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Transition radiation from Dirac magnetic monopoles is calculated. The image picture is
applied and compared with the rigorous solution of Maxwell’s equations utilizing the symme-
try between magnetic and electronic charges. Possible experimental applications are dis-
cussed in searching for monopoles in accelerators and cosmic radiation.

I. INTRODUCTION

Ever since Dirac first advanced his theory of
the magnetic monopole,' experimental searches
have been continuously conducted in cosmic radi-
ation, with accelerators, and even on the lunar
surface. To date, all these investigations have
yielded negative results.”>~” These experiments
all depend for their success on Dirac’s result
that the magnetic charge g is related to the elec-
tronic charge e by the equation
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where # is an integer. It follows immediately that
processes characterized by photon emission from
magnetic monopoles will be enhanced over similar
processes involving unit electronic charge by a
factor of

2 2
g /he _1n_seoan. @)
a a® 4

From Eq. (2) it is clear that ionization losses in
matter, Cerenkov emission, or any other radia-
tion from monopoles should be several orders of
magnitude larger than the equivalent process for
a particle with unit electronic charge. Detection
systems are therefore designed to utilize this
enhancement. Tracks in emulsion should show
the heavy ionizing properties of monopoles; Cer-
enkov counters should also display characteristi-
cally large signals from them. In this paper, the
radiation from a monopole crossing an interface
between two media, the so-called transition radia-
tion, is calculated. This transition radiation could
be potentially useful as an experimental detection
technique since the same enhancement factor oc-
curs as in Eq. (2). Further, since the total intensi-
ty of transition radiation is linear with the Lorentz
factor y, it provides a measure of the monopole
mass if it is coupled with an independent energy
measurement.

Before the calculation of transition radiation is
presented, a brief review of ionization loss and
Cerenkov emission will be given.

A. Ionization Loss

To estimate the energy loss of fast monopoles
to atomic electrons, a classical approach suffices.
The transverse impulse imparted to an electron
by a monopole is given by

AP, = f (BxB) dt=c [ (BxB,)at

=eﬁLB[wBLdt=% B-d =-2§5—’ﬁ“ (3)
where L refers to the plane normal to the mono-
pole path, and the surface integral is taken over

a cylindrical surface, with the monopole path as
the axis and containing the electron. In accord
with the usual procedure, the average energy loss
is given by®

dE _ . (2egY 1, (mp’y
-4 e () ®
where y is the Lorentz factor, J is the mean bind-
ing energy of the electron, and N, is the electron
density. More detailed calculations modify Eq. (4)
mainly be incorporating the density effect.® The
important point to note about Eq. (4) is the insensi-
tivity to monopole velocity, particularly for B<<1.
This is not, of course, the case with high-Z parti-
cles.

B. Cerenkov Radiation and Bremsstrahlung

It is possible to define a vector potential in the
case of magnetic poles via the relation

B=yxAm (5)
However, we also have the equation
v-B=dng. (6)

Clearly, Eq. (5) cannot be quite true. In fact, as
shown by Dirac, it is sufficient for (5) to fail on a
line (L) emanating from the pole position to infin-
ity. Therefore, Eq. (5) must be replaced by

sz(m)=§+§(f)’ (5"

where
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B=gt/»® (7
and

BY = f(£)#(F), ®)
subject to the equation

V-ﬁ(f)=—41rg. 9)

In Eq. (8), f(¥) is a function that is zero every-
where except on the curve L and has a 5-function
singularity there in order to ensure the validity
of Eq. (9); 7(¥) is the tangent vector to the curve
L. The Coulomb gauge condition may be imposed

on A™M, Therefore, Eq. (5’) may be reduced by
taking the curl to
VZK("') =_yxBW , (10)
which has the solution
- 1 v xBW
m - = [ Y 22~ ;38 ’, 11
A= 74 (11)

Equation (11) can now be transformed to a sum of
a surface integral, which may be dropped, and a
volume integration. The volume integral may then
be broken up into a tube surrounding L and the
rest of space. Only the tube contributes, and,
from Eq. (9), A™ takes the form

