
2506 K. BARDAKCI AND M. B. HALPERN

degenerate family. We now claim that

peleq(1 il 0) l 0& (»)
conditions"

this reduces to
[Ei—EO,Q"(1)]=0, (D7)

that is, only the true (sector zero) vacuum contributes.
For example, consider

~*=o(ol «(P)~~"'"'I o&.=o (»0)
="=o(olL&i(P),~~"'" "3

l o).=o; (D6)

then using the fact that Q4(1) satisfies the "stability

~ =o«ILI~'o(P), s «& «jlo&, ,=o.
Similarly, one shows that

(0l (X ) ie&«» i'lo& =0

etc. Q.E.D.

(D9)
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We use analyticity arguments to obtain the constraints imposed by factorization and broken O(4) sym-
metry on Regge daughter sequences coupled to spinless external particles. Our results hold for arbitrary
external masses.

I. INTRODUCTION

"'N Papers I and II of this series, we derived the
~ - consequences of broken O(4) symmetry for Regge-
daughter sequences corresonding to Toiler poles with
half =0,' and integer M~& 1.' Our results were not based
on O(4) symmetry directly, but rather on the require-
ment that scattering amplitudes be analytic at zero
total energy (t=o in our notation). Thus, our work is
partially a derivation of new results, and partially a
demonstration that the requirement of analyticity is
interchangeable with the study of O(4) symmetry.

In Papers I and II we emphasized the trajectory
functions n(k, i'), k=o, 1, 2, . . ., which make up a
daughter sequence. Here we wish to study the reduced
residues y(k, t), and the many new complications which
arise in a discussion of them. In the present paper we
bypass the complications connected with spinning
external particles. Among these are conspiracy relations
and the requirement of factorization in the helicity
indices. We do this by studying reactions involving
spinless particles, as in Paper I. Accordingly, we can
study only sequences with M =0, as coupled to spinless
channels. However, even for this restricted case much
remains to be shown beyond the results derived in
Paper I. First, we want results which are valid for
arbitrary external masses, and which show how the odd
daughters decouple when either the initial or the final

~ This work is supported in part through funds provided by the
U. S. Atomic Energy Commission under Contract No. AT(30-1)-
2098.

I J. B. Bronzan, Phys. Rev. 180, 1423 (1969).This paper, and
the equations contained in it, are referred to as Paper I.

2 J, B. Bronzan, Phys. Rev. 181, 2111 (1969), Paper II.

particle pair have equal masses. Second, we must
impose the requirement of factorization, and verify that
the daughter sequence constitutes a Toiler pole when
coupled to equal-mass initial and 6nal particle pairs.
Third, we want to 6nd out if factorization is necessary
to get a Toiler pole, starting from analyticity require-
ments. It has been known for some time that analyticity
and factorization are sNPcieiit to get a Toiler pole
in equal-mass scattering, ' ' but a Toiler pole might
also result from analyticity and continuity in the
masses. We verify that factorization is necessary.

A modification of the procedures of Paper I must be
made so that our results will be valid for arbitrary
masses. We must recognize that a pseudothreshold
(a point where the c.m. three-momentum vanishes)
moves to 1=0 when channel masses become equal. We
must therefore deal only with functions which are
analytic at pseudothresholds, as well as 1=0, if we want
our results to be valid in a neighborhood of t=0 for
all mass configurations. For example, the function
R(k, t) defined in Eq. (I10), which differs from y(k, t)
by a kinematic factor, has a square-root singularity
at pseudothresholds for odd tt because of the kinematic
factor. Such kinematic singularities must be avoided.
Our procedure for doing this is to use the expansion of

Q—(o i( s~) in terms of powers of s,—' instead of the
expansion in powers of (1+s,) ' used in Paper I. The
new choice entails one more summation, but is useful
for all mass configurations.

' J. C. Taylor, Nucl. Phys. 33, 504 (1967).
4 J. B. Bronzan and C. E. Jones, Phys. Rev. Letters 21, 564

(1968).
5 P. Di Vecchia and F. Drago, Phys. Letters 27B, 387 {1968).
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The main results we derive can be summarized in a
few equations. First, we rederive the expression for
n(k, t) originally given in Paper I:

8
n(k, t) =no k—+P [8,(k, t,no)]"+',

=o (r/+1)! Bnp"

k!I'(2n, —k+2)
n(k, t,no) = P t 0 P A;0

0=& '=0 (k —i)!I'(2np —k —i+2)

The A;& are arbitrary constants. We show in Appendix C
that they may be taken to be independent of np without
loss of generality. From Eq. (1) one can derive the
relations among the derivatives of n(k, t) discussed in
Paper I. Second, there are new results for the factorized
residue functions:

R(k, t) =F(k,t,o, b)F(k, t,o', b'),

1
F(k,t,o,b) = P —— S(k,t,n„o,b)

&=p 'sI Bo!p

X
Be(k,t,no)-"'

[O:(k,t,n.)]", (2)

&(k,t,no)o)&) =L(—I)"~ 'ko(no)2 '] "'

Here
0-= my+m2, 6= my —m2,

gA= (o' t) (bo t)/—oV, —

and mi and m2 are the masses of the initial pair of
particles in the t channel. R(k, t) differs from the stand-
ard reduced residue by kinematic factors given in
Eq. (7), and t!/I 'and E 'are matrices given in Kqs. (20)
and (15), respectively. The coupling parameters b (o,b)
are arbitrary analytic functions in the masses of the
external particles, and according to Appendix C may
be taken to be independent of np. In Appendix E we
show that Kq. (2) is equivalent to the results of Durand
et al. ,' which were presented without proof. Equations
(1) and (2), taken together, are necessary and sufficient
for the contribution of the factorizing daughter sequence
to be analytic at t=0.

II. ANALYTICITY CONDITIONS

A. Stey I
The constraints imposed by analyticity, summarized

by Eqs. (22) and (23), are derived in three steps
paralleling the development in Paper I. Here we stress
only the modifications which arise because the masses
are arbitrary, and refer the reader to Paper I for
many of the details.

We consider the spinless scattering process mk+mo
—k mo+m4 in the t channel. The cosine of the t-channel
scattering angle is

sg ——(o bo'b'+ 2xt)/4qq't,
where

x=u+-,'t ——',Z,
0'= my+m2, t7 =m3+m4,
5= my —m2, 8'= m3 —m4,

&=m '+m '+ m '+ m '=-'(ok+ p+&'&+ g&)

q'= (o'—t) (5'—t)/4t, q"= (o"—t) (t)"—t)/4t .
Here q and q' are the initial and final c.m. three-
momenta. We use x rather than s or I as the Mandel-
stam variable to go with t. The contribution of a
Regge pole at n(t) to the full amplitude has the form
r(t)Q to k(—s,). As explained in the Introduction,
we expand Q in powers of s&

' to avoid spurious square-
root singularities at pseudothresholds, where q=0 or
q'= 0. These pseudothresholds move to t =0 when either
5=0 or b'= 0, that is, when the initial or final channel is
an equal-mass channel. Using the specified expansion,
we eliminate pseudothreshold singularities and derive
constraints from analyticity which are valid for all
mass configurations. A glance at Eq. (4) shows that a
further binomial expansion is required to convert the
expansion in powers of s&

' into a series in powers of
x .This complication introduces the index n in Eq. (6),
below, and is the price one must pay to generalize
Paper I to general mass scattering.

A daughter trajectory sequence, n(k, t), k=0, 1, 2,
. . ., is required to make the full amplitude analytic
at t=0. To restore analyticity, we require n(k, 0)
=o,p

—k, and the reduced residue of the kth daughter
must behave like t ~ at t= 0. We sum the contributions
of these daughters, expanding Q and s, as outlined
above. We also make use of Eq. (IS), and obtain the
full amplitude in the form

x ' "(inx)'/ohio'8'y" [n(k, t) no+ k]'R(k, t)A"—
T(t,&)=E E 2 2 (6)

k=o 0=0 s=o r=o sit 4 2 ) F(—n(k, t)+e+ko)F(r —k —2)o+1)F(n(k, t) —r+k+I)/0!2 "
where

~8/22k& —/+a (k, t )[2n (k t)+I ]+(k t)
R(k, t) =

sinnn(k, t) cosorn(k, t) (o boV)"

(o' —t) (b' —t) (o"—t) (b'0 —t)

~2/2~12/2

6 L. Durand, P. M. Fishbane, S. A. Klein, and L. M. Simmons, Phys. Rev. Letters 23, 201 (1969).

(7)
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and 7(k, t) is the conventional reduced residue multiplied by t".' The full amplitude must be analytic at t =0 for
all x, so the analyticity conditions implied by Eq. (6) are

00 L'n(k, t) —a +k]'R(k, t)6"

o=o =o o&to I'( —n(k, t)+rz+-', )I'(r —k —2rz+1)F(n(k, t) —r+k+1)zz!2'" (=o
=0 (0& q(r; 0& s) . (8)

Equation (8) is analogous to Eq. (I11).
We can easily cast Eq. (8) into a form similar to Eq. (I14):

q!g(rz, l)R&"&(k, ao —k)f(k, no, q
—l, p+s) Bu "

