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The electron self-mass problem is discussed in the context of ordinary renormalized quantum electro-
dynamics. All perturbation contributions to the renormalized self-energy part Z(p), which diverge loga-
rithmically or remain constant in the limit when p)&m, are summed. The resulting Z(p) vanishes in the
limit p'/m' —+co and yields a value for bm which is Qnite and equal to m. To obtain this result it is only
assumed that the exact photon Green's function at small distances behaves like the bare propagator, which
is the case if the eigenvalue equation for the bare coupling constant has a finite root. It is shown that in
spite of the fact that the resulting mechanical mass mo vanishes identically, no conservation equation is
obtained for any axial-vector current. Hence no Goldstone bosons appear in ordinary quantum electro-
dynamics when it is summed to all orders.

I. INTRODUCTION
' 'X an earlier paper' we studied the unrenormalized
& - Schwinger-Dyson equations for the electron prop-
agator S(p) under the assumption that the photon
propagator D(k) is proportional to 1/k' as k'~~. '
YVe found that H the electron bare mass mo was taken
equal to be zero, we could obtain finite solutions for
S(p) in a certain approximation scheme. The resulting
electron electromagnetic mass 8m was 6nite and equal
to the physical electron mass m, which of course was
undetermined because the original mo ——0 equations
contain no scale parameter.

The above work' was insufficient on two major
counts:

(i) There was no explicit demonstration that these
results would not be essentially modified as one went
to higher orders in the approximation scheme.

(ii) The relation between the approximation scheme
and the conventional renormalized perturbation expan-
sion of quantum electrodynamics was not made clear.

The purpose of the present paper is to answer the
questions raised by these points. We show [under the
assumption that D(k) (1/k') as k'~a& j that the
ordinary renormalized perturbation solution for S(p)
sums to a function which, in an appropriately chosen
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AT (45-1)-1388B, and AT (30-1)-3829.
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2 In two later papers I K. Johnson, R. Willey, and M. Baker,
Phys. Rev. 163, 1699 (1967); M. Baker and K. Johnson, ibid.
183, 1292 (1969)j it was shown that a sufBcient condition for the
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M. Gell-Mann and F. K. Low, ibid. 95, 1300 (1954).

gauge, has the following behavior as p —+~:
S '(p) L 'Ly p+am(m'/p')'g. (1.1)

e is a constant which is determined by the expansion of
the renormalized Bethe-Salpeter kernel E for electron-
positron scattering. C and u are also constants. Ke
explicitly calculate e to order o,o' and find'

3 Qo 3( 0!O
~= ——+-/ —+ "

2 2x 8(2x
(1.2)

where the unrenormalized fine-structure constant
uo=eo'/4z. is precisely defined in terms of the renormal-
ized theory in Sec. II, Eq. (2.1).

The proof of (1.1) will make essential use of those
properties of the scattering kernel E which were proven
to all orders of perturbation theory in our discussion of
vacuum polarization. ' We obtain result (1.1) if the
asymptotic behavior of the exact E is the same as the
asymptotic behavior of the individual terms of its
perturbation expansion which is the same in each
order. Equation (1.1) then gives the exact asymptotic
expression for the renormalized electron propagator
S(p) of quantum electrodynamics, provided that the
photon propagator D(k) 1/k2 as k' ~~.'

Furthermore, we show that the electromagnetic mass
bm calculated in terms of the physical mass m is 6nite
and equal to m for all values of the, physical mass. The
usual divergent expression for Bm arises from using the
perturbation-theory solution of S(p) for high p' rather
than the exact asymptotic solution given by (1.1).

In order to make the logic of the argument clear, we
briefIy summarize the basic outline of our approach,
ignorirjg for clarity the technical difhculties associated

'Equation (1.2) does not agree with the results obtained in
Ref. 1.This is due to an incorrect treatment of electron self-energy
insertions and Ward s identity in Ref. 1. See the end of Sec. IV
of the present paper.
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with gauge dependence and multiplicative renormaliza-
tions. Then, with these problems put aside, the function
5(p) is finite in perturbation theory, and

1/5(p) =y P+ra+Z{p) —hm (1.3)

Z(p) —+ 0 for P»m . (1.4)

where m= the physical mass and the combination
Z(P) —Sm is finite. Formally Z(p) —5m=0 when

y p= —m. However, this equation for bm will not be
used. We erst show that all the perturbation contribu-
tions to finite quantity 5 '(p) —y p which do not
vanish in the limit when p»m, may be expressed in
terms of 5 '(po) —y po, where po also is asymptotic.
They will be related by an expression which does not
involve the physical mass m. This is a nontrivial result
and it is the reason that the analysis can be carried out.
We next 6nd that if we sum up all these nonvanishing
perturbation contributions to S '{p)—y.p, the sum
vanishes in the limit when p/m~~. Thus, we shall
obtain the nonperturbative result 5 '(p) —y p —+ 0 in
the limit p/yg —+~ or, because of (1.3),

m+2 (p) —Sm ~ 0

in the limit when p»m. In this case the integrals
which define the Nnsgbtracted Z(p) when expressed in
terms of the exact 5 converge and as a consequence
we show that

(c)

FIG. I. Some typical diagrams for Z*.

by the equation

lim e'k'D(k) =eo'.
k& ~co

This is because the replacement of any single photon
line in the graph by a contribution to D(k) which
vanishes more rapidly than 1/k' makes all integrations
converge. Because the graph is a function of only one
external momentum p', this forces such a contribution to
vanish as p' becomes large, as one can see from a
simple scaling argument. Thus, if we assume that eo' is
finite, ' we can calculate S(p) in the uv region by omit-
ting all graphs with photon self-energy insertions and
by using the bare charge eo at the vertices. '

The sum of all such equivalent graphs yields an
S(p) which satisfies the functional equation

When we combine (1.3) and (1.4), we find S—'(p) =y p+mo+Z" (p; 5(p')), (2.2)

m —5m=—0 .

