9) and carrying out the interesting contractions are

2 'P„L„~P8= (4P p, p, qq P -M'q'p, p, +2M'q p, q p, —2P..p, q'p, P)p, p,D, '

+ (4P p,p, qq P--M q'p, p, +2M'q p, q p, —2P p,q'p, P)p, p,D, '

-&. '&. 'I2M'(p. .q(p. .p,p. q —p. p.p, q) p. q(p, p,p, q p. -p.p, q)-
+q (p. p,p. p, p..p,p..p, )) -2q P(-p.p.qp, p, P)

—2q (P p,p, p,p~ P —P.p+2.p3p, .P —P p3p, p4p2. P+ P p2 p4.p~p, .P)j

4[P, P, (P. P/&. P, -P/&, ) + (P,P,Pq)/-&, 1

xIP. P.(P. P/&. P. P/&, )+ (P.P.Pq)/-&. i, (A1)
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2 'L„=[2q p, (m, ' —q p,)+p, p, (q' —2m, ')]p, p,D, ' +[2q p, (m, ' —q p, )+p, p, (q' —2m, ')]p, p D, '

-D. 'D, '[q'(P.P,P.P.)+4P. P,P, P.p. P, 2P—.P.(P,P.P.q) —2P, P.(p.pd. q)l,

where

D3 4= Q' —2g'P8 4,

and we use the notations

(abed) = 4Tr()P4$) = a bc d —a cb d+ a db c,
(P4P3qp, p3P) = ,'Tr (p4—kgp,p3$)

= 2p, p, (P,P,P,P)+ 2p, p, (P,P,P,P) +m, '(P3P,P,P)+m, '(P,P,P,P) .

2703

(A2)

This last may be found only after substituting four-momentum conservation, q = p2+ p3+ p4 p1.
The left-hand side of (Al) can be made to yield the general symmetric element of L 5,

'3( L„5+L5 ), by
replacing each M by -b 5 and each pair of dot products P ab P (a, b = p„p„p4 p„q) by 3(a~b5—+a5bg.

APPENDIX 8

X1=$2

X2 = -g'P

x = -tg'P

x4 vP4y

x =-p 'p

6 ~1 ~4&

X7=-P8 I',

(Bl)

x =-p P
All other relevant invariants are scalar products
which may be expressed in terms of x1 x8..

I' q= 2X1,
1

2 2X1 X0+ X7+ X8 &

q P2 = X1 —X2 + X3 + X4 )

P1 P2 ——X2+ X5+X8, (B2)

1
p, p, =-,(m, '-m, '+x, ) —x, +x, +x, ,

1
p3'p4 = 3(m4 —m3 + x~) —x3 + x3 + x5 q

1
p3 p4 ———,(m4' + m, ' —x,) + x, —x3 x4 x5 x5

We then have the problems of relating the inte-

We shall begin by introducing a complete set of
Lorentz invariants for the processes (1), (a)-(d).
Taking four-momentum conservation into account,
there are five independently varying vectors, giv-
ing ten dot products. One constraint equation comes
from the mass restriction on the sixth four-vector
and one from the requirement that the five four-
vectors must be linearly dependent. The second
constraint equation is unwieldy and impractical to
use so we have described everything in terms of
the nine invariants:

x =-P I'=Me

= 2m[8Me~E3(x, )] 3du~du3,

where, from (24),

u, = E2 xdx,
X1

(BS)

u, = 2x, —x, —(m, + m, }'.
The limits u, and u~ are given implicitly by the
limits of x, [after CSW (B.27)]:

26 m 2 m 2 2

1 — i3 (1+g)a 1 —,(1+g)1+2g 2c, 2e,

mr
-

X/3j

, (1+2g)
1

x, =mJ.4X, '(1+2g) ',
with g= e,/M and m~ =m, +m, . The second equation
follows from the first, but, in numerical computa-
tions, its use avoids the necessity of subtracting
two large numbers (of order unity) to obtain a very
small result (of order m~4/e, 4). The limits on u,
are derivable directly from CSW's Eqs. (B.24} and
(B.28) as

@=0,
(1+2g)(x, —x,)(x, —x,)

u. -3 x, +x,)=
m~3+ x (1+g) + 2E (x + x '/4M')

(B5)

gration (8) to those in (21) (i.e. , giving J) and ex-
pressing x&, x2, . . . , x, in terms of u„u2, . . . , u,
(x, being already fixed as Me, ). Most of the latter
task is already done by (24). We now proceed to do
the integrations in (8) from the outside inwards.

