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On the basis of new representations of the projective group, we construct some new dual quark models
whose spin and internal symmetry are not multiplicative. One model is a factorized theory of exotic states
with broken exchange degeneracy, ninth mesons being optional. The exotic states are suppressed three
units below the Pomeranchon. In another model, with spin-orbit coupling and curved trajectories, both
spin ghosts and orbital ghosts are involved in the Ward identities.

I. INTRODUCTION
' 'N this paper, we report our work on a new dual'

quark model which improves on the original (multi-
plicative) quark modeP ' in a number of respects. The
basic approach is to study representations of the pro-
jective group on a space spanned by the usual "orbital"
operators, plus new quarklike operators carrying spin
and. internal symmetry labels. (a) Attaching, for ex-
ample, just SU(3) labels to the quarks, we construct
a factorized theory of exotic states, suppressed three
units below the Pomeranchon, in which ninth mesons
are optional. In this model, the old (orbital) operators
correspond to the Pomeranchon. If, to obtain all the
Uirasoro4 identities, we set the Pomeranchon intercept
equal to unity, then the "meson" octet occurs at zero
mass. This formalism works as well for any I.ie-algebraic
symmetry. (b) Attaching just spin labels to the quarks,
we construct a model with spin-orbit coupling (cou-
pling between the quarks and the usual orbital opera-
tors). Our motivation for this lies in the fact that, now,
both spin ghosts and orbital ghosts are involved in
Ward identities, just as orbital ghosts are in the usual
model. This involves us in a gauge problem of consider-
able complexity, but generally of the same sort found
by Uirasoro. 4 Proofs are difficult to make firm, but we
find a strong suggestion that, a realistic model /with
spin-orbit coupling and SU(3)] may be free of ghosts
and perhaps even tachyons. This latter is connected
with the fact that trajectories are necessarily curved in
the presence of spin-orbit coupling. We have not yet
calculated the coefficients of the realistic model.

Before outlining the materia1, a few general com-
ments are in order. (a) We are impressed that the re-
quirement of an 0(2,1) group forms, in general, a set
of "bootstrap" equations determining all parameters
except the intercept of one trajectory and a universal
slope. ' Then, requiring the maximal number of Ward
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identities fixes the intercept. Thus broken symmetries in
general turn out quantized in our approach. For ex-
ample, at fixed Schwinger term (see Sec. IV A below), the
curvature of the trajectories in the model of Sec. IV is
fixed. Alternately, we can think of this model as a dis-
crete breaking of a spin symmetry, which will map onto
a discretely broken SU(6) in the realistic model referred
to above. (b) As far as we can tell, the only way to
eliminate spin ghosts in our approach is through Ward
identities with spin-orbit coupling. (c) In the spin-
orbit models, as discussed in Sec. IV, the natural group
structure turns out really to be 0(2,1)80(2,1), so that
there are in general two in6nite sets of Ward identities,
just enough, it is hoped, to eliminate both spin and
orbital ghosts. As mentioned in Sec. IV, we believe that
this particular group structure is unavoidable, and that
it is the natural group for models with spin. This group
will, for example, appear in the realistic model as well.

(d) In all our models, a candidate for the Pomeranchon
(trajectory with vacuum quantum numbers) arises in-

escapably. This trajectory presumably has little to do
with the diBractive part of the Pomeranchon which, we

presume, arises from unitarity.
In Sec. II, we review the usual dual model in the local-

field-theoretic formalism of Fubini and Veneziano. We
emphasize the general principle that a representation
of the projective group containing a scalar field with
c-number commutation relations automatically yields
a set of factorized n-point functions. In Sec. III, we
construct our first simple "additive" models, so called
because there is no coupling between orbital and internal
or spin operators. Concentrating on SU(3), we obtain
the exotic-state model mentioned above. We also give
a simple broken-symmetry model. The formalism for
the analogous additive model with spin is set up at the
beginning of Sec. IV but, because this model has all
the usual spin ghosts, the bulk of Sec. IV is devoted to
the construction of the spin-orbit coupling model.

Having no internal symmetry, the model includes
a number of curved trajectories: Pomeranchon and
ninth vector mesons. The mass operator is explicitly
diagonalized in the first two "sectors" (the natural
excitation number for the model). The connections
among the 0(2,1)0(2, 1) Ward identities and con-

' S. Fubini and G. Veneziano, Nuovo Cimento 67A, 29 (1970);
MIT report (unpublished).
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comitant (gauge) degeneracy problems are studied. We
should repeat here that we have not shown our proto-
type models to be free of tachyons and ghosts, but the
situation is very suggestive. To be precise, we have
studied two separate models: a four-dimensional (4-d)
model in Sec. IV, and a five-dimensional analog in Sec.
V. Their properties are as follows: 4-d model —no tachy-
ons in the first two sectors, but only "leading" ghosts
eliminated; 5-d model —a vacuum tachyon and at least
one other which is eliminated by signature, but all Ward
identities worl. ing. The presumed properties of the
"realistic" model are sketched in Sec. VI.

Appendix A gives some sample commutators among
quartics used in Sec. IV. Appendix 8 details our argu-
ments that our scalar field in Sec. IV satisfies c-number
commutation relations. Appendix C is a discussion of
cyclic symmetry, twists, and single-valuedness prob-
lems relevant to Secs. IV and V. Appendix D argues
a technical consistency condition between the scalar
field. and the vacuum.

II. USUAL OPERATOR FORMALISM

To begin, we summarize the usual operator formalism
for dual-resonance models. In our notation, we
introduce7

where e(8) =8/~ 8~ . From this algebra, it is easy to show

that the generators of the projective group O(2, 1) are

d8:~'(8):, ~'(8) =~s(8)~„(8),

1 2

o

d8 e"" or(s8),
(2.5)

CLo I+]=WL+ CL+ L ]=2Ip,

1 2

Lm

4x
d8 e

—1mo. ~2(8) .
(2.6)

L+=Lg, L —=L g.