ZZEZZ
o=o p=o u=o u o&==0 (p —

zz)&! zz!&I!1!(q l)!I—'(r —k —2rz+1)2 " o&noz

Here
XLI'(no —r+1)I'(—no+k+rz+ —',)] '=0 (0& q(r; 0& s). (9)

al ()W

g(zz, l)—= a"i&=o, R&"&(k, n, k)—= — R(k,n(k, t))i., „,
Bt o&n(k t) u

f(k, no, q l, p+s)—= Ln—(k,t) —o+k]"+'I =o.
g~q

—l

The only modification involved in deriving Eq. (9) is an extra application of Leibniz's theorem because of the
explicit t dependence of A. This gives rise to the sum over l'. Continuing the manipulations of Paper I, we obtain
an analog of Eq. (I18):

00 00 00 o0 c0 (—1)"g(u, l) ay

Z ZZ EKE — Pr(no —r+1)r( —no+kgb+-', )]-i
o=o y=o u=o u=o l=o u=o p!zz&!rz!l!u!(q—l)!I'(r—k —2rz+1)2 " o&no~

X—LR~ &(k, no k)f(k, n—o, q
—l, zz&+u+p+s)) =0 (0~& q(r; 0& s).

80!p

(—1)"(8'/o&t')(F(-'k ——'r ' k ' r+—'—
, ——ao+—k+—',, 0)), o 8"

o=o =o i=o =o zz&!l!u!(q—l)!(r—k)!F(—no+k+z) 80!p

We find, by the argument presented in Paper I, that the sum over p is redundant in Eq. (11).We therefore set

p =0. At this point we evaluate the sum over zz, and find the analyticity conditions in the form

g (a, e)—

8„'o '& vanishes for q(s by Eq. (I16).

XLR&"&(k, no k) f(k, no, q
——l, zz&+u+s) j=8„«'&, (12)

(0& q(r, or q(s)
arbitrary (otherwise) .

B. Step II
We multiply Eq. (12) by to and sum over q. On the left-hand side the sums over q, l, and zz& can be done. The

analyticity conditions take the form

vrhere

r ( 1)u gu 00

P A o(no, A) P —— -(R(k,n(k, t,no))fn(k, t,no) —ao+k] "+')= P toI3, «'&,
ttt:=p u=p I I g~pM g=p

F(-,'k ——,'r, —,'k —,'r+-,', —no+k+-,', 6)
lq, o(no, ~) =—

(„k)!J'( +k+—)

(13)

(14)

The inverse of E is

7 In Paper I, ~(k, t) is taken to be the coefEcient of u"(k'), vyhichis a slightly diferent deanition.
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The fact that these matrices are inverses can be checked
by expanding the hypergeometric functions, computing
E 'E, and collecting coeKcients of each power of h.
We can now "invert" Eq. (13) to obtain the analog of
Eq. (I28):

C. Stey -III

We continue to follow Paper I, forming the series
indicated there, and summing them by Lagrange's
theorem. The final constraints imposed by analyticity
on the trajectories and residues are

- (—1)" ~"
-{~(k,n(k, t,no))[n(k, t,no) —no+ k]"+')

I! 80!0

1 8
R(k t) = P ' {$(kt np)[e(k t no)] )

~=0 e!Bo.p"
(22a)

= Q t' P B,«')1!t '» (np t((). (16)
i=p

=P t'g B"'& '» (no~), (17)
i=p

where zo(k, t,no) is determined by

n(k, t, no+so(k, t,no)) =no —k,

lim sp(k, t,np) =0.
(18)

An expansion of so(k, t,n—o) in powers of t can be
obtained from Eqs. (17) for s=0 and s= 1. It is shown

in Appendix A that

P to P B;«')1V-'» (n, a)
q—e i—0

=(—1)»2-»t(,»" Q to Q B «M-'» (n,) (19)
q=s i=p

Here the coefFicients 8 are independent of k and t, like
the 8's. The matrix M ' appears extensively in Paper I,
and is given by Eq. (I25) (we have here corrected a
typographical error in Paper I):

(—1) '(2,—2k+1)
M '»;(np) = (20)

(k —i)!I'(2n() —k —i+2)

Using Eq. (19), the discussion given in Paper I goes
through, and the analyticity conditions achieve the
form of Eq. (I36).

R(k, np —k)

~n(»ttno)/~no I ao+zo(», t, ao)

oo q
(o, pQT i» '(no Q)

i=p

—s()(k t up) = S(k t uo), (21)

(R(k, t,up) is defined in Eq. (1).