Although the above paragraph basically describes our
approach, the technical questions referred to make the
actual calculations somewhat more involved. Hence
one should not apply Eqs. (1.3) and (1.4) above
without the quali6cations which are appended to them
in the sections which follow. ,

IL BEHAVIOR OF 8(p} FOR LARGE p~

We want to study the high-p' behavior of 5(p) under
the assumption that the renormalized photon prop-
agator D(k') behaves like 1/k' as k' —&~. We group
together all those Feynman graphs for S(p) which
differ from each other only by insertions in internal
photon lines. This grouping affects no conservation law
of the exact theory; that is, the graphs in each group
respect Lorentz invariance and current conservation.
The sum of all graphs in each group is then equal to an
equivalent single graph. In this equivalent graph, the
internal photon. lines stand for D(k') and the coupling
constant on the end of each line is the renormalized
charge e. If eo', the unrenormalized charge, is 6nite,
this equivalent graph has the same behavior in the
high-p region as the graph in which D(k) is replaced.

by 1/k' and e' by eo' defined in the renormalized theory

where mo ——m —bm is the bare mass of the electron.
The functional Z~{p; 5(p')) is defined as the sum of
all electron self-energy graphs which (a) cannot be
broken by cllttlllg a slllgle electl'oil lllle and (b) colltaill
no insertions in either internal photon or electron lines.
In each graph the internal electron lines stand for the
full electron propagator S(p), while the internal photon
lines stand for the free photon propagator D„.o(k),
given by

(2,3)

where b is an arbitrary gauge parameter. Some of the
tvpical low-order contributions to Z*(p,S(p')) are
depicted in Fig. I.

The physical mass m of the electron is determined by

, 5 '(y P)=0 for y p= —m (2.4a)

or, equivalently,

8m=X*[p; 5(p')) for y p= —m. (2.4b)

4The value of e0' is the 6rst positive root of the equation
f(@02/8m') =0, where f(x) is de6ned in Ref. 2. To order g', 1(x)= -'+x—-'x'. See J.L. Rosner, Phys. Rev. Letters 1V, 1190 (1966).' It has been shown (M. Baker and K. Johnson, Ref. 2) that if
ep' is 6nite then the leading correction to the asymptotic limit
(2 1) for D(k) is of the form (y jk2)(ms/k2)+&so').
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The iterative solution of (2.2) generates the usual
unrenormalized perturbation expansion for S(p). The
divergences of the integrals which appear in this
expansion can be isolated in terms of two infinite
constants: the electron self-mass 8m=m —mo and the
electron-wave-function renormalization constant Z~.
However, it has been shown' that the perturbation
expression for Z2 is finite if the gauge constant 6 is
suitably chosen. In this gauge the only infinities in
the perturbation expansion of (2.2) arise from the 8m
divergences. Hence, if we subtract (2.2) at y P= —m
and use (2.4b), we obtain

S-'9)=v p+m+&*(p; S(p'))
—L~*(p; S(p'))]v'=-- (2 5)

Because of the convenient choice of gauge, no second
subtraction is necessary to render the perturbation
solution of (2.5) finite. Thus from (2.5) we can obtain
the usual renormalized perturbation expansion which
expresses S(p) in terms of m by a series of convergent
integrals. The form for S(p) in any other gauge can be
obtained by a well-known transformation. 7

The electromagnetic mass Bm can be expressed in
terms of S(p) and hence m, using (2.4b). The resulting
value of 8m will be finite if S(p) falls off sufficiently
rapidly for p'»m'. Even if we ignore bm and the un-
renormalized theory, and concern ourselves only with
properties of the renormalized theory, the high-p'
behavior is still of fundamental importance. For if
S '(p) contains terms which for large p' behave like
mgln(p'/m')] as is indicated by renormalized perturba-
tion theory, there then arises the possibility of incon-
sistencies in the renormalized theory when taken to
all orders, i.e., the presence of "ghost" poles' in S(p).

We will now show that the behavior of the solution of
(2.5) at large p is as indicated in (1.1).That is, we find

m m2'
S(P) C( ') +—( o') —,(26)

-7 P P' P'

where C(eo), ao(eo'), and e(e02) are constants to be
defined below.

If we expand the (m'/p')' factor in (2.6), we obtain
the asymptotic expression for the usual renormalized
perturbation-theory expansion, namely,

1 mao(eo')
S(p) ~ C(~0') +

VP P'
p'

~ , p' '
1 —e ln—+-,'e' ln—+ . (2.7)

m
'

m

If expansion (2.7) for S(p) is inserted in (2.4b), we
obtain the usual perturbation series of logarithmically

6 K. Johnson, R. Willey, and M. Baker, Ref. 2.
7 K. Johnson and B.Zumino, Phys. Rev. Letters 3, 351 (1959).

These could arise in a manner similar to what might occur for
the photon propagator if ep2 is infinite (see M. Baker and K.
Johnson, Ref. 2).

divergent integrals for bm. The logarithmic divergences
arise from the terms proportional to mao/p' in (2.7).
If instead we insert the correct exact asymptotic
expression (2.6) for S(p) in (2.4b), we obtain covergent
integrals for 8m because the factor (m'/p')' with e&0
makes all logarithmically divergent integrals finite.
Hence any discussion of self-mass integrals which
involves the perturbation-theory estimate of the high-
energy behavior of propagators is not relevant to the
full theory.

Thus the basic problem is to show that the perturba-
tion-theory logarithms sum to the form (m'/p')' in
(2.6). However, determination of the coefficient C(eo')
of 1/y p in (2.6) requires a bit of care and we will

therefore make a few remarks about C(eo') before
solving (2.5) for arbitrary m. If we set m=0, then the
asymptotic solution (2.6) or (2.7) reduces to

S(p) ='=C(~o')/v p. (2.8)

That is, we can calculate C(e02) by looking at ordinary
perturbation theory with physical mass, m=o. The
resultant integrals for C(eo2) are finite because of our
choice of gauge but, because of their superficial linear
divergence, the value of the constant C depends
upon the way the external momentum is routed
through the diagrams and, further, the order of doing
subintegrations.