For reference, we list explicitly

Lo= —Q or ."or„, p'=& p—', —
n=1

where colons indicate normal ordering. Thus, ors(8) acts
as a local density for the algebra. In fact, the generators
of the full conformal group can be constructed in the
same manner as

Cor„",or "]=g""@18, (2.1)
(or ")t=or ", —oc(N(~, i1=0, 1, 2, 3.

L+= —Q or "or„, yt,
n=o

CCI

L = —Q or 1"or„,
n=o

Thisisonlyauniftednotationfor theusual harmonic-
Q and or transform as a projective scalar and vector,

oscillator operators: respectively:

gp m

Q~(z) = ———+,s lns —P —s"+ P
V2 n=1 + n= j

7r—n
Is——S"

S

(gs) 11o;
&

ol —.s —= (+11)Gs &
B&0

(2
Cu a "']—g "8 orp —&2p )

where ps is the external momentum. ' Also, we list the
local fields,

CLo Q"(8)]=i8oQ"(8), LL+,Q'(8)] =ie-"8oQ"(8)

CL„~s(8)]=i8o~~(8), CL~,~~(8)] (2 &)

=e-"Ci 8o~s(8) a~o(8)],

and, in particular, Qs(z) =s ~oQ"(1)z~'

Finally, as shown in Ref. 6, the n-point functions are
of the form

00

~s(z)= —s—Qs(z)= P ~„ss",
ds n

(2.3) B„(kt,. . . ,k )

dss ' dsn tp(st) ~ ~ ~ po)—
81~0;z2~1; Zn~~

X,=o(0~ &(k,z ) . 1'(k.,z.) ~
0),=o, (2.g)

where ~0)~ o is the projective vacuum,

or 1"
j 0) —p

=ps ) 0),=o ——L ) 0)„=o——0 (l &0),

and I" is the ground. -state vertex

r(k z) z-I e&ak oQ(11 zroz ko-(2 9)

Cp",8"]=g"".

For purposes of Hermitian conjugation and for elegance
of notation, we think. of s on the unit circle s=e'~, with
s*=z '. The local algebra of or and Q is

LQ"( ),Q (")]='-(8-8')g",
CQs(z), ~"(s') 5 =go"27riz8(z z') = 27rb(8 8')—gs", —

(2.4)
C~s(z),~"(s')]= 2~i g zz—o8 (z s')—

=2~i 8(8 8')g"——
d8

o Our metric is —g"=+goo=+/, po=poo —~p~o.
More precisely, p& is the external momentum if such are all

taken outgoing. If momenta are ingoing, then p& is the negative
of the external momentum.

Here p is a suitable projective invariant volume fac-
tor, and the k's are the external momenta. Factorization
is obvious in this formalism. The proof of cyclic sym-
metry rests on two facts (a) That we. have a projective
scalar Z (here Q) under some algebra J (here L), which

is exponentiated in forming I'. Thus the integrand is
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projective invariant. (b) That E satisfies c-number com-
mutation relations with itself. It is this prescription,
namely, that projective invanance plus c-number com-
mutation relations imply cyclic duality, that we shall

apply to 6nd other models.
The n-point functions can be written in an alternative

form with all the integrations carried, out. Using the
result

lim I (k,s)
~
O&„=,=

~
O&.*=—c-"'~ O&„=„(2.10)

we have

B„(kl,. . . ,k„)={0
i
V(ko)I))(sl.)V(ko) V(k I) io),

where

sl, ——(ki+. . .+k;)', V(k) =I'& )(k) I'&+)(k),

while the b's and d's anticommute among themselves.
The label r runs from 1 to 3, corresponding to the quark
representation of SU(3) for b„{n),and antiquark repre-
sentation for d„(pI). The vacuum satisfies

b,.(n) ) 0& =d, (e) ~
0& =0.

Now define a 6eld

O,()—= 2 [b,( ) """+d,'( ) -"-"'], (3.2)

which satis6es the local anticommutation relation'

[P,(s),P,'(s')]+=5„.2orish(s —s') =2opb(8 9'—)8,. (33)

The purpose of the half-integral powers in )Ip is, for
the moment, to avoid introducing a zero-fermion
mode. '0 Later, we shall see that such is necessary to have

P transform as a projective spinor and f")fp as a vector.
We can now immediately construct an O(2, 1) algebra:

pt '(o)=exp(42k r —),

ds s Jo—1—ao(1 s)ao—I

I'{Jo—ao) I'(ao)
(2.11)

I'(~o)

with u0 the intercept of the trajectory.
Finally, a useful trick is worth noting. If E(1) satis-

6es the "stability conation" at a=1,

d8:f,t8of, :,

de c+o8$ tgpP

(s„s ) =2s„[s„s,]=~s, .

KxplIcltly, we have

So = Q (pi+-', )[bt(pl)b(n)+d'(N)d(n)],
@=0

(3 4)

[(&p—&o),I'(1)]=0,

E(s) =s-~oh'(1) s'o {2.12)

S+= P (m+1)[b'(N)b(m+1)+d"(pl)d(pi+1)], (3 4')

(po+1)[bt(+II+1)b(n)+dt(+ pi+1)d(pi) ].
n=0

is a scalar under J.
Our program in this paper will then be to 6nd new

representations of the projective group which allow

(a) and (b) above.
Under the group, ib transforms as a projective spinor,

[So,4(~)]=I~of(~),

[s.,~(e)]=""['~~«)~!~(~)],
so that ftf and fthm P. are the usual" 3)&3 matrices
of SU(3)] transform as vectors.

Ke de6ne the full model as being generated by the
sum of the two projective angular momentum operators
given by Kqs. (2.5) and (3.4),

III. ADDITIVE MODELS

In this section, we shall develop a formalism for in-
corporating an arbitrary symmetry group into the pro-
jective formalism. To be concrete, we shall work with
SU(3), hlllltlllg olllsclvcs to occaslollal lclllai'ks oil thc
general problem.