We can proceed from this point as in Paper I, and
formally sum over N. We note in Appendix B that the
summation is a form of a result known in analysis as
Lagrange's theorem. Applying Lagrange's theorem,
Kq. (16) becomes

R(k, u, —k)[—so(k, t,no)]'

8n(k, t,np)/()npI ao+zo(», t, ao)

1 l9

n(k t) ~no k+ P [Q(k t np)] + (22b)"=' (tt+1)! ()no"

q g, q

$(k, t,up) = Q t' Q 1V-'», (np, D). (23)
'=p (o ()o () ) '

Equation (22b) is a direct restatement of Eq. (I46b).
Equation (22a) is an improvement over Eq. (I46a) in
that the power series in 3 does not diverge at the
pseudothresholds. It will converge in a circle bounded
by the thresholds, or by an intersection of trajectories.
In any event, it has a finite radius of convergence in
the equal-mass limit, with all the complications of this
limit explicitly displayed in Kq. (23) in the explicit
mass factor, or the matrix E '. The mass factor in
Eq. (23) has been extracted from the expansion coeffi-
cients so that the B,o, as defined in Eq. (23), are
analytic functions of 0., 5, 0-', and 6' when these mass
parameters vanish. The analyticity of the 8;q may be
established by means of Eqs. (7) and (13), and the
observation that the reduced residues have no kine-
matic singularities where the mass parameters vanish.
We prove in Appendix C that A;q and B,q may be taken
to be independent of o.p without loss of generality.
This result was asserted in Paper I without proof.

It is of interest to examine the content of Kq. (22a)
in the equal-mass limit 8= 6'=0. Of course, there is no
need for daughters to restore analyticity when the
initial arid final particles are pairwise equal. However,
since daughters are required when either 8/0 or

' Q Op it is conceivable that constraints on equal-mass
scattering could result by demanding continuity in 5
and ()'. Equation (22a) is just the formula needed to
test this hypothesis because the parameters 8;q are
known to be analytic in 6 and 5', with all the cornplica-
tions explicitly displayed. However, one readily 6nds
that the conventional reduced residue is arbitrary at
&=b= b'=0.

v(k, t)/t" It=»-t =o= P tt(k »+z)C(~, k)B» p;»—". (24)-
i~p

The constants C(i,k) are known. The additional re
quirement of factorization is therefore necessary as well
as sufFicient to produce a Toiler pole in equal-mass
scattering.

When either l) =0 or t)'= 0 (equal-unequal scattering),
the even and odd daughter residues are independent Of
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[$(k,t,no, a, &,a, &)]'/'—= 0(k, t,no, g, &)

each other for all t F.or t= 0, the even (or odd) residues In Appendix D we show that 0'/p has the representation
are not arbitrary, but have ratios in agreement with
previous results. '

IIL FACTORIZATION AND EQUAL-MASS LIMIT

A. Factorization of Residues

Equation (22a) can be summed by Lag range's
theorem, and put in the form

q—[( 1)g/!II—1 (a )2-g]-)/2 p tg p
p=o '=o (Ob)'

XÃ 'g;(ap, gt)(), (29)

$(k, t, ng+si(k, t,n()), o, 8, o', 8')
R(k, t, (r, b, o', 8') =-

L1 ()(I(kit~up)/()no]ee+ei(&, (.eo)

where si(k, t,no) is the solution of

8(k, t, np+si(k, t,up)) =si(k, t,uo),

lim si(k, t,no) =0.
t~o

(25) where Qd, = (a'—t) (bg —t)/(r'8'. b, g is seen to be analytic
at 0-=0 and 8=0 by the argument applied in Sec. II C.
Finally, we point out in Appendix C that the b;& may
be taken to be independent of no without loss of

generality. Equations (27)—(29) are recapitulated in
(26) Eq. (2).

Factorization can be imposed on Eq. (25), and it yields

R(k, t,o.,b,a',8') =F(k, t, (r,b)F (k, t,o ',5'), (27)

(I)(k, t, no+sr(k, t,no), 0, &, a, b) "'
F(k,t,~,b) =—

~8'(k ~t&up)/~up I ep+ 44 (&(ep), ,

1 8" — 88,(k, t,no))

n-00 ~ BO" Bug )
1/2

Xe{k,t,n„a,b,~,b) [e(k,t,n.)]" . (28)

B. Equal-Unequal snd Equal-Equal Mass Limits

Ke can now display the behavior of the factorizcd
rcsidUcs ln thc limits of cqUal-UncqUal mass channels