One can determine C a little less ambiguously by
calculating the electron-photon vertex function

p m~0(p p+p)

and using Ward's identity,

8
I'„"='(P,P) = —LS '(P)]"='=C ''r„

P

8 C )=v.+
&P" YP'&-(2.V)

However, although the perturbation-theory integrals
for F„may not be sensitive to the routing of the
external momenta, they are not uniformly or absolutely
covergent and still depend on the order of doing
subintegrations. Different results for C can be obtained
by introducing with different rules a cutoff A and then
letting A —&~ for fixed p.9 However, because the
renormalized theory is free of ambiguities, the ambigu-
ities associated with the different methods of defining

P If we had introduced a cutoff h, into the calculation of S(P),
then for p' A'&)7' we have S(p) =(1/7 p}G(p'/A. ', ep'). Now
for fixed A2, there are no uv divergences and the canonical com-
mutation relations hold in their original form. This implies that
as p' —+ ~ for fixed A., S(p) —+ 1/p. p, i.e., G( ~, ep') = 1. However,
since in our calculation no cutoff is introduced, we are electively
setting h. = oo first. Hence we obtain S(p) = (1/p. p}G(0,ep ), i.e.,
C(ep') =G(0,ep). The fact that G(0,ep') is not necessarily equal
to 1 and hence the fields have a modified canonical commutator
reRects the sensitivity of the canonical commutation relations to
the ambiguities of the perturbation theory integrals with no
cutoff, even when there are no divergent quantities.
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S '(P)=v P+m(P) (2.11)
(2.2) becomes

m(p) =Cmo+(C 1)y p+—CZ*(p; CS(p')) . (2.12)

We then subtract (2.12) at p =p' to obtain

m(P) =m(po)+(C —1)v (P—Po)

+CL&*{p CS(P')) -*{Po'CS—(P'))] (2 13)

Equation (2.13) is an integral equation for m(p). It
contains as parameters the subtraction point po and
the subtraction constant m(po). We first note that in
the limit

C cannot a6ect the value of any physical quantity.
In particular the physically interesting gauge-invariant
Lace (5.17)]part of the asymptotic electron propagator,
obtained by dividing out the factor C, will be independ-
ent of such ambiguities. For this reason, it is convenient
to rewrite (2.2) in terms of a rescaled propagator S(p)
delned by the equation

S(p) =L1/C(eo')]S(P) (2 10)

We could substitute (2.10) directly into the sub-
tracted {2.5). However, since we are interested in the
behavior of S(p) for p'»m', and, since (2.5) involves
the value of Z* at p p = —m explicitly via the subtrac-
tion term, it is instead. more convenient first to subtract
(2.2) at a value of p= p', where (p')'»m, '. Then if we
use the asymptotic solution of the resulting subtracted.
equation, we will be able to find. the solution of (2.5) for
S(p) in terms of the physical mass m for p'»m'.

For this reason, instead, of studying (2.5) directly,
we will first rewrite (2.2) in terms of S and then
perform a subtraction at p=po. If we define m(p) by
the equation

In Sec. III, we show that

lim H(p, po', m(po))

=finite

= (p,po), (2.18)

i.e., the ratio m(p)/m(po) approaches a finite hmit as
m(po) approaches zero, for fixed p, po. It should be
emphasized that (2.18) is a nontrivial statement and
its truth is the basic reason that one can carry out this
analysis. "

We will now show that result (2.18) allows us to
calculate the exact asymptotic form for m(p) for
p'»mo. t m(p) satisfies the rescaled version of the
ordinary renormalized equation (2.5).] m(p) has the
forIYl

m(p) =mF (p'/mo; eo')+7 PG(p'/mo eo'), (2.19)

where the functions Ii and G have the usual expansions
in renormalized perturbation theory obtained by
iterating (2.5) for S. For p'»m', these expansions take
the form

F(p'/m') =uo(eo')+ai(eo') ln(p'/m')

+co(eo') Dn(p'/m')]'+
+ (m'/p') [do+ di ln(p'/m')+ ]

+ {220)
G(p'/m') = (m'/p') I bo(eo')+bi(eo')

Xln(p'/m')+ ]+ . (2.21)

Because of our choice of gauge and rescalirig. constant
C, there are no terms in the asymptotic expansion (2.21)
of G analogous to the uo+ai 1n+ao(ln)'+ . terms in
expansion (2.20) of F."Thus if we drop all those terms
ln thc asymptot1. c expansion of the perturb3, tlon-scrlcs. -

integrals for m(p) which vanish as p'/m' —+~, we
can write

m(po) ~ 0,

(2.13) is satisfied if at the same time

(2.14) m(p) =mF (p'/m') for p'»m', (2.22)

S—+ 1/y. p. (2.15)

This is just a consequence of our definition (2.9) of C,
as can be explicitly verified by inserting (2.14) and
(2.15) into (2.13).This yields

o=(C—1)v (P—Po)+C(&*(p' C/v P')

Differentiating (2.16) with respect to p„yields

1) 8 r C
0= 1——y„- — Z~

C) ap~ 4 ~ p'

which coincides with (2.9). Thus the p and po terms
in (2.16) vanish independently.

For the general case m(po)WO, we make explicit the
dependence of m(p) upon po and m, (po) by writing

m(p) =m(po)H{p, po, m(po)) .

