and assume that $D_{\mu}\psi$ transforms as an ordinary field:

$$[D, D_{\mu}\psi] = ia(\sigma, \phi^2)D_{\mu}\psi, \qquad (26')$$

$$[K_{\nu},D_{\mu}\psi] = i\{b(\sigma,\phi^2)K_{\nu} + c(\sigma,\phi^2)\phi_{\nu} + d(\sigma,\phi^2)\phi^{\lambda}S_{\lambda\nu}\}D_{\mu}\psi.$$
(

Equation (9) requires the double commutator $[K_{\nu}, [K_{\mu}, \psi]]$ to be symmetric. Evaluation of this using (27') yields a term dS_{μ}, ψ and hence d=0. To evaluate commutators of $\partial_{\mu}\psi$, we use the Jacobi identities

$$[D,\partial_{\mu}\psi] = [D,[P_{\mu},\psi]] = [[D,P_{\mu}],\psi] + [P_{\mu},[D,\psi]]$$
$$= i\{(a-1)\partial_{\mu}\psi + (\partial_{\mu}a)\psi\},$$

$$[K_{\nu},\partial_{\mu}\psi] = [K_{\nu},[P_{\mu},\psi]] = [[K_{\nu},P_{\mu}],\psi] + [P_{\mu},[K_{\nu},\psi]]$$
$$= -2i[g_{\mu\nu}D + M_{\mu\nu},\psi] + i\partial_{\mu}\{(bK_{\mu} + c\phi_{\nu})\psi\}.$$

Using (35) in (26') gives

$$\left(\frac{\partial W}{\partial \sigma} - 2\phi^2 \frac{\partial W}{\partial \phi^2}\right) \partial_{\mu} \psi + W(a-1) \partial_{\mu} \psi + W(\partial_{\mu} a) \psi$$

$$= aW \partial_{\mu} \psi + (\text{terms in } X, Y).$$

The only way to eliminate the term $W\psi$ is to put $\partial_{\mu}a=0$; i.e.,

$$a = \text{const.}$$
 (28)

When (35) is used in (27'), $[K_{\mu}, \partial_{\nu}\psi]$ gives terms in $\partial_{\nu}b$ and $c\partial_{\nu}\phi_{\mu}$ to eliminate. Setting these equal to zero gives b = const, c = 0. However, Eq. (10) cannot be satisfied with b = const unless b = 0, and thus Eq. (29) is true.

⁵ C. J. Isham, A. Salam, and J. Strathdee, Phys. Letters **31B**, 300 (1970); John Ellis, Nucl. Phys. **B22**, 478 (1970); CERN Report No. CERN-Th-1245, 1970 (unpublished).

PHYSICAL REVIEW D

VOLUME 3, NUMBER 10

15 MAY 1971

Erratum

Quantized Fields and Particle Creation in Expanding Universes. II, LEONARD PARKER [Phys. Rev. D 3, 346 (1971)]. (1) On the left-hand side of Eq. (12), $A_{(a,d)}(\mathbf{p},t)$ should read $a_{(a,d)}(\mathbf{p},t)$. (2) In the bottom line of Eq. (41), the first $\delta_{\mathbf{p},\mathbf{p}'}$ should read $\delta_{a\mathbf{p},a'\mathbf{p}'}$. The final result is unchanged. (3) In the first line following Eq. (57), $D_{(a)}^{(-a)}$ should read $D_{(a)}^{(a')}$. (4) In Eq. (58), $u^{(-1,-1)}(\mathbf{p},2)$ should read $u^{(-1,-1)}(-\mathbf{p},2)$. (5) In Eq. (B8), replace the first \mathbf{p} by $a\mathbf{p}$, and the second \mathbf{p} by $a'\mathbf{p}$.