(8=0, O'NO), and equal-equal mass channels. Since

our goal here is the modest one of verifying the presence
of a Toiler pole in the equal-equal case, we confine our-

selves to the point 3=0. In the case of an equal-mass

channel, we first let 8 -+ 0 in Eq. (29), and 6nd a leading

behavior 8 . Because of the compensating factor in

Eq. (7), this corresponds to a 6nite value of the reduced

residue. Next we Iet t —+ 0, and 6nd

F(k, t,o;8) —+ [(—1)g2 "/lf' 'gp(ap)] "'(np —k+-,')orb '(cosgrnp)
—'

[tg/gb 0( 1)g/22-g]/[(lk) (r(n 1k+8)] (k even)
X

[t(g+i)/P(b i/&)( 1) (k—1)/221—g]/[(ik 1))r(n 1k+1)] (k odd) (30)

Note that the /=0 couplings of the even and odd daughters to an equal-mass channel are independent. , and that
the odd-daughter couplings vanish more rapidly at t=0 than do the even-daughter couplings. This relative

decoupling has 'the consequence that the odd daughters do not contribute to equal-equal mass scattering
processes at 3=0.

In the case of an unequal-mass channel, we simply let t + 0 into Eq. (29), with a and 8 finite. In this hmit we 6nd

(—1)"gr'/pr (n o+1)bg'2' ~"+'(n p
—k+-', )

F(k, t,o,b) —) [(—1)'2 "M 'gp(np)]-'"
(cossup) k!I'(2up —k+2)

We can use Eqs. (30) and (31) to compute the ratios of the reduced residues at t=0 For completen. ess, we include

the case of unequal-unequal mass channels.

(-) -(2 ).«-.—+1)«-.+-,)

yes(0) /=o 2'"(/4!)' r(no+1)r(no —44+-,')

y)g (/(244)/to

V//v(0) (=o

(«'b')'"( —1)" r(ao+g)

24"/4! r(np 0+,')—- (32)

„(k) ( b 'b') r(,+1)r(,+-,')(—1)
e

y((( (0),=g 2"k! r(up ——,'k+1) r(ag —,'k+-,')
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Factorization is not necessary in order to get the
equal-unequal and unequal-unequal results, whereas
it is an essential ingredient for obtaining the equal-
equal result. Note that the conventional reduced
residues are nonsingular at 1=0 in equal-equal scatter-
ing, and only half as singular in equal-unequal scatter-
ing as they are in the general case. The ratio of residues
for equal-equal scattering corresponds to a single
Toiler pole.4' For other mass conlgurations, we have
computed the contribution of a Regge family at 1=0
by summing the daughter contributions. The result is
6nite (since daughters were adjusted to remove the
singularity at I=0), but much more complicated than a
single Toiler pole. The complication stems from the
fact that the result depends upon all the constants
b~~, b~ ~, and A~&, instead of only one. Probably the
only noteworthy point about the formula is that only
those constants appear whose upper and lower indices
are the same. Of course, in the equal-equal limit the
Toiler pole emerges.

is true. When we expand the hypergeometric function
in a series, the coe%cients of all powers of q with index
less than p —i must vanish. Thus, we must prove the
equations

Q M,p(no)M 'p;(no)

where

r( ', k -;p—+I)r(n, —;p ,'k—+;+-~)
X— =0

I"(-',k ——',p) I'( o
—-,'p —',k+-', )

(0&e&p —i), (A5)

Mpp(no) = I'(2np —p —k+1)/(p —k)! (A6)

I'(-,'k ,'p—+—pp)I'(ap ,'p —-,'k+—-,'+pp)

I'(pk —
p p) I'(no —

p p —ok+ p)

is the inverse matrix to M '. Equation (AS) is valid
because of the relation

M.-p, p(np)=Z s.p. , (A7)
M„p(ao)

APPENDIX A

In this Appendix we sketch the proof of Eq. (19).
'The proof for s&0 follows from the proof for s=0, so

0 The relation to be estab where the e's are indePendent of k. Equation (A7) is

lished is equivalent to Proved by the argument Presented in the APPendix of
Paper I.

Q Ip QB Q Ã„p(np, d)M 'p;(np)( —1)"2 pA"I'
@=0 s-0 k=0

= p IpB„p. (A1)

Equation (A1) holds for arbitrary 8 p if and only if we
can establish the behavior

Z Vpp(no, A)M 'p (no)( —1)"2 "A"IP=O(IP ')

APPENDIX 8
In this series of papers we repeatedly have to sum

series like Eq. (16) to obtain Eq. (17). Such sums are
applications of Lagrange's theorem:

"Let f(s) and p(s) be functions of s analytic on and
inside R con'tour C surrounding R point g Rnd let $ be
such that the inequality

I«() I
&

I

—
I

(0~~ P ~~ P) (A2) is satisfied on the perimeter of C; then the equation
To prove Eq. (A2), we transform the hypergeometric
function in Ã„I, so that —q is its argument, where