F (P'/m') =uo(eo')+ai(eoo) ln(P'/m')

+ao(eo')Dn(p'/m')]'+ . (2.23)

Our problem is to sum the series (2.23), i.e., find a
closed expression for the function F (p'/m'). If we

choose p'»m' and po'»mo and insert the asymptotic
expression (2.22) for m(p) and m(po) into Eq. (2.17),
we obtain the following functional equation for
F (p'/mo):

F'(p'/m') =F (po'/m')H(p po, mF~(po'/m')) . (2.24)

'0The tautology (2.17} is of the same type that occurs in the
so called "renormalization-group" analysis. However, that method
has no content unless a zero-mass limit of the type (2.18) exists.
This is made clear in the work of Gell-Mann and Low (Ref. 2),
but it is not apparent in the vrork of many of the practioners of this
method that an investigation of the sort carried out in (III} is
required before one can believe its consequences."This is because one can verify that, to every order in perturba-
tion theory, m(p) =0 vrhen kg=0. The argument is that used
in the veri6cation of (2.14} and (2.15). Thus G must vanish as
p'jm~~~, i.e., the asymptotic expansion of the perturbation-
theory integrals for 6 must all have a factor gg'/p', as in (2.21}.
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Now let us assume that when p'/m' —+~, F grows
less rapidly than (p'/m') I~', as indicated by perturbation
theory; i.e., we assume

mF (po'/m') —+ 0

as m -+ 0. Then if we let m —+ 0 in (2.24) and use the
fundamental result (2.18), we obtain"

F (p'/m') =F.(po'/m')H. (p pg) (2.26)

which holds when p'/m'&)1 and pg'/m'»1.
Differentiating (2.26) with respect to p' and setting

Poo equal to P', we obtain

It may seem that we have obtained the powerful
1eslllt. (2.32) wl'tllollt. 11Rvlllg made Lise of RIly plopel ties
of higher-order Feynman diagrams except for the
general structure of their high-energy behavior t (2.20)
and (2.21)j.However, the crucial ingredient for (2.32)
was the assertion (2.18) that the ratio m(p)/m(pg)
determined from (2.13) approached a finite limit as

m(pg) ~0. The proof of this assertion requires that
certain detailed and nontrivial properties of Feynman
diagrams remain valid to every order in perturbation
theory, as we shall see in Sec. III, where vre derive

(2.18).

F '(p'/m')

F'(p'/m') p''

d—g=p' L& (p,po)j"=.o
d 2

(2.27)

(2.28)

III. DERIVATION OF EQ. (2.18)

When m(po)=0, the solution of (2.13) is m, (p)=0.
We can obtain an expression for m(p)/m(po) by
differentiating (2.13) with respect to m(po) and setting

m(po) =0. This gives

(H depends only on the ratio p'/poo). Hence

F (p'/m') =A (m'/p')' (2.29)

m, (p) o)m(p)
hm" oo "'m(po) ~m(po);I") o

Tlllls If g) —o, Gill' Rssu111Pt1011 (2.25) ls ]ustIfled Rnd

(2.29) gives the exact asymptotic behavior of m(p)
for p'»m'. In Sec. III, when we study the equation
for H (P,Pg), we w)11 calculate g to order eo'. The
resul is given by (1.2). The positivity of the first two We now show that (3.1) yields a Quite solution for
terms in the power-series expansion then guarantees
the validity of (2.29), at least for small eoo. m(p)

The constant 2 in (2.29) is clearly not determined H = lim
m(2)0)~0 ~(

from (2.26). However, (2.29) determines the values of m(po)
0

dh. . 11-t bi ho. b -to (2.18).
in terms of any one of them Lsay, ao(eo')j and the
constant o; i.e., if we expand (2.29) in a power series in

~, we find

=1+C P*(p ~~(p'))
am(po)

—&*(Po,c~(P'))j=i..)=o (3 1)

(3.2)

8
{C~*LP'C~(p")3)=i~)=o

f)m(po)F (p'/m') =A {1—g ln (p'/m')+-'g'Dn(p'/m')]'

+ .) (230) »'9; ~(p")j
dopico

»(P') =ioo)-o
Comparing (2.30) with (2.23), we obtain

(2.31)& =co(eo')
o)S(p )

(3.3)
8m(po) „-1„,)=o

Thus from (2.31), (2.29), and (2.22), we can write

m(p) ~ mao(eo') (m'/p')', p')&m'. (2.32) But
,»*(pP(p"))—(21r)' —=K(p,p'),

»(p')

(a} (b, } (b } (b3}

FIG. 2. Diagrams' for E corresponding to diagrams (a) and (b)
of Flg. 1."Equation (2.26} implies that, for large p' and po' H depends

only upon p' and p0'. This will be seen explicitly when we solve
the equation for II~.

Ig I"or a formal proof of (3.3}, see for example, M. Baker,
K. Johnson, and 3.%. Lee, Phys. Rev. 133, 8209 (1964}.

Then using (2.10), (2.11), and (2.32), we obtain (3.4)
result (2.6) for the sum of all nonvanishing terms in
the asymptotic expansion of the usual renormalized
perturbation integrals for the electron propagator g(p) where X(P,P') is the Bethe-SalPeter kernel for electron

(2 32) Rnd (2 6) Rre valid in t}e gauge where g Is position scattering. "We can understand (3.4) graphic-

6nite, and include the contributions of all Feynman
diagrams in which there are no photon self-energy Xinsertions or, equivalently, of c/l diagrams if the
photon self-energy insertions sum to the form e'D)p (k) -+
eo'/O' With eoo finite.
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ally by diGerentiating the contributions to Z* depicted
in diagrams (a) and (b) of Fig. 1.The resulting diagrams
for X are depicted in Fig. 2.

E(P,P') can be expressed as a functional of S and
the full vertex F„according to the expansion depicted in
Fig. 3. From Fig. 3 it is clear that E'(S,r) satisfies the
following scaling property:

p/

Frc. 4. . Graphical representation of (3.10). The blob with E,
stands for difference E~(P,P') —E'(p~, p').