- 1
Am = _g [ g xV(—) . (12)
A R

A displacement of L to L’ implies a change in Am
that is proportional to the gradient of the solid
angle subtended by the loop LUL’. Therefore the
wave function of an electron in the presence of a
stationary monopole will suffer a gauge transfor-
mation

b - zpei(ge/cn)ﬂ . (13)

However, encircling either L or L’ implies a
change in y given by

ZP - weii(geé‘n/f:n) (14)

and the single valuedness of ;) implies the Dirac
quantization condition, Eq. (1).

The solution for an arbitrarily moving magnetic
charge has been obtained by Dirac as a generaliza-
tion of Eq. (12) for Minkowski space.!® The gen-
eralization is most easily obtained by noting that
the standard Liénard-Wiechert potential ALY re-
duces to 1/R in the rest frame of the pole. Dirac
expresses Aﬁw in terms of an integral over the
particle worldline of the product 25(R,R,) and the
particle four-velocity. The generalization of Eq.
(12) is immediate and results in a double integral
over the sheet that is swept out in space-time by
the space like curve L, which extends from -
to the world point of the particle. The result ob-
tained by Dirac is
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(15)

where y,(7,, 7;) specifies a point on the sheet, 7,
parametrizes the particle worldline, and 7, pa-
rametrizes the curve L for fixed 7,. It is then
straightforward to show that Eq. (15) leads to an
expression for the dual electromagnetic field ten-
sor in terms of the Liénard-Wiechert potential
scaled by g rather than e. The replacement of
the electromagnetic field tensor by its dual for
the solution when a magnetic charge replaces the
electric charge is equivalent to the replacements

- -

E~H, (16a)
. %, (16b)
e—~g. (160)

It follows that if both electric and magnetic
charges are present, the field equations are in-
variant under (16a)-(16c) and the additional equa-
tions

g-=-e, (178.)
T, %,~T,%,, (17b)
V,%,~7,,%,. (17¢)

If material media are present then an additional
equation is

€~u, (18a)
L—€. (18b)

Equations (16)~(18) imply that the linear boundary
conditions at infinity and at interfaces go into them-
selves. Therefore, to solve a problem with mag-
netic charges where the particle motion is given,
all that is required are the solution of the elec-
tric-charge problem and the utilization of (16)-(18).
It is immediately clear from this that the Cerenkov
radiation from a monopole will be larger than that
from a unit electronic charge by a factor of 1#%/a?.
In addition, the polarization will be rotated 90°

with respect to that of Cerenkov radiation from

an electric charge since E~Hand E-H=0. The
same remarks also apply to bremsstrahlung from

a monopole, with one important modification.

Since bremsstrahlung arises from accelerations
caused by interactions of moving particles with
atomic matter, and since atomic matter consists
of electronic charges, this enhancement factor
will be multiplied by an additional factor of (nM,/
2aM,)?. If a particle carries both electronic and
magnetic charge, it is possible to show that the
energy loss whether by ionization, Cerenkov radi-
ation, bremsstrahlung, or transition radiation is



2654 JOHN DOOHER 3

given by the independent sum of the electronic
and magnetic charge contributions. This can be
seen from the following argument.

From the linearity of Maxwell’s equations modi-
fied to incorporate magnetic charge, the fields
can be written

E=E@ 1 Em =cEW 4 oE @ (19a)
H=H@ +H™ =cH® 4 g, (19p)

where (e¢) and (m) represent fields from an elec-
tronic or magnetic charge alone. The symmetry
implied by Eqgs. (16)-(18) yields

EQO_fm 3EO-F® (20a)
O _Em {0 _F® (20p)

It follows immediately from (19) and (20) that
terms proportional to eg in the Poynting vector
and energy density will vanish and that, therefore,
the energy loss dw is additive. Thus, only the
electronic problem need be solved, dw calculated,
Egs. (16)—(18) applied, and the results added to
treat the general case of electronic and magnetic
charges.