%e begin by defining a set of new' quarklike operators
(to be used in conjunction with orip) satisfying the fol-
lowing anticommutation relations:

(3.6)J=L+8;

[b,(n),b.'(~)],=b,.b.„,
[d,(N), d,t(m)]~=8„,b„„, N&0

hence the name additive.
The J's also generate O(2, 1), and Q, or, and |k trans-

(3.1) form under this new algebra as originally stated. In
particular, Q(s) is still a scalar under J. Thus, our n

'It would not do to put spin and internal symmetry labels
directly on the orbital operators (e.g., u, „&), because this leads
directly to exotic states, etc. , on the leading trajectory. Hence
we need new operators,

' We do not know what external additive quantity could couple
to a zero-fermion mode, especially when the mode carries spin
and internal symmetry."%'e normalize the ) 's as usual to Tr() NX&) =28~&.
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TABLE I. Low-lying states of the additive model.

pR up

PR — u +L
p'= —up+-,'
p2 = —up+1
p = —up+1
p'= —up+1
p'= —up+1

State

Io)
b"I(0) IO)

&"'(0) Io)
~,~IO)

t "t(0}b"'t(0)
I 0)

&"~(O)~"'t(O) IIO)

Q b""(0)d"~(0) IO)

Z(I -)""'~""(0)&"t(0)I0)

Particle

Scalar Pomeraiichon
Quark

Antiquark
Vector Pomeranchon

Dl-quark
Di-antiquark
Singlet meson

point amplitudes can be constructed as before. Before
we undertake this construction, we digress to the par-
ticle content of the theory.

b„'(0)d,'(0) I0), b„'(0)d,.'(0)~ I~I0), . . . . (3.7)

Thus, if we take the Pomeranchon with unit intercept,
guaranteeing all the Virasoro identities, then the lowest
meson octet occurs at zero mass. "Nucleons" also occur
in the model as states of three qua, rks. A brief tabulation
of the lowest masses and their properties is given in
Table I {wltll Polllcl'allchoI1 llltelcept IIO). Ill thc Illcsoll
sector, there are exotic states constructed out of four
or more quarks. For example,

A. Spectrum

The model has a variety of parallel straight trajec-
tories. The states Io), Ir I"IO), and Ir I"Ir I"Io), ob-
tained by the successive application of m's on the
vacuum, correspond to a vacuum trajectory (Pomeran-
chon). By Pomeranchon, we mean a trajectory hke any
other one, only with quantum numbers of vacuum. Of
course, we do not expect it to correspond to the "diffrac-
tive" part of the Pomeranchon arising from unitarity
corrections. There is also a leading quark-antiqua, rk
(octet and singlet) trajectory one unit below the
Po Riel anchon

These objects satisfy current-algebraic commutation
relations,

(J (8),J~(8')7=4Irl f »J&(8)8(8 8')—
4III'—,5 seyb{8 8')—, (3.10)

LJ-(e),J(e')7=o, LJ(e),J(e')7= —6~18,8(e—e').

In "momentum" space these become

I JI,J &7=2if ~&JI+ &+2lb ~bI

J.(8)= P e'"'J=, J=Io)=o form~0.
(3»)

After a, little algebra, it can be shown" that the fol-
lowing quartic structures reduce precisely to the previ-
ously given bilinear forms for 8:

det J (8)J (8) + J(8)J(8) 7

=g;LJo Jo +JoJO

+2 g (J „J.+J .J„)7,
n=l

(3.12)

dec "LJ (8)J (8)+J(8)J(8)7

(a summed from 1 to 8). Thus, if we wish, we can stay
entirely in the subspace of these operators. Finally, the
ninth meson can be consistently dropped from the above
equations if so desired. These results will be useful in

what follows. "

octets, but couple only to themselves. That we have
this choice is clearly related to the existence of non-
leading exotic states in the model.

An elegant way of summarizing this discussion is to
note that the model can be rewritten in terms of
"currents. "Berne the projective vectors

J (8)=lt'(8—)) V(8), J(8)= lb'( —8)4( 8) (3 I~)

b„,I(nl) b„I(n1)d„,t(ng) d„t(n4)
I 0) (3 8)

conta, ins in general exotic-state components. The lowest
possible exotic state (2 units below Pomeranchon)
would be in (3.8) with nl ——n1 ——n1=nI=O. However,
this state is antisymmetric in ri and r2 and again in r3
and r& (by Fermi statistics), and hence gives rise only
to nonexotic states. Thus the lowest-lying exotic states
in the model are 3 units below the Pomeranchon.

Tbc scheme evidently accommoda, tes states of nonzero
triahty (e.g. , quark and di-quark states). However, if
the external states have zero triality, so do the internal
ones, and. we can restrict ourselves to a model of only
zero-triality particles. Finally, we note that we have
a choice concerning whether we want ninth mesons. If
we choose to have them, they are degenerate with the

"This observation is due to S. Mandelstam {private
communication).

"One might ask whether the orbital operators themselves have
a quark representation, so that one could rewrite even the original
dual model. in terms of anticommuting operators. The answer,
interestingly enough, is yes, but it is not very illuminating. In
terms of scalar anticommuting quark fields with no indices, we
construct

5(e) =pl(e)p(e) = p e'ieS& ~

then $5~,5 j=fbf„,„, so that we could represent mI ~ j5~ if m.

had no Lorentz index. This is amusing because representation of
commuting operators in terms of anticommuting operators can
only be possible for a system with an infinite number of degrees
of freedom. The Lorentz index is a problem. The best we can do
is to introduce four quarks P&, where p=0, 1, 2, 3, and write
m~~=(p+Q~)b, of course, these quarks have no simple Lorentz-
transformation proper ties.
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B. Vertices

First consider the case of n Pomeranchons. The ver-
tex for each is (for unit intercept)

(k s) s+is—Ip.ev2Q(1) ~ l&.s Ip.
&+Is Ip. e&—2Q(1) ~ 2.&Lp k2 — I (3 13)

k3

(k + k ), t=(ka+kS)

which is the usual vertex of the ordinary dual models.
Thus the n-Pomeranchon amplitudes are the usual n-
point beta, functions, and the n Pomeranchons couple
only to themselves.