X=C'K(S r) =E(S,r), (3 5) equation in its final form by noting

where

(3.6)
BS(p )

am(pp) =(„Q)=0

Bm(p')
= —s(P ) s(p )

Bm(pp) m(~)=0

1 Bm(p') 1
(3.9)

p p'am(p, ) „-(„,)=,p p'

Thus X—=C2E can also be represented by the expansion
depicted in Fig. 3, provided we interpret that inter-
mediate electron lines and vertex blobs in that diagram
as representing S and I', respectively.

In (3.3) we need E evaluated for m(P4) =0. I.et us Combining (3.1)—(3.3) and (3.9), we obtain
call

From (3.5), (2.14), and (2.15), we see that

z.(p,p ) =~(p,p; 1/v. p",r.), (3.7)

m(p)

m(po) -(„,) .=&'(P,P )0

d p=1+ I &'(P,P') &(Po P')—3
(2s)'

where I'„ is the value of I'„ in (3.6) at m(po) =0.
If any of the integrals in the perturbation expansion

for X diverged, then (3.1) would make no sense and
limm(p)/m(po) as m(p4) —+ 0 would not exist. However,
we have already investigated the properties of E in
our previous discussion of the Bethe-Salpeter equation
for the vertex function I', '

r„=c~„+@sr„s. (3.8)

FIG. 3. Some diagrams for expansion of X
in terms of the full vertex I.

'4K. Johnson, R. Willey, and M. Baker, Ref. 2, Sec. IV and
Appendix.

'Analogous properties of E play an essential role in our
discussion of Z3. See K. Johnson, M. Baker, and R. Willey and
M. Baker and K. Johnson (Ref. 2)."The gauge constant b is determined by the following condition:

dQ'E (0 P') 7„-=0.T.P' "7 P'
See Ref. 14.

We showed that X~(p,p') is 6nite to all orders in
perturbation theory" and furthermore no infrared
divergences arise when we set p=0; i.e., X'(O,p') is
also finite. The latter property allowed us to choose
the gauge constant b so that (3.8) has a 6nite iteration
solution or, equivalently, so that Z2 is finite to all
orders in perturbation theory. "We now see that the
6niteness of X'(O,p), which was essential to our
previous discussion of Z2 and Z3, also guarantees the
6niteness of the solution H of (3.1). We can put this

1 1
H(p', p,) .-(3.10)

vp' vp'

Equation (3.10) is depicted graphically in Fig. 4. The
kernels is defined by integrals with zero-mass internal
electron lines, (3.7), and those zero-mass integrals might
have diverged in the infrared region. The demonstration
that such infrared divergences do not arise in any
order of perturbation theory was the essential part of
our previous proof)4 that E (p,p') is 6nite.

We now see how our previous analysis of zero-mass
Feynman integrals not only guarantees that the kernel
in (3.10) exists, but also guarantees the existence of a
solution of (3.10) to all orders in perturbation theory.
The 6rst iteration of (3.10) yields the integraPi

I(p,pp) =— d p
L& (P,P') —& (P4,P')j, — (3 11)

(24r) 4 ( ')'

We can choose the vectors p and po in (3.10) and (3.11)
to be spacelike so that we can rotate the contour in
the p' integration. We then write

d'p' i dQ'
(P')'d(P')' — (3»)

(24r) 4 16m' 2~2'

'7 We have suppressed the indices of the Dirac matrices appear-
ing in (3.10) and (3.11);e.g., the 1 in (3.10) stands for the Dirac
matrix unity. With indices included, (3.10) becomes

I- (P,Po) = —Z, ,2 „Ã-~,.:(P,P ) —&-,.:{Po,P )j—„.
Since .K' contains an even number of y matrices, I p cannot
contain a term like (y.P) „p or (y Po) p and hence must be propor-
tional to the unit Dirac matrix.
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Fzo. 5. Graphical representation of (4.1).
Each vertex stands for F .

16m2

dQ—x'=
2%2

/ p2
k/

p" Ep"
(3.13)

where k(p'/p") is a dimensionless function of p'/p".
Equation (3.11) can then be written

where the solid-angle integration in (3.12) is carried
out over a sphere in four-dimensional Euclidean space.
Since E' has dimensions 1/p', we can write

I(P02/P') diverges logarithmically at p2 —+0 and thus
behaves (to within logarithms) like the inhomogeneous
term 1 as p'~ 0. Hence the higher-order iterations of
(3.10) will also yield convergent integrals for II (p,po)

IIa(p2/p 2) 20

We have therefore shown that our previous analysis'4

of the zero-mass integrals for E is sufhcient to guar-
antee existence of the function II (p'/pP) to every order
in perturbation theory. Thus, without any new analysis
of Feynman graphs, we have derived the basic equation
(2.18) from which the asymptotic behavior of rn(p),
(2.32), follows. The constant e can be calculated from
(2.28) by using the solution of (3.10) for II(p'/p02) as
a power series in e0. However, it is more convenient
and illuminating to calculate ~ directly from the exact
solution of (3.10) instead of using the iterative solution.
With (3.12) and (3.13) and the fact that II depends
only upon the ratio of p' and PP, we can write (3.10)
in the form

(P'& "&P' P')II~/
[
=1— II~

02 0
'2 02

"dP ' P' (Po')
(3.14)

xs

Now if k(p'/p") contained terms which behaved like
ln(P"/P') as P"~~, the subtraction in Kq. (3.14)
would not make the integral I converge in the high-p"
region. However, from definition (3.13) and our result
that g'(O, p) is finite, it follows that

P'5
lim —k

y'~ ~ p~2 p~2j

k(0)

P~2
(3.15)

where k(0) is finite constant. Thus the subtraction in
(3.14) produces convergence in the high-p" region.

From (3.15) and the symmetry property

(3.16)

it also follows that the integrals in (3.14) converge in
the low-p" region even though we have set m =0."