II. THEORY OF TRANSITION RADIATION
A. Method of Images

The calculation of transition radiation was first
performed by Frank and Ginsburg.!' This calcu-
lation was concerned with the radiation in the
optical and suboptical frequency range emitted
backward from the interface of two dielectric me-
dia which was traversed normally by a particle
of velocity V and charge e. In the very-low-fre-
quency range, a very simple picture of transi-
tion radiation ensues when one of the media is a
perfect conductor and v/c <<1. In this case, the
radiation can be considered to be that produced
by the annihilation of the charge with its image
when the particle enters the conductor. Since the
field is perfectly shielded from the space behind
the conductor after the charge has entered, the
Fourier component of the radiation field is given
by

-1 Axke
H, = AX Re (21)
where A is the vector potential of the charge and
the image at £<0, and it is assumed that A-0
immediately upon entry of the charge into the con-
ductor. —150 is a position vector from the point of
entry into the conductor to an observation point

in the wave zone. This is a good approximation
for low frequencies. The low-frequency approxi-
mation will be valid if B« 1. For extreme rela-
tivistic velocities B~1, it is generally not valid to

consider a material a perfect conductor since
high-frequency field components (w=> w__.) are
important.

The vector potential of charge and image is giv-
en by the following expression valid in the wave
zone:

L1 e¥ ev . 2e¥
o e

opt

Ro |1 -R, ¥/Roc = 1+R,-9/Roc | cRo"
(22)
The radiation spectral density is now
dw e%?
e — 2p 2 _ sn2
s clH, PR, 208 sin’e, (23)

which, after integrating over the half-space be-
hind the foil, yields
dw, _4e*?
dw 3uc®

=:—aﬁ2, (24)

where the last equality holds if w is measured in
energy units.

It is impossible to construct a simple picture of
transition radiation in terms of the annihilation of
magnetic charges. The reason for this is that
magnetic fields do not image in the same way as
electric fields. To calculated transition radiation
from monopoles for the perfect-conductor situa-
tion, it is convenient to utilize the symmetry prin-
ciple discussed in Sec. I. The important point is
that the dual electromagnetic field tensor was re-
lated in the usual way to the standard Liénard-
Wiechert potential ALV gcaled by g rather than e.
Therefore the following equations obtain for the
case of a monopole entering a perfect conductor
that shields the exterior from any field once the
monopole has entered (no time-varying fields are
allowed for the moving monopole in a perfect con-
ductor, which means that no fields will penetrate
to the exterior):

.1 nwy R
E“)_Z‘NCA XRO’ (25)
Wy _ o [E, PR, (26)
dQudw w70

The problem of computing AV is solved by noting
that since H, and E, are zero at the boundary, a
solution in terms of the monopole and an image
monopole with the same g can be written as fol -
lows:

Awe SV [ 1 e ]
CRy |1 =R, V/Ryc 1+R,-V/Ryc

. 288V
= _CR[, cosf. (27)

This yields for the spectral densities
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‘%‘J =g—"20§-—sin2000329 , (28)
dwg_4g UZBZ _ 1 nZ 4
do " 151 C15 @l (29)

in which the last equality holds when w is mea-
sured in energy units. As expected, the polariza-
tion for monopole radiation is rotated 90° with
respect to that from an electronic charge. More-
over, these expressions hold for the radiation
emitted in the forward direction when the parti-
cles emerge from a conductor.