One integrates d3I"/2E' in the center-of-mass
frame A defined by p, + P =0. With P defining the
a axis, the azimuthal integration is trivial and one
gets [see CSW, Appendix B, (B.28)]

d3 I"/2E ' =2mdx, dx3/4M@,
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The first equality comes from the fact that W~'
= 2x, —x, = -(p, + q)' is the available energy squared
in the three-lepton center-of-mass frame and must
be at least m~'. The second is more complicated
algebraically than direct application of CSW would

give, but, like the second equation in (B4), it is
better for use in numerical calculations, since,
for x, near its limits, the alternative expressions
involve subtraction of large numbers to obtain a
very small result. [Still another example of this
phenomenon is the reason u, was used as an inte-
gration variable as opposed to x, : 2x, —x„which
may be as small as m~2, is the difference of num-
bers as large as E'y2 or M'; therefore it is better
to calculate x, = —,'(u, +m~2+ x,) than to calculate
WB' = 2x, —x, from x,.]

The integral d3p3/2e„with P' now regarded as
fixed, is done in the frame 8 defined by p, + q =0.
If q is taken to define the z axis and P to lie in the
yz plane, one has

x, =q,'e,' —lql'lp, l'cose, ,

x5 = ey E3 +Ey lp3l cos e3,

(BGa)

(B6b)

x, =P, c, —lPl lp, l (cose,cose +cosy, sine, sinep),

(B6c)

where eB is the angle between P and q. Using (B6a)
and (B6b), and finally (24) one has

u4=0,
(B10)

(D3 D-3 ) (D3 -D3 )WB2/x~

u, + 2m3m~ + 2x, (x2 —x,)/x, + 2x, (x,'+ m32x, )'~2/x, '

The limits on u, are, of course,

u5=2n, u =0. (B11)

In practice we have picked our random points fu)
from only half the range of u„ i.e. , 0 &u, &m. This
makes no difference as everything is invariant un-
der u, going to 25-u5 (unless one wishes, as we
have not, to obtain distributions in a variable which
is not invariant under mirror reflection). Equation
(B6c), upon substitution of

P, = -P (p, + q)/WB = (x, —2x, )/WB,

lp lB —[(P B)2 ~2]&h

e3 =-p, (p, +q)/WB = (x, +x,)/WB,

lp lB [(Q B)2 m 2]1/2

q,
a = -q (p, + q)/WB = (x, —x,)/WB,

lql' = [(q.')'+ x,]",-.e, = (P.'q,"-.'.,)/lpl'lql',

becomes, after some algebra,

x7 = (xpxyxp+ xpx2x3 —2xgx2x5)x2 —(P2P5) coscp3
"2 Z/2

d3p3/2@3 = dx3dxpdy3/2x2

=D3(16x2u5' ') 'du, du, du, ,
where

x, = ,'(D, x,) = —,'(e"—3-x,—),

(B7)

(B8)

where

P, =M22 (u2 -u, )

x [x, +e,x,/2M+ e, (x, +x,2/4M2)'~']x2 ',

(B12)

The kinematically allowed region in x, and x, is
bounded by the curves [CSW and (B17) and (B18)]

x,(2x,x, + x,x,) =

S','=-2x2 —x, —2x, —2x, +m3'=m4',

from which limits on u, and u4 are straightforward-
ly derived:

P, = x, ,'(v u, —W—u,)
(B18)

We finally evaluate the integra, ls

x[2'(v&7, —Wu, )+2x,(x, '+m3'x, )'~'/x, ]x2 '.

u, =lnD, , u~ =lnD, ,
where

= m3 + x~m4 /WB + x2y, /WB 2,
3

(B9a) in the frame C defined by p, +q -p, = 0. One takes
q to define the z direction and orients the axes so
that p, is in the y~ plane. Following CSW in doing
four of the integrations against the 5 functions, one

gets the two-dimensional integral [CSW (B10)]

y, = (WB' —m, ' —m4') + [(WB' —m, —m5')

-4m 'm 2]2~2
3

y = 4m, 'm, '/y„
and

(B9b)

where, by (24),

= (4lql'Wc) 'dx. dq'

= D4(8 lqlcw&) 'dup«,

(B14)
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x, = —,'(D, —x,) = (-x, + e"6),
(B15)

(B16)

The upper and lower limits are given by

u, =O,

uo=lnD4, @6=lnD~,

where

=m, '(Wc'+2x, -m, ')Wc ~+ —,'(1 -m, '/Wc')4 C

x[wc +x, +2xs-m~ +[(Wc +2x~+x~-m~2)2

-4x, (2x, -m, ')] '~'},

In (B14) ~q~c is the magnitude of the three-vector
q in this frame C, given by

Iql'W. = [( .—..)'-2;.. .",]'".

op q
is the angle between vectors p, and q in the

C frame; Opq is similarly defined; 6, is 6)- q; 4 is
the azimuthal angle of I'. Defining the quantities
in the C frame:

P,'=(x, ——,'x, —x,/W, ), ~p~'=[(P,')2-m']'~',

q,
' = (x, —x, —x,)/W, , ~q~' =[(q,')'+ x,]''2,

e; =(x, -x,)/W, ,

e4 = (Wc+m4 )/2Wc,

lp. I' = (Wc -m, ')/2W, = u, '~'/2W, ,

cos 8, = (e, q, —,)j(p, ( )q [

cos8;-„=(P, q, +-,'x, )/(p( (qp,
cos ep -, = (ecq —x,)/cc (q)c,

cos 8P
& (Po cl xo)/Ey Ipl

cos 8p p
—cos g~pgcos 6)~ g

cosC =
sin6)--sin 8--

P cf Plq

and substituting into (B20) one eventually gets
but in practice 8, is calculated from

D, =m, '(Wc'+2x, -m, ')Wc '+2(1 -m, '/Wc')

&&x,(2x, —m, ')[(Wc'+x, +2x, —m, ')

+[(Wca+x~+2x5 —m, )

-4x (2x —m ')]'~'j ' (B19)

x, =(-,'(W, '+m, ')[x,(x, —x, ) —x,x,]

+ x,(x, —x,)(x, —x, —x, )

—x,x,W, 'j(i@i'W,)-'
—x, (P,P,)'~'(cosy, )/tq] W&,

in order that the numerical calculation be free of
situations where two large numbers subtract to
give a, small result. (B18) and (B19) are algebra-
ically equivalent to CSW's (Bll) and are derived
therefrom.

One then expresses x, and x, in terms of x, and

Q~ by

x8 = E~ 64 —e~ ~p4 ~
(cos e~cos e~p g

+ sin 8,sine', m~osy, ),
B20)(

x, = P,'c', —]P)')p, )c[cos e,cosep -,

+ sine, sinep-„cos(y, -4')] .

x, = (p(wc'+ m, ')x,[x, —x, ——,'(x, —x, )]

+x~(xo —x,)(x, —x, —x, )

+ 2x~x4(x2 —xs —2x5+m~ )j
&& ( ~q ~ Wc) '- ( P, P)'~' is nu, isny,

-P,"[(x,-x, -x,x,/x, )

x P, '~'cosu, + x,(x, ——,'x, )P,'~'/x, ]/Wc ~q ~c,

P, =(D, -D,)(D, —D, )/4(lql')'.

Finally, we combine (BS), (B'7), and (B14) to
get (27).
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A relativistic equation to represent the symmetric quark model of hadrons with harmonic
interaction is used to define and calculate matrix elements of vector and axial-vector cur-
rents. Elements between states with large mass differences are too big compared to experi-
ment, so a factor whose functional form involves one arbitrary constant is introduced to
compensate this. The vector elements are compared with experiments on photoelectiic me-
son production, X&& decay, and m aery. Pseudoscalar-meson decay widths of hadrons are
calculated supposing the amplitude is proportional (with one new scale constant) to the diver-
gence of the axial-vector current matrix elements. Starting only from these two constants,
the slope of the Regge trajectories, and the masses of the particles, 75 matrix elements are
calculated, of which more than 4 agree with the experimental values within 40%. The prob-
lems of extending this calculational scheme to a viable physical theory are discussed.

INTRODUCTION

The symmetric, nonrelativistic harmonic-oscil-
lator quark model has been shown by a number of
people" to offer considerable promise of helping
to organize the wealth of data in the resonance
region for high-energy phenomena. We intend
here to bring some of these results together in a
unified method of calculation in order to judge
better the validity of this organizing power.

A truly relativistic quantum-mechanical theory
today seems available only in the complexities of
field theory with its many virtual states involving,
for example, pairs, ete. It is so complex that no
particular dynamic regularities among the res-
onances are expected of it, other than those re-
sulting from symmetries of the original Hamilton-
ian. We have gone in a different direction, saeri-

ficing theoretical adequacy for simplicity. We
shall choose a relativistic theory which is naive
and obviously wrong in its simplicity, but which
is definite and in which we can calculate as many
things as possible —not expecting the results to
agree exactly with experiment, but to see how
closely our "shadow of the truth" equation gives
a partial reflection of reality. In our attempt to
maintain simplicity, we shall evidently have to
violate known principles of a complete relativistic
field theory (for example, unitarity). We shall
attempt to modify our calculated results in a gen-
eral way to allow, in a vague way, for these errors.

This is, of course, quite dangerous-because if
one allows too much latitude in modifying the re-
sults of the calculations, especially if empirical
results are allowed to influence strongly the many
arbitrary choices, the significance of later par-