Now we turn to excited-state vertices. We list (still
for unit Pomeranchon intercept)

(k &) s+ls-Ip epplQ(1) 2 pt(1)sIp
2+12 Lp. e+—2Q (1) ~ 2

sLpgt (s.) (k2 1
)' '

(3.14)
F-...,,„(k,s) =a+'s ":p~-«' ' J.(1)s"

&+1& Lp &FaQ(1—) 2.&LpJ. a(s) (k'I ())

There are a number of wa, ys of constructing these
vertices: (a) through consideration of their projective
transformation properties, or (b) by writing, e.g. ,

(0~ Ji I'p FI J is~0) and making a cyclic change of
variables, thus determining I',,„„.In any case, the
vertices ca.n easily be guessed through the consistency
condition on the vacuum, e.g. ,

lim I',„„k(k,s)
~
0)„=p——b"(0)

~
0)2 = 1~(2,

z ~oo

(3.15)
lim F,„.,o (k,s) ~0)„=o=J ~0) =o= ~42).

The generalization to arbitrary intercept is left as an
exercise for the reader.

With the local commutation (and anticommutation)
relations for J and )(, we can prove commutation rela, —

tions for the vertices. These differ from the algebra of
orbital or Pomeranchon vertices by terms involving
extra, factors of b(s —s') and (d/ds)b(s ) from —the J's
and )k's. Such terms are of no consequence, because the
rest of the integrand (the "orbital skeleton" ) vanishes
when any two -'s are equal. Hence the proof of cyclic
symmetry for excited-sta, te n-point functions is essen-
tially the same a,s in the usual model. '4

C. Some Explicit Amplitudes

Ta,king volume elements a,ppropriate to the external
masses, we find, in the case of two-meson —two-Pomeran-
chon scattering (Fig. 1),

B s(ki, kp, kp, k4) =(42~ I'&+'(k2)h(s)F( '(kp) ~)())

1

=b duu ' "(1—u) ' ' 'p, (3.16)

k
4

Pro. 1. Meson-Pomeranchon scattering.

where s=(ki+k2)', t=(k +2k )2,2and ~42), ~P) are de-
fined in (3.15). Similarly, in the case of the four-meson
amplitude (Fig. 2), we find

18 s22(s, () = 4fuu ' " '(1 —u) '

D. Symmetry Breaking

We comment tha, t the algebra of S is unchanged if we
a,dd to it the following terms:

ESp ——XJpp+)42,

65~ ——xJ~g',
(3.18)

where 'A is an arbitra, ry consta. nt. This introduces sym-
metry brea. king along the eighth direction, and the
modihcations of the previous formalism are quite easy
to find. Such a term, of course, does not split difI'erent

isospin multiplets with the same hypercharge and so
it is not by itself very interesting. We have also found

ks P

XLb )2&,p(1 u)2—+b()4$ 2u2(1 u)2+8 —pb(),u2

4f~s'f—"'u(1 u)' 4—fs&'f'—-u2(1 —u)]. (3.17)
I

The cyclic symmetry can easily be verified by letting
I—+ 1—u. Examining the s channel, we see that the
vacuum has the lowest mass, and the octet, with an
extra factor of I, has a mass higher by one unit. Exotic
sta, tes come with extra factors of I and higher masses.

"The proof of cyclic symmetry for excited-state n-point func-
tions in the ordinary model has been studied by K. Bardakci. The
formalism is essentially identical to this section, arith excited-state
vertices being of the form '. ~&(2')e'@(' ~:, etc.

a
k

Fxo 2. Meson-meson scattering.



K. BAR I3AKC I AN D M, B. HALP E RN

quartic synimetry-breaking models of the form The algebra of these vector currents is

PV.~, V "j= 2iT—„+„~"+cg~"»b. ,=, (4.4)

Solutions for C are determined by requiring projec-
tive-algebra commutation relations, and they yield
quantized SU(3)-breaking models. Unfortunately, these
models all su6er from infinite-degeneracy problems. '"'

Rather than discuss these models, we will go on to a more
sophisticated model, which may offer another route to
symmetry breaking, free of such defects.

IV. MODEL WITH SPIN-ORBIT COUPLING

A. Syin Formalism

T„~"= P:b(k)~~"b(k+»):

Tg~(g) —P sin8T yv

The rest of the commutators are given by

LV-" T-""j=»(g"'V-+-"—g""V-+-"),

(4.5)

[b„(»),b, (m) j„=Lb,t(»),b,t(m) j~=0,
I b.( ),b."( )j,=b-,-(vo)... (4 1)

where yo is the ordinary fourth y matrix. Following
ordinary Dirac theory, we dehne further

b.(»)=—Z b.'(»)(vo).-, b=b'vo—
so that

ib.(») b.(~)j.=b-b.. (42)

It is clear that the factor yo in (4.1) is necessary for con-
sistency with I.orentz transformations, and this, of
course, introduces an indefinite metric.

In the same manner as before, we dehne

4 (s)=Z ~"""b(»)

Ke begin by using the formalism of Sec. III, now for
the case of spin (but no internal symmetry). The rele-
vant quark operators are again denoted hy b„(») and.

d, (») where» ranges from 0 to ~, hut now r is a Dirac
4-spinor index, ranging from j. to 4. Under Iorentz
transformations, b„and d„ transform as 4-spinors. As
usual, bI0) =dIO) =0.

It is convenient to introduce a uni6ed notation for b

and d through the definition (all »)

b, (»)=—d„t(—1 —»), b„t(—» —1)=d, (») .