Thus we conclude that the first iteration of (3.10)
yields a convergent integral I, which is a function
I(po'/p') of the ratio po'/p'. Since X (O,p') is finite, "

"Equation (3.14) would of course converge at low p'2 even if
k(p'2/pm)~ln(p~jp'), as p'2~ 0. That is, the absence of such
logarithms is only necessary for the high-p'~ behavior of the
integral.

"Setting p=0 in the integrals for X'(p,p') enhances the
possibility of infrared divergences. In fact, our previous analysis
of these integrals showed that the general diagram had just
enough factors to guarantee convergence in the infrared region.

'0 We will give the explicit form of the higher-order interactions
below when we calculate the exact solution of (3.10).

k(0)—1= +
1 ' k(N) —k(0)

de k(u)—+ du, (3.19)
0 I' 0 I' '

which is valid for —1&&&1. If e)0 then (3.19) may
be put in the form

—1 = dm k(u) (I—'+u' —') (3.20)

and in this case H then satisfies the homogeeeols
equation

The I ' term in (3.20) arises from the p'2 integration in
the region p"&p' in (3.21) while the u' ' term is the
contribution of the region p")p'.

From (2.26) and (2.29), we see that a solution has the
form

I'I(p'/po') = (Po'/p')' (3 18)

The form (3.18) of the solution can also be directly
obtained from (3.17). The integrals on the right-hand
side of (3.17) will converge near p"=0 provided &&1.
There will be convergence in the high-p' region provided
e) —1. However, (2.26), from which we determined
m, (p) L(2.32)j, will be valid only if e turns out to be)——,'. lf we substitute (3.18) into (3.17) and use the
symmetry property (3.16), we obtain the following
equation determining e in terms of k:
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Thus we have shown that (3.10) has the finite
solution (3.18), where 4 is determined by (3.19) or
(3.20). If the resulting value of p lies between ——,

' and 1,
then the assumptions (2.18) and (2.25) are justified
and the proof of our basic result (2.32) is completed.
In Sec. IV we calculate the first two terms in the
power-series expansion of X so that we can determine
p to order ep4 from (3.20).

IV. CALCULATION OF a TO ORDER eo'

We 6rst calculate k using its de6nition (3.13) in
terms of K. From (3.7), K (p,p')=K(1/y p,f'„),
where the functional E is represented by the series of
diagrams depicted in Fig. 3. Thus to calculate X, we

simply replace each internal photon line by D„,'(k)
L(2.3)7, each internal electron line by 1/y p, and each
vertex blob I'„. I'„ is determined by (3.8) with &p4 set
equal to zero. Since by choice of C, I'„(pp) =y„, we
can determine C by setting the photon momentum
k=0 in (3.8). If we insert the resulting expression for
C in (3.8), we obtain the following equation for
I „'(p, p+k):

(d) (e )

Fro. /. Graphs for X~ to order e04.

8"& =3np/8&r .

To order ep' we 6nd, using (4.2) and (3.12),

k(u) = —34&.p/44r, u& 1.

(4.3)

(4.4)

which is depicted graphically in Fig. 6. The eo contribu-
tion to X is then obtained by inserting the diagrams
of Fig. 6 in the vertex blobs of Fig. 3. The resulting
diagrams for the eo' contribution to X are shown in
Fig. 7. Graph (a) of Fig. (7) includes a contribution of
order eo' arising from the eo' term in the gauge constant
b given by'

d4p/

I„-(p, p+ k) =&„+ K(p, p+k-; p', p'yk)
2&r 4

1
r„(p', p'+k)

v p' v (p'+k)

,K (p p p—'p'), I'.(p' p')
(2~)' v p' v p'

If we insert (4.4) in (3.19) or (3.20), we 6nd

3np( 1 1)+- i+
4&r (1—4

(4.5)

4 =3np/4&r+ (4 6)

where the 1/4 term arises from the second term in
(3.20), which in turn comes from the large-P" integra-
tion in (3.17). From (4.5), we find

4.1

Equation (4.1) is depicted graphically in Fig. 5. To
lowest order,

K4&'& = ie 'y4~—g"—
(p- p')' (p- p')'

(4.2)

the gauge constant f& in (4.2) was chosen so that the
condition in Ref. 16 is satisfied. To this order this
gives b =0; thus, as is well known that the second-order
vertex is finite in the Landau gauge. From (4.1) and
(4.2), we then obtain the epP contribution to I'„~(P, P+k),

The higher-order terms in the expansion of e in a power
series in 0.0 arise both from the contribution of the
1/(1 —4) term in (4.5) and from the higher-order correc-
tions to X depicted in Fig. 7. However, in order to
calculate e to order o.o' we need only evaluate the o.o'

contribution to k(u) at u=0. This is easily seen if we
write (3.19) in the form

—4=k(0)+4 du k(u)u '

+p du u'-'[k(u) —k(0)7. (4.7)

(a) (b) (c)

Since the integrals on the right-hand side of (4.7) are
finite as &~0, they give a contribution which is of
np)& (first-order term). To order npP, (4.7) becomes

4&4& = —k&4&(0)+ (3np/4&r)'. (4 8)

(b)

FgG. 6. Graphs for F„~ to order e&'. The second representation
is just a convenient abbreviated notation.

We can calculate k&4& (0) by setting p =0 in the integrals
represented by. Fig. 7. The calculation is straight-
forward and the contributions of the various diagrams
of Fig. 7 to k&4&(0) are displayed in Table I. Using (4.3),
we sum all the contributions listed in Table I. This
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Tasl.z I. Contributions of diagrams of Fig. 7 to k&4) (0).

(a)

—3 ( o/4?r) —b&') (ep/4?r)

(b)

—:(p/4 )'

(c)

—,
' (np/4?r)' —,

'
(O.p/4n-)

(e)

$ (np/4?r}' —3 (np/4?r)'

yields
3Qp 15 0!0

k&4&(0) = — +——
4m 2 4'

Equations (4.4) and (4.9) then give

(4 9)

A. —+~, i.e.,
lim Sb, (p,A) =S(p), (5.5)

where for large p, S(p) is given by (2.6). This means
that

bi 3np/8——pr+

(4.10) We let bp be arbitrary and define

B=b2—bg.