(1—6)/h. T—hus, we obtain the formula

2-pap+p+p-lp( a +p)
6"lpX„p(np, h) = ——

or'~'(P —k)!I'(—2np+k+P) (1+iI)&I'

XF(', k ,'P, no ', k —-;—P+-,', no—P+1,—iI) . —(A3)

Since iI is proportional to I for small t, Eq. (A2) is true
if and only if the equation

(—1)'M 'p;(ap)

p=p (p —k)!I'(—2ao+k+ p)

XF(-',k ——,'P, no —', k —,'P+-'„np P+1, —iI)—
=O(g~') (A4)

The modi6cation in Ref. 7 must be taken into account in
reading Ref. 4.

f=a+«(t),
regarded as an equation in t, has one root in the in-
terior of C; and further any function of l analytic on
and inside C can be expanded in a power series in t by
the formula

As an example of the use of this theorem, we derive

Eq. (17). We first note that the derivatives can be
rearranged to put the last equation in the form

9E. T. Whittaker and G. N. %'atson, A Course of Modern
A, Nalysis {Cambridge U. P., Cambridge, England, j.962},p. 133.
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Next, we make the identi6cations

+—up+so(k, t,ap), C~Ap,

n(k, t, ao+so(k, t,uo)) =no k. —

The equation for f becomes the desired sum

- (—1)" ~"
—(R(k,a(k, t,no)) [n(k, t,ao) —u,+k]"+'}

V=O I ~ ()0

R(k, np —k)[—so(k, t,no) )'
[~a(»t q)/~q jo=-p+*plp, l .,)

APPENDIX C

(&2)

tg(u) -+ —n(k, t,ao)+ao —k,

R(k,a(k, t,no)) [n(k, t,ao) —up+i j'
f(~)

an(k, t,no)/ano

The equation for f' now becomes an equation determin-

ing So.

Examination of Kqs. (C1) and (C2) shows that the
coeKcients which occur among the arguments of the
f,o will have p(q, q'(q, and i'(i. We use Eq. (C3) to
de6ne a new set of 2;~'s from the set occurring in
Eq. (22b):

Because of the restrictions on the arguments mentioned
above, these are rot di6erential equations for the
A;&'s. Rather, when evaluated for successively larger
values of q and i, Eqs. (C4) define the 2 as functions
of the 3;~'s and their derivatives.

We define the functions

e(k, t,up, no)

ay
A; ( o)+f,' no, ~; —"(u-o)

I2=1 i=0 ~no"

k!F(2no —k+2)

Here we prove that the parameters 3;~ and 8;& in
Eq. (22) may be taken to be independent of no without ~(k
loss of generality. We begin with the relation

ao q k!F(2no —k+2)
P t' Q D;o(np, ao)

(k i) II'(2ao —k —i+2)

X— (CS)
(k —i)!I'(2no —k —i+2)

o k!I'(2np —k+2)
=Z t'2 &"(no)-

(k i)!F—(2np —k —i+2)

k!F(2uo —k+2) "+'
X — — — — . (Cl)

(k i)!I'(2—np k i+—2)—

We also introduce s(k, t,ao,uo), which satisfies the
equation

s(k, t,np, np) = e(k, t, ao+s{k,t,np, np), np+s(k, t,no, no)) .
(C6)

In view of Kqs. (22b), {C3),and (CS), and of Lagrange's
theorem,

The validity of Eq. (C1) is established by means of
the formulas

u(k, t) =no —k+s(k, t,no, no). (C7)

Also, Eqs. (C1), (C3), (CS), and Lagrange's theorem

implyk!F(2no —k+2) ~-'o;(ao)
( 1)

(k i)!F(2np—k i+2—) — M 'oo(no) 0', (k, t,ao,uo) = Q,*(k, t, no, uo e(k, t,uo, u—o)) . (C8)

e*(k,t,up, uo) = e(k, t np, uo+ 6*(k,t,uo, no)). (C9)

(C2)
'(no) z ~ 'o, o+o(no) Equation (CS) may be put in the form

= 2 ~p,.(no)
3f o p(up) o=o ~ o, p(ao)

The second of these relations is proved in the Appendix
of Paper I. Equation (C1) generates a relation between
the B's and D's of the form

A't tlils point we introduce s(k~t~up, no), wlilch satls6es

s(k, t,no, uo) = 'L (k, t, no+ $(k, t,ao,uo), no) ~ (C10)

Because of Kq. (C9), s also satis6es Kq. (C6), so that
s= s. Thus, Eqs. (C7) and (C10), taken with Lagrange's
theorem, establish the representation

p k IF (2up —k+2) -I~+1

a(k, t) =no k+Q- Z t E&'(-.)-
"=o (I+I) ' oIao" —o=' '=o (k i) 'F(2ao ——k —i+2)& no= o

(C11)

This is the statement that the 2;o s may be taken to be independent of ap in Eq. (22b) without loss of generality.
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We next prove that the A,o's may be taken independent of np in Eq. (22a). Lagrange's theorem can be used to
evaluate the sum

(8(k, t, up+a(k, t,ao,ap))
R(k, t) =

[1 &S—(k, t,q, p)/&q &8—,(k, t,q,p)/~p]o=o= o+*(p,(o , o).