Then we can write the anticommutation relations as

Of course, the m's commute with all the above-listed
operators. Here c is equal to the number of dimensions of
the space in which y matrices opera, te. For the usual
4X4 matrices, c=4, and for the higher-dimensional
representations of p's, c can be any positive-integer

multiple of 4. It is also possible to change the sign of c;
to do this, we have to change the anticommutation
relations of Eq. (4.1) into commutation relations. Under

such a change, the algebra of currents remains the same,

except that c then can be any negative-integer multiple

of 4. Changing the quark statistics from Fermi to Bose
alters the norms throughout the theory, e.g. ,

(4 &)

so with Fermi quarks, the space components are ghosts

and time components are particles. VA'th Bose quarks,
the situation is reversed. To avoid. committing ourselves

as to the nature of the quark space, we shall leave c as

a free parameter. "
One can now write an additive theory of the kind

studied in Sec. III. It is clear from the preceding discus-

sion that such a model is infested with ghosts. Thus we

attemI. 't to find other representations of the projective

group in this space.

B. Projective Grouy with Syin-Orbit Couyling

V"(s)=Z V "z"= k(s)vV(s)

V &= P b(k)q~b(k+»)

(4.3)

As explained in the Introduction, our main purpose
in this paper is to look for representations of the pro-
jective group for which states with spin are involved in

the %ard identities, thus giving us a chance of elimi-

nating spin ghosts in the same manner as orbital ghosts.
This implies some sort of spin-orbit coupling. Thus vie

"The degeneracy is such that, at a given mass and spin, states 'fl As seen below, to avoid complex solutions, we have to take c
of arbitrarily large isospin and/or hypercharge occur. At present, in a range that does not correspond to any simple bilinear quark
we do not see how to interpret these models. representation for the currents. See also Ref. 20.



2

J,= — de: g(S):,
2F

2

2m

d8 c+"
g (8) (4.7)

look for representations of the projective group in the
form'~

C. O(2, 1)ja0 (2)1)

We denote the top solution by J and the bottom
solution by K. Both sets generate O(2, 1) among them-
selves:

I Jo,Jg5=wJ~, [Zo,Z, 5=~I~,
4.10

LJ+,J- I =2Jo, [E+.,X 5=2-Eo,

by construction. Moreover, one easily calcula, tes that

a(e) = "(0)-.(~)+"-"(~)V.(0)
I J K5=0 (4.10')

+ao V&(8) V„{0)+a4T&"{8)T„,(8) . so that, taken together, we have the algebra of O(2, 1)
80(2,1). In fact, all the higher moments commute as
well:

If we can 6nd solutions with a&/0, then states like

P V II 0) wiH be involved in the Ward identities.
Requiring J to generate 0(2,1) (see Appendix A for

solllc sample colllIIlutatols), wc arrive Rt tile followIIlg
equations for cy, . . .)84'.

I JI,K 5=0,

2(aI —4cao ) = —a1,

2aIao —aoao(2c+12) —24aoa4= —ao
&

—',ao' —(2c+24)ao' ———ao )

4aoo —16aoa4 —(4c+32)a~' = —a& .

so we can think of two commuting "conformal groups"
On the same space. We will. , of course, have to choose
which one of these two groups will be used to boost
6elds. We will do this below also on the basis of the

(4.g) spectrum.
Of course, the sum of J and K also generates an

O(2, 1):

There are sever~i discrete sets of solutions to these
equations. All the solutions are 6xed; there are no
arbitrary parameters in them except for c. Some of the
solutions require either u2=0, or both u2=0 anda~ ——0.
We discard the 6rst possibility since it does not give
rise to useful Bard identities, as explained later. The
second possibility, in addition, corresponds to an ab-
sence of orbital angular momentum and is rejected.
Then we a.re left with only two solutions:

Qy= —gW1

4(1 4c) I/o

1 — 5+c

4(12+c) (1—4c)"'

84=
8(12+c) (1—4c) '"

where the top signs form one solution, and the bottom
another. Reality of a~ca@4 dictates that c(~. Reality of
a2 dictates, in addition, that —2(c.This second restric-
tion is not strictly necessary, since it affects only norms
of states, which in any case are not positive definite. We
shall. decide the precise range of c below on the basis of
a timelike spectrum.

'7 We have also looked at representations that involve spin-
orbit coupling via the density p V(8) instead of ~(8) ~ V(8), but
these appear to have kinematical singularities in the n-point
functions.

(4.11)

These generators are much simpler than J or K separ-
ately, and will be useful. Thus, for reference, we give
explicitly

+00 +00

:~ „~~„„:+ —p:V .oV„.:
2(12+c) n=

Qo"( )50=&~oQ"(~)

$N~, Q~(8) 5 =i,P"aoQo(8),

Qp(S) —S cVoQp(1)Sivo-
$Ão, Vo(8)5 =IBoVo(8),

L&.,V"(~)5="'I:I~«(0)~V (~)5,
O'. , T" (e)5=""I '& T""{e)~T"(0)5,

(4.13)

and so on—exactly the relations of the additive model.
Of course, Eo has integrally spaced eigenvalues. All this
is in marked contrast, as we shall see, to the properties
of J and/or K.

We want to de6ne a particula, rly simple and useful

operator, the "sector operator"

cV =Xo+p' (4. 14)

+ P:T:"T„„.:, (4.12)
4(12+c) ~=~

with similar expressions for 3, +. Notice that N contains
no spin-orbit terms, and is in fact the spin-analog of
the additive model of Sec. III. We can emphasize this
fact by recording the transformation properties of the
various objects in the theory under N:
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which senses the mode-excitation number of a state:

iV(s i" ir „,'"V j' U &'} IO)
=- (ii+2ip+ +ni„+j i+ +m j„)

X(ir i" ir. „'"V i" U,„'"}IO).
Because

(i)i,Jp) =(A,Kn) =0,

(4.15)

D. E-Degeneracy

Note that each eigenstate of the Hamiltonian is de-
generate with an infinite family of the same spin and
mass. For example, if

we can diagonalize each Hamiltonian (mass operator)
sector by sector.

the ground-state vertex for the model as

I'(P,s) =s "'s 0:e~'&&"'":s o. (4.20)

As will carefully be discussed in Sec. IV G, we must
choose k'=0 in order to be able to use the K-identities
(and hope to eliminate the K-degeneracy). This con-
sideration then fixes our intercept (« ——0).