Although Eqs. (23), (24), (28), and (29) illus-
trate the differences in transition radiation from
electronic as compared with magnetic charges,
neither type of radiation amounts to much energy
since B<1 and w~0. There might be some ad-
vantage in the utilization of a low-frequency
(w < wg) transition radiator for particles with
nonrelativistic velocities, but a more promising
approach is to consider -1 and w > Wope- In this
case, the image picture is not realistic or con-
venient either for magnetic or electric charges.
Instead, it is most convenient to solve the general
boundary value problem for the electronic charge
case by utilizing Maxwell’s equat1ons supplemented
by the constitutive relations D= eE B= p.H and
then applying the symmetry relatlons (16)—(18).
The case of conducting media is treated simply
by choosing an appropriate form for e, viz., e=¢,
-i470 /w. The ideal conductor case is derived by
taking the limit € —-i». It is important to note
that in applying the symmetry conditions (16)-(18),
care must be taken to observe the following order.
First solve the general problem for arbitrary €, u,
then apply (16)—(18), and finally replace € and p
by appropiate functions of w and medium proper-
ties. If this order is not followed, errors will
result. In Mergelian’s calculation'? the final re-
sult obtained is

dw, g2 /[vu -1 2

ﬁ=%<ﬁ+1><1nm_l)' (30)
The problem with Eq. (30) is that for w > w,,,,
p=1, and therefore dw,/dw~0."* Certainly a par-
ticle that interacts as strongly with the photon
field as a monopole should give a large burst of
transition radiation at relativistic velocities. Pre-
sumably, the error involved was an inappropriate
application of the symmetry principle. Note that
the result presented in Ref. 12 for total energy of
a magnetic and electronic charge does not possess
the appropriate symmetry. In the following deriva-
tion, the procedure of Garibian'* will be followed
for the general case of €, pu#1, and the final re-

sult then obtained by application of the symmetries
(16)-(18).

TRANSITION RADIATION FROM MAGNETIC MONOPOLES 2655

B. Rigorous Solution of Maxwell’s Equations

The problem is to obtain the solution of Max-
well’s equations for two regions, 1, 2, with a
particle with charge e and velocity V crossing the
boundary plane z=0 at £=0. The first step is to
resolve the relevant fields into Fourier compo-
nents with respect to time. This approach of solv-
ing Maxwell’s equations follows that of Fermi.®

-

(E,ﬁ,ﬁ,E):fdwe-wt(ﬁw,ﬁw,ﬁw,ﬁw). (31)
The relations between E and _ﬁ, and B and H take
the form

sz G(W)Ew, (32)
B, = p(w)H,.

Setting the origin of the coordinate system at the
point at which the particle traverses the boundary
and noting that the particle current density is
given by

j=evo(X -vt) (33)

yields Maxwell’s equations for regions 1, 2 as

—-iw - 2 ﬁ > )
Vxﬁm 2=, T €2y 0t P ze‘(w/")%(ﬁ’) ,  (34)
- iw -
VXEw1.2=7“1,2Hw1 29 (35)
v- 'E’ 5( )ez(w/v)z (36)
wi,2” vel ) P
Vv H,,,=0, A (37)

-

where X=7 +zf,.

Next, the field vectors are resolved into Fourier
components with respect to the transverse dis-
placement vector p:

(., 8., 5., B, = [a%et P (8,5, ), K, B, B
(38)

Equations (34)-(37) become

RN —-lwe, , = e .
K +”z£j|XHw1.z= — 1,2 Ewl,z"'zﬂfc el(w/v)z,
) (39)
e] -
5_:] xXE wi,2™ “1 2Hy o (40)
8_ e pilwh)e (41)
e 0z w12 =952 1)(-:1 2 ’
[i'? +i, } w1,2= (42)

The general solution of Eqs. (39)-(42) can be
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written as the sum of a particular solution (parti-
cle field), denoted by the superscript p, and a
homogeneous solution (the radiation field), de-
noted by a prime. It is clear that the particle
fields must be of the form

(e, De, B, BL) = (&2, d2, B, B2)e @)z, (43)

wr Mwr

The vector k (wave vector for the particle field)
is defined as follows:
K=%+ %)—n . (44)
By utilization of (43) and (44), Eqgs. (39)-(42)
are transformed into a set of algebraic equations
for &, ... , etc. These are readily solved with
the results

= e kXA,
Bir2= g, k% =y, 0% /c® (45)
&, =il R+ (/o)A =B, )iy (46)

27%€, 40 k® =y 20/

where X =€,
The homogeneous equations are transformed
into a wave equation of the form

Vikd - o
<d—zf +x,,;)<E;,, ) =0, (47)
where
2
==X —K. (48)
c
The homogeneous solutions are
P (49)
- —C /> NP
€127 we_m(Ki M,znz) XNy 25 (50)

where there must be only reflected waves in re-
gion 1 (minus sign) and transmitted waves in re-
gion 2 (plus sign).