$(k, t, up+I(k, t, ap, ap))[1+88*(k,t, q,np)/ )pup]

1—8e*(k,t, q,uo)/p)q g=ap+S (k, t, ap, ap); ap=ap

(C12)

The second form has been derived by differentiating Eq. (C8) with respect to np and ap. Equation (C12) shows
that in the numerator [1+88*/Bno] may be absorbed into S.Lagrange's theorem now produces a representation
which shows that the A, o may be taken to be independent of no in Eq. (22a):

1 8
&(k,t) = Q — {(f)(k,t,no) [e*(k,t,no, ao)]"}oo=.o

n=o ~!Q~on
(C13)

Henceforth we use Q, (k, t,ap) of Eq. (1), with the A,' independent of np.
The final point is to show that the 8," s may be taken to be independent of np in Eq. (22a). We begin with a

relation analogous to Eq. (C1):

[—e(k, t,np)]" rt"
2 t" E &j'(no, ao)fif 'ai(ao) = 2 {P t" 2 & t( n)o~ ipse(no)} ~

r=0 j=o n=o e! n r=0 j=o
(C14)

Equation (C2) can be used to establish the validity of this relation. The relation between the E's and S"s is

(C15)

The E's which occur among the arguments of g will have P (r, r'&r, and j'&j.We use Eq. (C15) to define a new
set of 8,"'s from the set occurring in Eq. (22a):

, /B "(ao) =B "(no)+g'I ao B'"'(ao) I. (C16)
o)ao"

We de6ne the sums

ay
e(k, t,np, ao) = P t" Q &,'(no)+g, " ao,—&~'"(&o) ~ 'o, (no),

r~O j=0 ~o}0"
(C17)

(a*(k,t,no, ao) =P t" P 4'(ao)~ 'p, (no).

By Eqs. (C14)—(C16),

r=o j'=0

S(k, t,no, rt)o) = $*(k, t, uo, no —0', (k, t,no) ) .
Lagrange's theorem and Eqs. (C13), (C16), and (C17) show that

S(k, t, no+a(k, t,no), no+a(k, t,no))
R(k, t) =

1—~~(k, t,q)/~q I o=ao+c(k, t, +o)

s(k, t,u,) = n(k, t, n, +s(k, t,a,)) .

(C18)

(C19)

Using Eq. (C18) and Lagrange's theorem,

(B*(k, t, s(k, t,no)+np, np)
R(k, t) =

1—()(R(k, t,q)/Bq I,=.,+,(p, ,)

gn
-{[Q t' Q 8,'(uo)M 'o (uo)][e(k, t,np)]"}-p

n=O Q! Dao"
(C20)
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Thus, the 8,"'s may be taken to be independent of 0.0
in Eq. (22a). Stated differently, the 8,"s may be given
uey o,0 dependence without a6ecting the content of our
equations. We can use this freedom to make the
b;~'s of Eq. (29) independent of no. Altogether, then, the
A&0 dependence of the parameters appearing in the final

analyticity constraints may be ignored.

APPENDIX D

In this Appendix, we verify by explicit multiplica-
tion that the square root of ${k,t,no, o,l,o,5) has the
form given in Eq. (29). We begin with the identity

taken to be independent of no (Appendix C).

k!I'(2a(k, t)+k+2)

(k i—)!I'(2a(k, t)+k i—+2)

= —sp(k, t,n(k, t)+k) . (E1)

We use Eqs. (I39) and (I42) to obtain the implicit
formula for the trajectory functions given in Ref. 6.

k!I'(2n(k, t)+k+2)
a(k, t)+k= g t'a;(t). (E2)

*=o (k i)!I'—(2n(k, t)+k i+2—)
Here we have made the identification ao(0) =no.

e b.~
-&.;-'(no,&A)

@~0 i=
Residue Functions

o(«)
The Regge residues P(k, t) given in Ref. 6 are related

( 1)k2-k(QA)&/2 g ta p $,eM—
I&,(no) (D1) to our reduced residues in the following way:

The proof of Eq. (D1) is very similar to that given in

Appendix A.
Equation (I33) reads

M II.;(no)M Iy; (ao)

p(k, t) = p(k, t,o,B)p(k, t,o',N'),

q(k, t) = q(k, t,o,h)q(k, t,o',8'),

P(k, t o,B)= L2n(k, t)+ 1jil't-"I'It. &"'&q(k t o S).