The n-point functions are constructible immediately
in the form (2.8) with k'=0. Invariance of the inte-
grand under infinitesimal projective transformations
follows immediately because EI" is a scalar. Thus the
integrand is a, function of cross ratios, and hence in-
variant under finite transforrnations. " This, together
with c-number locality of L&&, proves cyclic symmetry in
the usual manner. Finally, a,s argued in Appendix D,

then
Jo(p-) I

~) =«I o), lim I'(k, s) IO)i' 0, (4.21)

JOK," E. „'"In)=GQK i". K „'"Ia). (4.16)

We call this degeneracy the -K-degeneracy, a,nd say
tha, t the spectrum breaks up into E-degenerate fami-
lies."At first, this looks like a disaster. However, we

now have two sets of Ward identities, those generated
by J and those generated by K. As will be discussed in
Sec. IV G, the E-identities are intimately related to
this degeneracy, and they tend to eliminate it.

Moreover, we might have expected something like
this 0(2,1)0(2, 1) structure on physical grounds. After
all, we hope to eliminate not only p m. iIO) but also

p U iIO), and so on with the Ward identities. Thus we

would need many more than the usual model. Indeed,
we feel that 0(2,1)0(2, 1) is the natural, perhaps in-

escapable, group for "good" models with spin: Sup-
pose we have one solution [one 0(2,1) group], say J,
which we know transforms a,s an angular momentum
under the sector generators N. Then it is trivial to con-
struct the commuting 0(2, 1) group K as N —J.

so that we may pass to the integrated form in the usua, l

manner, resulting in n-point functions of the form (2.11)
with a, =0.

F. Spectrum

Having determined the intercept, we begin studying
the lower states in the spectra of Jo and Eo. For this
purpose, we adopt a common na, me Lo(ai«u3a4) for
either Jo or Ko, depending on the a' s. Because of the
form of the propagator at a0=0, mass-shell states of
mass p

' are the solutions to

(4.22)

For simplicity, we will concentra, te on n=0. Now we

begin to work our way up sector by sector.

There is only one state;0)1, "-
0 in the zeroth sector.

This is, of course, the external ground sta, te.

LJ+—Jo, 0"(1)]=o. (4.17)

This is essentially a consequence of the fa,ct that our
generators are constructed out of a, local density func-
tion of local operators. Thus

I'~(s) =s-'op~(1)s' (4.18)

is a scalar under J. In Appendix 8, it is argued that I"i'

is c-number local,

[E"(s),E"(s')] =ice(s s') g"", (4.—19)

just as in the original dual model. Thus, we can take

"For more discussion of E-degenerate families, see Appendix C.

E. Local Field E"(z)

In this section, v e will, for simplicity, assume we are
boosting with Jo, but, in fa,ct, all sta, tements can be
read with Jo —+ Eo.

We note that Q&(1) satisfies the "stability conditions"

Ke write the general sta, te in this sector as

I P) = (~"x,"+f3"V,"+P""T,""}
I
0) (4.23)

where n&, P&, P&" are e numbers. Then requiring L&(P) I P)
=0, we obtain

2 (p' —1)gin~+ [2ai(2aa+1) /~is]P" =0,
[2a,(p'+1)+1]p~ a,n~ 4iV—2a.p"p—~'=0, (4.24)

(2p'a, +1 Sa,+4«—i/o ;)p~" iii2a. ,(p~—p" p"p~) =i—l.

The solutions to these equations are tabulated in Table
II. Solutions (5) and (6) correspond to the two different
roots of the quadratic equation for p', and e& is a polari-
zation vector satisfying e p=O.

We now require that no state has complex or space-
like mass. This forces us to choose the J system as mass

"For further discussion of cyclic symmetry, see Appendix C.
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TABLE II. Lowest-lying states of the spin-orbit model.

(1) p~ = —1/2a1

(2) p=o

Mass State

&&„(2a&~,~—a, V,~)
~
0)

p„{(2ay+1)~ yl" —a2V gt') ~0)

Spin and parity

Scalar

Scalar

(g) p2—
8a3a4 —u4 —4u32

2aIa4
~,.~,p"T i""~0) Abnormal pseudovector

(4) P'=o
242za22a1+ 1

&p,
— —2r i."—U—I"

a. 1 —8a, +4a32/a4
p„T &"" (0) Vector

4a3
(5) (2aIp'+1) 2aIp'+1 —8a,+

—8u, '(p' —1)=0
4a3'

(6) (2aiP'+1)l 2agp'+1 —ga;+. —
l a4

—8u22(p' —1)=0

2u1+ 1 2V2iu2
———2r I"—U I"——— —p„T p" ~0) Vector
a2 (1—p') 2p'a1+1 —8a3+4a3 /a4

2V2ia2 —p„T,~"
~
0) Vector

2p'al+1 —8a3+4ug'/a4

operator, etc. Further, we must restrict the Schwinger
term to the range —2(c(0.Note that we are then out-
side of a,ny simple quark range. That is, no simple bi-
linear quark representation exists for these currents. "
It is by no means clear whether this situation will per-
sist with the inclusion of internal symmetry.

Finally, we remark that the spectrum remains time-
line for n=1, 2, 3, . . . [see Eq. (4.22)], but we have
not studied higher sectors (1Y=2, 3, . . . ). It is also
worth remarking that there is no limit in which J can
reduce to the ordinary dual model: The only way to
eliminate the spin-orbit coupling smoothly is to take
c= —2, in which case K reduces to the usual genera. —

tors, but J does not.