(5.6)

(5.7)
as stated in Sec. I. Thus we see that at least for small
c4o, p is positive, and S(p) behaves as indicated in (1.1)
for large p'. In Ref. 1, we overlooked the contribution of
diagrams (c) and (e) of Fig. 7 to X. These diagrams
arise from the vertex subtraction in (4.1) for I'„'
/diagram (c) of Fig. 6]. The omission was due to an
incorrect treatment of Ward's identity given there and
thus our previous result' for p differed from (4.10) in
the order n02.

A2

D„„o(k,A)= —D„„'(.k) .
A.'+k'

(5.1)

This makes the electron propagator Sb(p, A), calculated
using the photon propagator (5.1) for internal photon
lines, Rnite in any gauge. We have introduced the
subscript 6 to make explicit the dependence upon the
gauge parameter. Then one can relate the coordAsute

space electron propagagor in the gauges bi and bp

according to the formula7

Sb, (x x', A) =—Sb, (x—x', A)

Xexp{ieo'(bo bl)PD (x x—', A) —D'(O—,A)]) g (5 2)

where
de ps' z g2

D'(x,A) =
(2 )'(k' —.)'A'+k

(5.3)

Sb(x—x', A.) —=
d4p

e'" &* *'&Sb(p A).'(5 4)
(2pr)4

We will choose bi so that Sb, (x—x', A) is finite as

V. SHORT-DISTANCE BEHAVIOR OF ELECTRON
PROPAGATOR IN ARBITRARY GAUGE

Our result (2.6) for the large-p behavior of S(p) is
valid in the gauge in which Z2 is finite. To order o.o

this gauge is determined by (4.3). In any other gauge,
the unrenormalized S(p) is infinite and hence one
must introduce a cutoff A in order to de6ne it. We can
do this by replacing the photon propagator D„P(k)
by D„„'(k,A), where

Then in the limit of large A, (5.2) becomes

Sb, (x—x', A) =S(x—x') expfiep'bI(x —x', A)], (5.8)

where

I(x—x', A) =
d4$ ~i7c ~ (x—x') f g2

(5 9)
(2 &' (4' —~ &' (4'+4')

S(x—x ) ~ &
&' p ~ C(eo') e'&'&*

(2pr) 4

1 4&b m' ' C(epo) y (x—x')
X +—ao—

7 P P' P' — 24ro (X—X')'

I'(1—4) r&b

+i uo m'X —X'' '
21+1'r(1+4) (x—x')P

and S(x—x') is the Fourier transform (5.4) of S(p)
P(5.5)]. It is clear since S(x—x') remains finite as
A~~, that in order to de6ne a finite S~, an inhnite
renorrnalization is required. The resulting finite
renormalized Sb, will be related to S(x—x') by a factor
which is a finite function of x—x, and which is so
smooth that no divergences in the Fourier transform
are produced by the conQuence of the light cone
singularities of S(x—x') and the factor. We notice that
since this factor is independent of spin that the coeffi-
cients of the Dirac matrix y (x—x ) and 1 in S is the
same, that is the ratio of these coefficients is gauge
invariant, and is furthermore independent of the way
the multiplicative renormalization is carried out.
Therefore, we write

y (x—x') B(x—x')
S(x—x') = A (x—x')+m

(x—x')' (x—x')'

and in an arbitrary gauge b,

y (x—x') Bb(x x')—
Sb" (x—x') = A b(x x')+r&b-

(x—x')' (x—x')'

We can calculate 5 at short distances by using the
large-p behavior of S(p), i.e.,
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the ratio

mB(x x') — Bo(x x')—
2&!(x—x') = =m

A (x—x') A o(x—x')

VI. CALCULATION OF Sm

We now insert our result for S(p'), expressed in terms
of the physical mass m, in the original unrenormalized
(2.2). In the appropriate gauge (5.6), all the integrals
defining Z*(p,S(p')) now converge since S(p') possesses
the large-p behavior given by (2.6). Hence Z*(p,S(p'))
can be expressed in terms of finite functions of the ratio
(p'/m'). We can then determine the high-p behavior of
Z* by letting m approach zero. The high-p limit of (2.2)
yields the following equation for bm, or mo=m —5m:

C 'v P=v P+mp+Z*(P, C/v P')

d'p', as(p')—m E(p,p')
~

-p
(24r) 4 ~m ~-0

(6.1)

as p/m~~. In arriving at (6.1) we have used the
definition (3.4) of E and the fact that S(p')~„=p
=C/p p'. By Ward's identity (2.9) the pp terms in
(6.1) are canceled by the Z*(p, C/7 p') term. Equation
(6.1) then becomes

d4p' &)S(p')
&im=m —m — E(p,p')

~
=p

(24r) 4 &)m

We know that E(p,0)
~

p is finite and we see from
(2.6) that

&)S(p ) mt'm'=C(24+1)—
i

—ap
o&m m-o p'k p'

(6.3)

when 4)0 Land as m-+ 0, no divergent integral which
multiplies m appears in (6.2)]. Thus (6.2) becomes

8m=m, (6.4)

i.e., the electromagnetic mass bm, when expressed in
terms of the physical mass es, is identically equal to it
for all values of m."

is gauge invariant and independent of the method of
carrying out the multiplicative renormalization of 5&.
At small distances, R takes the form

I'(1—4)
E mi &rp(ep')[m'(x —x')']'.

2&+4 I"(1+4)

R is a gauge-invariant finite quantity which at small
distances contains functions of the charge: &ip(ep') and
4 (ep'), which are expressed in terms of unambiguous
integrals and which occur in renormalized perturbation
theory. Note that the constant C(ep'), which contains
ambiguities, does not occur in E(x—x').

