PHYSICAL REVIEW D

VOLUME 3,

NUMBER 10 15 MAY 1971

Simplified Equation for the Bare Charge in Renormalized
Quantum Electrodynamics*

M. BAKER
Physics Department, University of Washington, Seaitle, Washington 98105

AND

K. Jounson

Laboratory for Nuclear Science and Physics Depariment, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

(Received 11 January 1971)

The bare coupling constant of quantum electrodynamics, if finite, is the zero of the Gell-Mann-Low func-
tion y. In the paper to which this note is being appended, it was shown that the zeros of a function f are
also zeros of y. The quantity f is the sum of the coefficients of the single power of the logarithm of a cutoff
present in every order of perturbation theory in the vacuum polarization, omitting all those diagrams which
include insertions in single internal photon lines. In this note the converse is shown; the zeros of y are also
zeros of f. It is further shown that the zeros of y are zeros of a still simpler function fi, which is defined
analogously to f, but with the exclusion of a/l diagrams which contain multiple closed electron loops.

ET us briefly review the results of our earlier
paper.! We define the quantity

d(¢")=€¢"D(¢"), €Y

where e is the renormalized charge and D(g?) is the
exact renormalized photon propagator. Gell-Mann and
Low? conjectured that when d(g®) is calculated as a
power series in a suitably defined renormalized charge,
the resulting perturbation-theory integrals remain
finite when the physical election mass m is set equal to
zero. This led to the result that

lim d(g?) — er?, 2)
gé->00

where e¢® is the first positive root of the equation
¥(x)=0, ©)

provided such a root exists. The root e is called the
bare charge. ¢ (x) is a well-defined power series in %
whose coefficients are mass-zero, perturbation-theory
integrals which do not depend upon the magnitude of
the renormalized charge e.

In Ref. 1 we proved the above conjecture of Gell-
Mann and Low. We then showed that one can define a
function f(x) by a certain subset of the diagrams of the
perturbation series for ¥ (x) such that

f@)=0=y(x)=0. (4)

Thus the existence of a positive root of the simpler
equation

f(x)=0 ©®)

is a sufficient condition for the consistency of quantum
electrodynamics with the asymptotic behavior of d(¢?)
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given by (2). The function f(x) was defined by the

formula
—xf(x) In(g?/N2) =p*(g") —p*(\?), (6)

where (g#¢®—q*q")p*(¢®) =7*,,(¢) is the sum of all
m=0 photon self-energy diagrams, computed with
coupling constant «x, which do not contain insertions
in single internal photon lines. It is this latter exclusion
which makes f(x) vastly simpler than ¢ (x).

In this addendum to Ref. 1 we will first show the
converse of (4), namely,

¥(x)=0= f(x)=0, )

which means that the bare coupling constant eg is
necessarily a zero of the function f(x). We will then
show that es*> must also be a zero of the still simpler
function fi(x) defined by the equation

—xf1(%) In(g%/N) =p**(¢") —p™* (N) , ®)

where 7% ,,= (2,0 —qug,)p**(¢*) is the sum of that
subset of m=0 photon self-energy diagrams which not
only do not contain insertions in single internal photon
lines but also does not contain any closed electron-line
loops except a single closed loop which couples directly
to the two external photon lines. That is, 7** contains
only those diagrams with a single closed electron line.
Figure 1 contains examples of such diagrams for #**
while Fig. 2 gives diagrams contained in #*, but not
o**, Figure 3 gives example of diagrams which are not
included in the definition of #*.

To prove (7), we first note that in quantum electro-
dynamics with electrons of zero physical mass, the
exact photon propagator is d(¢?) =ed*. Thus

d(g) | m=o=e0". 9)
Equation (9) follows from the fact that d(¢% =e¢

Fic. 1. Some diagrams for #**(f1). —w@«~ @
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F16. 2. Some diagrams for
7*(f) which are not included
in definition of #**(/f1).

solves the Gell-Mann-Low equation

o}
q2;d(q2) =d*y(d) (10)

q

if Y(e?)=0. But for mass-zero electrons, the Gell-
Mann-Low equation, (10), for the propagator is exact.

Thus the field theory of zero-physical-mass, spin-3
charged particles® will have a solution in which the
exact photon propagator is equal to the free-photon
propagator if the coupling constant « is chosen to be a
zero, e, of Y(x). The fact that the exact photon
propagator is proportxonal to 1/¢ 1mphes that its
imaginary part which is proportional to the imaginary
part of p vanishes. But this means that the sum over
all photon self-energy diagrams which differ from each
other only by insertions in a single internal photon line
must vanish. For such a sum contains an internal p(g")
which vanishes when ¢ =0. For example, in Fig. 3 the
sum of diagrams (a)-(c) and all the other higher-order
diagrams of that type vanish. Thus those graphs which
do not contain an internal p(¢’) must by themselves
sum to zero. However, these are just the graphs which
contribute to f.

In order to show that

¥(x)=0= fi(x)=0, (11)

we make use of the fact that absorptive part of D(g? is
given by (0]7#(x)7”(y)|0), where j“(x) is the electro-

(a) (b) (c)

Fig.3

Fic. 3. Diagrams for the complete photon self-energy part =
which are not included in the definition of #*(f).

3 We remark that although d =e¢?, in the theory of zero-physical-
mass electrons which is the limit of ordinary finite-physical-mass
electrodynamics as m — 0, a more general renormalizable zero-
mass theory exists. For, we may also solve (10), with the boundary
condition d=e,2, when q2 A2 In such a theory d will approach e
when ¢2/\? — . This sort of zero-mass theory is the same as that
c(lisc6uf)sed by T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549
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magnetic current operator. Thus ¢ (es?) =0 implies

(0] #(x)5*(0)=0. (12)
But now we apply the theorem*
(0] j*()7*()|0)=0
=(0]j#1 (1) j#2(x2) - - () [0)=0.  (13)

Thus when the coupling constant is e¢?, and the physical
mass is zero, all the multiple-current correlation func-
tions of the form (13) also vanish. This kind of multiple
correlation function is represented in perturbation
theory by a sum of all closed-loop diagrams with #
external photon lines. Thus the sum of all contributions
to 7* (or f) which differ only by insertions in a given
external closed loop must by themselves vanish when
x=e¢®. For example, in Fig. 2 the contribution to f(x)
of graphs (a)—(c), and all other higher-order corrections
to the external photon-photon scattering must vanish
when x=e¢®. We are thus left with diagrams of the type
depicted in Fig. 1 which contain no internal closed
loops. The sum of these diagrams, which define f;, must
then vanish by themselves, when x=e¢¢® This is the
assertion of (11).

To summarize: We now know that a zero of ¢ will
also be a zero of f and a zero of fi. Further, a zero of f
will be a zero of ¥.1'> We cannot yet establish that a
zero of f1 will be a zero of f. Thus the existence of a
positive root of the equation

Ji(®)=0

is a necessary condition for consistent quantum electro-
dynamics with a finite bare coupling constant. It may
or may not be a sufficient condition. The calculation
of fi is of course vastly simpler than that of f since
multiple-loop diagrams are not included in fi. This
fact means that all of the diagrams for fi(x) are
generated by a single functional equation,

(1 0 4 D m 8 G(z.5
Y ;5;’ - (Z)+1x/ “,,(z—'Z )5/1”(2")) (z’z)

=09 (—),

(14)

(15)

where D,, is the free photon propagator. The relative
simplicity of (15) may hopefully lead to a method for
computing fi(x) to all orders.
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