6. Ward Identities

Ke begin by listing the relevant identities:

%-(p) —&o(p)]1' '(k) p'+'(k) = p' '(k) I'+'(«)

&&[K (p+k) —ICe(p+k)+2atk'n], (4.25)

[II:-(p)—&o(p), ~(p)] =o,

because 6 is a function of Jo. Thus, if we are to be able
to use the K-identities to eliminate states, i.e.,

0=(&pl (IC„—E )p&—
&(k )I'+&(k )A(s )

I'+'(k„&)
l 0),

we must take k'=0 for the external ground state. In

'0 When c is arbitrary, the currents cannot in general be written
in terms of the quark operators b and d. In this case, however,
one can introduce the quark operators as separate entities an~. —

way. For example, postulate that

fV.~,b" (m) j=—(y~)""'b"'(n+m. ), etc. ,

which would be true at c=+4, and thus cannot violate ani
Jacobi identities, etc. In this fashion, the Hilbert space may be
enlarged to include quarks. Similarly one may introduce three-
index symbols for baryons.

this case, we find

[J,(p) —J,(p)]r'-&(k) r'+&(k)

= I'&—
&(k) P &+&(k)[J,(P+k) —J»(P+k)],

[Jt(p) —Je(p)]~(p)

=[Jr(p) —Jo(p)] dss'" '(1—&)
'

ds s"(1—s) '[J&(p) —J»(p)]. (4.26)

[J-t(p) —Jo(p)] I0)"=-t ~. (4.27)

cancels state (1) against the first recurrence of the
vacuum [n= 1 in Eq. (4.22)]. (This is precisely the way
the 6rst %ard identity works for zero intercept in the
usual dua, l model. )

Note tha, t we thus eliminate the two ghosts associated
with the time components of m:I& and V ~&.

Now we come to the question of removal of the in-
6nite E-degeneracy. Clearly, the K-identities are tend. -

ing to eliminate the very degenerate states they gener-
ate. For example, we noted above that state (2), itself
E-degenerate with the ground state, is removed by the
first K-Ward identity. In general, the picture is more
complicated, and best discussed through operator equa-
tions for real states.

Thus we 6nd the full infinite set of K-identities working,
but only the first J-identity in play. Below, we shall
construct another model in which both infinite sets of
identities come into play.

As a result of these identities, states (1) and (2) of
Table II are spurious. This is because state (2) is pro-
portional to

[x- (p)-2to(p)]lo)„=,=x,(p) lo)„=„
while the spurious state
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If (n(p) I
is any state whatsoever, then

( (P)ILIA-(P) -Ito(p)], ~&0 (4 28)

is spurious. Real states
I R(p)&, those not eliminated by

Ward identities, are orthogonal to spurious states,

previouslv introduced. We incorporate this extra di-

mension into the algebra via

+oo

Jo——Jo+o 2:ir ."ir.'. , Ito=&o

Lx„(p)—x„(p)],R(p)&=o, »0.
Because of the algebra of the E„among themselves,
only the first two equations need be enforced":

+00

J+=J++-,' Q 7r

(5.2)

L~,(p) -A.(p)] I z(p)) =o,
(4.29)

L&o(p) —Ito(p)]I ~(p)& =o.
Spurious states associated with J are best removed sec-
tor by sector in the usual manner.

There is one simple solution to (4.29), namely, the
ground state

I 0)i~=o, so we may be sure it is real. That
is, the E-identities will eliminate all sta, tes degenerate
with it (the E-degenerate family of the va, cuum; see
Appendix C). This is consistent with the argument of
Appendix D. In general, however, these equations are
very complicated, requiring contributions from an en-
tire K-degenerate family (every sector). For example,
state (5) of Table II does not solve (4.29); only some
linear combination of state (5) plus its entire E-degen-
erate family can solve it. We have studied an iterative
procedure for the solution, but a closed form appears
beyond the scope of our present work. We note, how-
ever, that for the model to be satisfactory, the E-
identities must eliminate all but a finite degree of de-
generacy. At. present, we do not know whether this is in
fact what happens.

Finally, we make a remark about the norms of real
states. For example, T i"Io) (ij spatial) is the only
remaining ghost in the first sector. On the other hand,
this is not a real state, because it does not solve (4.29).
The norm of the first K-degenerate state I

K iT i"I0)]
is 2(1—p') times the norm of the original state. This
feature we find to be generally true among the E-
degenerate states. For timelike p', there is much oscilla-
tion of the norm. Thus, without detailed analysis, we
cannot state the norms of real states.

V. MODEL WITH DOUBLY INFINITE SET
OF WARD IDENTITIES

We were not able to use more than the first J-identity
in the previous model. By introducing a fifth operator
in an essentially trivial manner, however, we can bring
both sets of identities into full play.

We introduce fifth" operators Q'(s), m'(s) with posi-
tive metric,

(ir ', ir ') =n8„, pro' ——&~2po, ,(q', P') =+1 (5.1)

and fifth operators commute with all other operators

"Zero-norm states must in general be handled separately. Ke
want to thank Charles Thorn for emphasizing this point to us."Y. Nambu, in Proceedings of the International Conference on
Symmetries and Quark Models, Wayne University (unpublished).

wliere J and K are the generators of Sec. IV.
Clearly we still have O(2, 1)0(2, 1), etc. , and we will

now boost with Jo. The vertices become correspondingly
0-d) e.g. )

5
~p, n 7I n

f'&+&(&) =e p(
—&o&." x —+&r2&."x 0 3)

n=1 n=l g

etc. As is well known, p;, becomes a conserved additive

quantum number.
To obtain all the Virasoro identities for J, we must,

take the propaga, tor

a=1/(J; —1), (5 4)
and we must have

LJ-(P) —jo(p)]r(&) = I'(7o) LJ-(P+&)—J.(p+&)+ ].
On the other hand, we calculate directly

LJ-(P) —Jo(p)]r(&) = r(1 )I:J-(1+I) —J.(p+&)
y(2a, fo'+7o, ')n], (5.5)

so we need to require

2alk'+k-' =1. (5.6)

k5 ~1 (5.7)

for the external scalars. If we arrange our n-point func-

tions (with an even number of these particles) alter-

nating in sign of k5, then we find by factorization only
two types of trajectories in the system, whose (spin-o,
vacuum) masses are

odd: k5=~1, k'=0,
even: k; =0, ko =+1/2ai,

(5.8)

so that k5 acts like a multiplicative quantum number.
In fact, by factorization one ca,n go to just k5=0 external
pa, rticles, which couple only to k5 ——0 internal trajec-
tories; in this latter model, the fifth operator will no
longer appear at all. Ke have analyzed the first sector
of this k5 ——0 model, and found that at least one other
state (besides the vacuum) is spacelike. On the other
hand, all the first sector states are eliminated by Bose
symmetrization.