The homogeneous solutions are obtained by uti-
lization of continuity of B,, D,, H,xn,, and E xd,
at z =0, This is most readily done by resolving
the homogeneous fields E{U, €, along the three
orthogonal vectors 7,, k, and k¥X#,. By using the

fact that
(k=ri) -02,=0, (51)
(R+2q,) - B,=0, (52)

and noting that the continuity of D, and H X#, yields
redundant equations when combined with (45) and
(46), the homogeneous solutions can be obtained in
a straightforward manner. The results are

=, _te€w

R =52, T"( xit,) , (53)
x, =W Ny 54)
Bia=grtgy 7 (00D, (

K, (55)

= _ 1€ oMy . €Ay Mo

€u2 2,”sz 3 n, 27y EK’ (56)
where

=M€+ €0, (57)

_&/e = (w/why,  =1+@/wh,

m= K —x, 02/ +k2—x2w2/62’ (58)
_a/er@/on /o +1 (59)
e e

In cylindrical coordinates the Poynting vector in
the direction of the radiation field wave vector is
given by

SR*4 (H),E. sin6 +H|,E',cosf) (60)

where the components E‘, and H;, will be seen to
be zero. E; (X, !) will be calculated in the wave
zone first:

' (X =__z'e_ 2 N
E{,(X, 1) anvff d?k k cos® dw—-‘—ig
xei(KpCos@-i)\lz-iwt) , (61)

where an axis in % space is aligned in the  direc-
tion. With a standard representation of the Bessel
function, Eq. (61) becomes

, _=e (T K —inzmi
o= [ T (pr)ddw e (62)
which, in the wave zone, becomes

Eyp = Tv(27MR s1n6)1/2.[/

X (eRF0) =3mi/s | oRo (437 /4y gy (63)

slzk

where the following replacements have been made:

z=-Rcoso,

(64)
p=Rsing,
and the functions f(x) and ¢(k) are defined by
f(k)=iksind +ix,cos0, (65)
(k)= —ik sinf+ix,cos0. (66)

The function f (k) has a saddle point in the com-
plex « plane at k,=(w/c)x,*/?sin6 and ¢ (k) has one
at k,=—(w/c)x,*/?sin6. In the integral involving
¢(x), the saddle point lies nowhere near the path
of integration, whereas the saddle point of f (k)
can be intersected and a path of steepest descent
traversed. Therefore, in the integral with ¢, the
replacement dk=dp/¢’ can be made, and by in-
tegration by parts it can be shown that this in-
tegral is O(R~'/?) with respect to the first integral
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and may, therefore, be neglected.'® , _eB? . ) fd LRI =iut, 3/

The dominant integral can be evaluated by the Eyp = o pSincos’djdwe Xo 6y,
saddle-point method, with the result (67)
where

(/€ =D)L +B(x, = x,810°6)" "2 — B2, ] = B® ey, (up/ 11y 1) (68)

b= [e,(xs — x,5in%6)* /2 + eV, cos6](1 - By, cos?9)[ 1 + By, — x,8in°0)*/*]”

The same procedure is utilized for the evaluation of the remaining field components, with the result

2
E;z=%sin29cosefdw e RW/D Ry vty 3/2 (69)
, _eB? . iRW/c)VXy ~iwt 2 (70)
Hj, = —=sinfcose dwe 170,678, .

The total energy radiated into d§2 is now given by

dw, _ pe f &
0% Sg(t)at, (1)
which yields
dw eZ 2 .
d_QZiPZ = 712{2 sin®gcos®6 u,> 2¢," 2|, . (72)