The'relations among kinematic variables are

=M '~o(no) Z oo, '(no)M ".'+a(no).
@=0

Using Eq. (D2), it is easy to show that

L p t'Q b M II;(no)j'

(D2) t+ob p(om —t) (5'—t)]"'
coshPI= —,sinhPI =

(o+8)t"' (o+b)t"'

(o' —t)(8' —t) t(a+8)'
sllih pi.

(E4)

Thel'ef ore)

I (—1)"2-"M—Igo(ao)PI Q t& Q AI II,;(no Q-d)
'-o («)'

= (—1)'2-"a'I' g V g JJ'M '& (a)-
q=0 i~0

We begin by using Eqs. (2), (7), (28), (29), and
(I42) to write our residue in the form

ce Be(kta) '"
q(k, t,~,B)= g — — [e(k,t,n,)j" 1—

=0eI 80,0" 80!0

(o J)'(—1)~12Lk!I'(2no —k+2)]"'
X—

(2n p 2k+1)—
t'5, (t,o;5)

XZ -- — — -& 'I;(no,+A) . (E&)
'=o (oB)'

e B~
-Ã '~;(no, a)

o=o I-o (g2B2)&

We have used Eq. (19) to make the final step.

(D4) Here we, ,have used Lagrange's theorem to make the
shift n(k, t)+k -+ no, and have absorbed factors depend-
IIlg llpoll no lllto 5' (Appendix C). Next we lise the
identity

APPENDIX E

Here we show that our results for the trajectory and
residue functions are equivalent to those given by
Durand et al.'

.Trajectory Functions

Equation (I34) is valid for all no. We use this freedom
to replace no by n(k, t)+k, noting that the A can be

t'fl;(t, o, t'I)

(—1)'(«)"Z & '~'(no, V'~)
'=o {oB)'

~ t*"b (to 8)
=t~t'(o+B)'I'( —no+k+ ,')P-

(k —i)!
XF(no —k+1, l—k, 2no —2k+2 1—o 2») (E6)

This identity is valid when 6; and b; are analytic in b

at 5=0. We substitute Eq. (E6) into (ES), separate



factors depending on o/0 from b;, and use Lagrange's theorem to sum over e. Ke hand

P(k, &,~,S)= 1—88(k i a(k 3)+k)
0, jk, t}

Bn(k, t)

k!I'(2n(k, t)+k+2)- 'i' (—1)@'costa(k)/) I'(—a(k, i)+-',)
2a(k, t)+1 (o+8) io "

~ /il'k;(t o,b)o.»i '&F(a(k, t)+1 i k,—2n(k, t)+2, 1—o "")
(E7)

-o (k —i)!$1'(a(k,t)+k —i+2)I'(—n(k, i)—0+i))"'
Equation (E/) is the residue given in Ref. 6 after conversion. to our notation. 'o

The veri6cation of Eq. (E6) proceeds differently for 8%0 and 6=0 In t.he unequal-mass case we first use Eq.
(D1), and then proceed as in Appendix A. It is ufeful to change the argument of the hypergeometric function to
n= —(o'~i —1) ' by means of a suitable transformation. We 6nd that Kq. (K6) is true for 8WO if and only if

CO {—1)"(2no—2k+1)
Q Moo(ao)- F(i k-, —2—no+k+i —1, —ao+o, x) =0(xo ') {0&~i&~q) .

(k —i)!1'(2no —k —i+2)
(ES)

Equation {ES)is easily veri6ed by using the hypergeometric series and computing the coefiicient of x".
In the equal-mass case we apply the operator go cV„o(ao,+6) to Kq. (K6). We take the limit 5 -+ 0 of the result.

noting that only the highest term of the series for E„I,contributes. We change the argument of the hypergeometric
function to y '= tanh'Pi, and find that Eq. (K6) is true for 8=0 if and only if

( 4y) 'r(n—o «-+k+o)—F( o«+oi+—k, o«+o—i+4+k, ao «+2k—+4, 1/y) —Q yo
o 0 k!(«—i—2k)!I"(ao—«+2k+-,')

This equation can be verified by using the hypergeometric series.

o See M. H. Rubin, Phys. Rev. 162, I551 (I96/), for the formu1a for d;, , oo (P).

(E9)