We can gain some insight into (6.4) by looking at
the subtracted equation (2.13) for m(p). In (2.13) the
quantity pp acts as a cutoff for the integrals generated
by the perturbation expansion of Z*(p) —Z*(p,).
Equation (2.13) can then be interpreted as the equation
for the electron propagator in a theory which contains
a cutoff pp and in which the mechanical mass is m(po).
For values of the cutoff, pp))m the mechanical mass

m(pp) is then determined in terms of the physical mass
m and the cutoff po by (2.32); i.e.,

m(po) =ao(epo)m(mp/pop)', (6.5)

which is the sum of the usual perturbation-theory
logarithms in the expansion of the bare mass in terms
of the physical mass and the cutoff. From (6.5) we see
that as the cutoff becomes larger it requires less and
less mechanical mass to generate the same physical
mass and in the limit when the cutoff pp becomes
infinite, it takes only a vanishingly small mechanical
mass to generate a finite physical mass. "Accordingly,
in this limit bm becomes equal to m.

VII. CONSERVATION LAWS

The axial-vector current jo&(x) = i&P(x)y—&go&I(x)

obeys the formal equation of motion,

B„jp&= 2m p&P&o&P= 2mpj 4, (7.1)

where mo is the mechanical mass. "We wish to discuss
(7.1) in the context of the renormalized theory. The
unrenormalized operator jo&(x) exists because the
divergent part of every diagram for the proper vertex
is the same as that of the corresponding proper vertex
of the unrenormalized vector current &PyQ which does
exist. The same cannot be said for the unrenormalized
operator jp(x). Hence, the argument that me=0
implies a conservation law for the axial current must be
regarded with some caution, since when (7.1) is made
precise with the use of a cutoff, both mp and jo(x)
diverge in perturbation theory in the limit as the cutoG
is removed, whereas the left-hand side of (7.1) remains
finite. This difhculty was erst pointed out by Maris
and Jacob."

2' In deriving (6.4) we used (2.2), in which all internal photon
propagators D(k) in Z* were replaced by their asymptotic value
eo'/k'. It is easy to see, using scaling arguments, that the correc-
tions (Ref. 5) to the asymptotic limit for D(k) yield a contribution
to Z* of the form y pi&n'/p') &'o"+4m{m'/p')~x&'4'& If we then.
look at the high-p limit of the exact version of (2.2}, we again
6nd 8777,=7m. Thus (6.4) is valid in the complete quantum electro-
dynamics including photon self-energy insertions provided
D(k ) ~ e0'jk' as k' —+ ~.

~~We may remark also that anomalies in the divergence of the
axial current of the sort discussed by S. Adler, Phys. Rev. 177,
2426 (1969),R. Jackiw and K. Johnson, ibid. 182, 1459 (1969),and
others play no role because we can use a non-gauge-invariant
axial-vector current whose divergence is consistent with {7.1} to
discuss the Goldstone phenomena formally.

'g Th. A. J. Maris and G. Jacob, Phys. Rev. Letters 17, 1300
(1966).
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mo=~Zi'/Z2, (7.4)

Zq" is a renormalization constant of the axial-vector
vertex, Z&~ is a suitably defined renormalization con-
stant of the proper scalar vertex, and Z~"~ is the cor-
responding quantity for the pseudoscalar vertex. In the
limit as A-+~, I'„', 8, I', and Z2/Zz" exist order by
order in perturbation theory, so that

ZP/Zg

Z,Is Z„zs/Z, Z~s

Zs

approaches a finite nonvanishing limit, order by order,
which is the ratio of the renormalization constants of

'4 G. Preparata and W. I. Weisberger, Phys. Rev. 175, 1965
(1968).

To discuss this limit we shall merely paraphrase an
argument already given. '4 A general matrix element of
(7.1) can be obtained by the symmetrical insertion into
single lines of the off-shell version of (7.1). Therefore,
consider the equation for the proper vertex,

q"I'(P+q, P) =8 '(P+q)v5+v58 '(p)
+2ecoi"(p+q, p) . (7.2)

Here F„5 is the proper vertex corresponding to the
axial-vector current and I' is the proper vertex corre-
sponding to the pseudoscalar density j&(x).

We may re-express (7.2) in terms of renormalized
quantities in the form

(Z /Z ")q"I'„8(p+q, p) =8 '(P+q)y +y 8 '(P)
+2m(Zg /ZP )I"(p+q, p), (7.3)

where

the scalar and pseudoscalar currents. Since when we
sum up the perturbation-theory contributions, mo ——0,
and Z2 is Gnite, Z8 vanishes as the cuto6 tends to
infinity. Since the ratio ZB/Z~s is finite (in our gauge),
ZPB also vanishes in this limit Lwhich we could have
demonstrated by treating this vertex in exactly the
same fashion as we discussed m(PO) in the earlier
sections of this paperj. We can see the reason intuitively

by observing that the divergent parts of the scalar and
pseudoscalar vertices are independent of mass terms,
and hence are the same since the interaction vertex is
chirally invariant.

In conclusion, we And that in spite of a vanishing
mechanical mass, there is no conservation of the
unrenormalized axial-vector current and hence no
chiral symmetry which is broken by the 6nite physical
mass (at least in the sense of the sort of symmetry
which when broken is accompanied by a Goldstone
boson).

VIII. CONCLUSION

We have shown that if the photon propagator is set
equal to 1/k', then the high-p' behavior of the sum of all
the terms in the perturbation expansion of S(p) is
given by (2.6). The coefficient in the power-series
expansion of e are determined by the renormalized
perturbation expansion of the m=o, electron, positron,
Bethe-Salpeter kernel E. This exact (m'/p')' behavior
leads to 6nite self-energy integrals, giving bm—=m for
all values of m.

To complete this study of the short-distance behavior
of quantum electrodynamics, we must calculate the
function f(no), ' in order to determine whether the basic
assumption, e'D(k) ~ eP/k', eo'( ~, is justified.