For monopoles the result is

dw, _gZBZ
dQdw ~ ¢

sin*f cos®0 u," 2¢,% 2|E, (73)

where £, is derived from £, by interchanging u and e.
By putting u,=€;=u,=1 and ¢,=¢, Egs. (72) and (73) become

dw, _e*B* .. (€ =1)[1+B(e - sin*p)*/2 - B?] 2 ,
dQde =~ e SwdcosTd (1 - B%cos?0)[ (e — sin®6)/2 + € cosg][1 + Ble — sin® )/ ?]| ° (72)
dw g €-1 2
& o F i.2 2 ’
dQde -~ w2 Secos’o (1 - B2cos®0)[(e — sin6)*/ 2 + cos6][1 + B(e - sin®g)*/?]| ° (737)

The following limiting cases are of interest:

dw, ___e’B®sin’g (74)
dQdw/,_, _;, mc(l -B3cos 6)*’

( dw, > _ g°B*sin*gcos®p (75)
dQdw/. ., _;.. mc(1 - B%cos?g)?"
In the nonrelativistic limit, Egs. (74) and (75) reduce correctly to Eqs. (23) and (28). In fact, it is clear
that Eqs. (74) and (75) are identical with the image results even for f~1. It is important to note that the
image approximation yields a realistic picture only for the subinfrared frequencies (i.e., when g/w>>1).
To obtain the radiation in the forward direction, the replacement ¢;, u,~ €,, Uy, v— —v is made in Egs.
(72) and (73). For the radiation in the forward direction emitted by the particles as it emerges into the
vacuum, all that is required is the replacement of B by -8 in (72) and (73). This causes an enhancement
of these expressions due to a decrease of denominators; this is especially important in the x-ray region,
where €—~1. In particular, the effective cutoff frequencies beyond which the spectral density does not ‘con-
tribute to the total intensity in the forward direction is proportional to the particle energy and is approxi-
mately yw,, where w, is the plasma frequency of the medium. In the backward direction there is effec-
tively no transition radiation above optical frequencies. It is noted that Eqs. (74) and (75) are invariant
under the replacement B~ —B. These equations hold for frequencies only up to the infrared region. There-
fore, for relativistic velocities the contribution of the image picture to the total energy is minuscule
[0(ny)w g /yw,)]. To utilize transition radiation from monopoles effectively as an experimental detection
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technique, forward radiation should be utilized via the relation

dw, _g°8° ., 2 e-1 2
d%de e o 6cos™0 (1 -p2%cos?0)[(e - sin%0)/2+ cosd|[1 - B(e — sinh) 3] | ° (76)
For -1,
dw, g® n®
e & _
aw, & 4%’ ()

as expected.

It is clear from the image picture that if the particles are obliquely incident there will be some varia-
tion in the radiation intensity. In fact, if the particle velocity is ¥, +v cosypii,, the image velocity must be
¥, —vcosyii,, where ¥, is the velocity component perpendicular to the z axis and y is the angle between
the z axis and V. This will yield a factor of cos21p to Eq. (24) and more complicated angle dependence in
Eq. (28). However, for relativistic velocities the image picture is not relevant for the bulk of the radia-
tion, and the intensity will be unchanged and the radiation in the forward direction will be concentrated in

the particle direction.’® Figure 1 shows the integration of (76) over solid angle for various y values for
the x-ray region above 1 keV,
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I1I. DISCUSSION OF RESULTS

A. Utilization of Transition Radiation
for Detection Purposes

From the results derived above it is evident
that the characteristically large burst of transi-
tion radiation produced when a magnetic mono-
pole crosses intermedia interfaces (e.g., metallic
foils) can provide a useful signature for detecting
such particles if they exist in cosmic radiation or
are produced either by accelerators or from cos-
mic-ray interactions with the earth’s atmosphere.
In particular, the linearity in y of the transition
radiation intensity in the x-ray region allows a
relatively accurate mass measurement of a mono-
pole if an independent energy measurement is
made. Even in the optical or suboptical frequency
region where the intensity depends only logarith-
mically on y [e.g., integration of Eq. (75) over 6
for a frequency band independent of y], there will
be enough photons produced from a few hundred
foils for statistically meaningful y measure-
ments. In particular, the extensive work of Yuan
et al.’” and of Alikhanian ef al.'® on the development
of a transition radiation detector for measuring
the y of relativistic particles indicates that an
experiment to detect monopoles by means of tran-
sition radiation seems feasible. In particular,
even for subrelativistic velocities, monopole tran-
sition radiation should be detectable. It is impor-
tant to note that in any experiment to detect tran-
sition radiation from relativistic particles, the
foil spacing and thickness must satisfy the forma-
tion zone conditions; otherwise the analysis of the
radiation produced will be complicated by inter-
ference effects.””

B. Production of Monopoles in Accelerators
and Possible Presence in Cosmic Radiation

If monopoles are produced in an accelerator
such as the facility now under construction at the
National Accelerator Laboratory, the effective
v at threshold for a heavy monopole produced in
a p-p collision is given by

Vet M,/M+1, (78)

where M is the proton mass, and it is assumed
that M,/M >1. For a colliding-ring facility such
as the one under construction at CERN, y,=1 at
threshold. In cosmic-ray collisions, Eq. (78)
holds for production at threshold. However, be-
cause of the cosmic magnetic fields, monopoles
will presumably be accelerated to very high en-
ergies yielding, therefore, very large y values.®
Consequently, at NAL and in cosmic-radiation
searches, monopoles should certainly yield large
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characteristic transition radiation signals (see
Fig. 1); in fact, for cosmic radiation, with the
probably very high y values attained, transition
radiation provides a good potential mass-deter-
mination or energy-determination technique. It
is also possible that the production of free mono-
poles occurs with a reasonably high rate only far
above threshold because of the very strong Cou-
lomb-like attraction between g, 7 pairs.?® In this
case, assuming a diffraction-dissociation-type
mechanism, the effective y, is given by

'}’gé W/Mg)')/p y (79)

where y, is E/M for the incoming proton beam.

If, for example, it is necessary to supply a rela-
tive kinetic energy of 2M, in order for the poles
to escape their mutual attraction for a measur-
able production rate, E>4E,, and M, could be as
low as 4-5 GeV and would yet have escaped detec-
tion in accelerator and cosmic-ray experiments.
This would yield y,~7 at CERN and y,~30-100 at
NAL (the lower value corresponding to slow parti-
cles in the c.m, frame). To see how this might hap-
pen, the following line of reasoning may prove in-
structive. The first assumption is that the produc-
tion of monopoles takes place in p-p collisions via
the production and subsequent dissociation of a
time like virtual photon. If the final-state inter-
action between g, g is neglected, the cross section
can be estimated by

do(E,q%), ; . do(E,q*),+, -
B Oes - LBt (80)

where do,+ ,-/dg” is the differential cross sec-
tion for producing a massive muon pair with a
muon center-of -mass energy of v—¢g2. Equation
(80) takes into accountthe hadronic structure, and
K is the ratioof the couplings [(y - £,8)/(y — u*, o).
If, following Goto,?* these couplings are inter-
preted as dissociation probabilities, then K
=1/a. Recent theoretical and experimental work
can be utilized to estimate do ,+ ,-/dg® for vari-
ous ¢° values.”™ For example, if M,~5 GeV
then

qzmax do, ;7
f2 dqz—# ~107% cm?. (81)
7" min .

In taking account of the final-state interaction it
is important to note that there will be strong com-
petition for g, g free states from multiphoton g, g
annihilation states. Also it is necessary to supply
enough energy to overcome the strong mutual at-
tractions of the monopole pair. Both of these fac-
tors could easily bring Eq. (81) down to nonmea-
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surable cross sections until the incoming proton
energy gets large enough. In conclusion, if the
object is to look for free monopoles then the
search for fast monopoles by means of transition
radiation is a feasible approach.
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