But we also need the E-identities. Because E~ contains
no fifth operators, we still have (Ki,h) =0, so we must
still insist tha, t

[It„(p)—It,(p)]rp) =r(a)Lx„(p+u) —z,(p+u)],
which can be done only for 7o'=0. Thus, (5.6) becomes
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VI. DIRECTIONS

In addition to our relatively straightforward "addi-
tive" models, we have studied here two nontrivial
models which indicate a dehnite direction for future
work. To approach a realistic model, we must look. for
representations of 0(2,1) in terms of the set of operator
densities

x"(8)z„(8), V"(8)V„(8), A&(8)A„(8),
T&"(8)T„.(8), P(8)P(8), ~~(8)V„(8),
v„.(8)v. (s), T:"(s)T„,-(e), p.(s)p-(e),

A „-(s)A. (e),
where I', A, etc., are quartics which transform like the
pion and axial-vector current, respectively, and
+=1, . . . , 8 is an SU(3) index. This is not entirely
trivial algebraically, but we expect, as in Secs. IV and
V, discrete solutions and. the 0(2,1)30(2,1) structure.
On the other hand, as we can see from Secs. IV and V,
many details may change considerably on this intro-
duction of SU(3). In particular, one is interested in
knowing how many tachyons are required to have all
the Ward identities in force, and what the mass spec-
trum looks like in general.
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APPENDIX A: QUARTIC COMMUNICATION
RELATIONS

We discuss here briefly the calculation of the com-
mutators necessary to determine the coefficients a& a4
in the model of Sec. IV. Because we are dealing with
singular operator products in s space, a naive calcula-
tion in s space will miss certain operator Schwinger
terms. Such terms can be properly treated with an
e-limiting procedure commonly used in analogous held-
theory calculations, or more simply, the calculation can
be done directly in "momentum" space.

We will discuss the latter. As a sample calculation,
consider LAp, A+j, where

Similarly, we list

+00 +00

:~- "V~,.: 2 ~—"V.
, +~j

+00 +00
= —zc E z n"zy-. ~1+', 2-V n"V, ,a-+1,

+00 +00

L Z:T- ""T...:, 2 T ""T-., +~1

= —(4c+32) P T &"T&„—, n+x &I (A2)

+00 +00

L E:V .V„,„:, P T ."T„,„]
+LE:T."T~,.: Z V-V..-+.j

+00

The commutator of m„& with various operators is also
needed, for example, in deriving the hnal equations. We
have

(z'~")Jp) = 2agr„" —apNV„",—
(~n",&~) = 2aiz'~y~" —a2& Vn+i", —

which immediately leads to (4.8).

APPENDIX B: c-NUMBER LOCALITY OF E&(Z)

Here we argue that E~(z) satis6es a c-number com-
mutation relation with itself,

[E~(z),E"(z)]=z~g~"p(z z'), (—81)

which is precisely the commutator of LQ"(z),Q"(z')] of
the usual dual model. We have been able to show (81)
only through various series expansions, whose con-
vergence we cannot actually prove. With this under-
standing, we will study

p""(z) =Ã"(z),Q"(1)1, (~2)

Ap ——P :V.~V„.:=2+ V „~V„„+Vp~V„„

V „"V„,~~g=2 Q V „"V„,„~g.
n=O

which loses no generality; the general case is reached by
boosting p&" in the usual fashion.

Using (4.18) and (4.11), we write E&(z) as

E"(z)=z 'Q"(z)z
(A1

=Q"(z)+»z L&.,Q"(z)j
Using (4.4) and (4.5), we get after a somewhat tedious
calculation

LAp, Ay] = —2(c+12) P V „"V„,„+x

ln's+, L&p L&p Q"(z)Z+ " (&3)
2!

and we will need

L V~(z), V"(z') J=2z.iz( —2i) T~"(z)S(z—z')
n=—oo +2~iczz'8'(z' —z) . (84)
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We will not be concerned with precise numerical coef5- the (ln»)" expansion. presented above. Clearly there are
cients here but rather only the types of terms. We list many possible expansions, and they all verify (B1).

APPENDIX C: CYCLIC TRANSFORMATIONS,
TWISTS, AND SINGLE VALUEDNESS

I Ito Llano Q"(»)]]~»—~"(»)+»—V"(»)
Gs ds

+~„(»)T"o(»)+V.(») T"~(»),

d 2

Ro L& L& Q"())))" — "()

d+»—V&(»)+s, (»)» T"o(»)—
ds ds po(») =»—&oeo(1)»&o

in complete sets of eigenstates of Jo.

(C1)

+T~"(»)—~,(»)+V, (»)»—T"~(»)
ds ds ~'(») =2»" 'l~}&~le"(1)I&}(&l,

We have to be very careful about finite projective
transformations in the theories with spin-orbit cou-
phng. This is because E"(») contains in general infinite
numbers of nonintegral powers of s, which in turn is
related to the fact that the trajectories are no longer
linear. Thus we have to worry, in general, about slipping

(Bs) off onto another sheet. Let us first see why 8 contains
nonintegral powers. We expand

+T""(»)» V.()»+—or(»)m), (») V&(»)+
ds

and, so on. Thus we can calculate the commutators con-
tributing to p~".

+S(»—1)T~"(»),

+»—T~"(»)8(» —1)+T~"(»)(I'(» —1)
ds

+~ (») V"(»)()(»—1)+
The crucial observation is that the nth term (n)0)
LLEotzo. (neo's)]], e (»)] involves at most the
(n —1)th derivative of or(»). Consequently, this term
when commuted with Q(1) involves at most the (n —1)th
derivative of iI(» —1).When multiplied by (ln»)", which
vanishes as (»—1)",each of these contributions vanishes,
thus leaving only the first term

) ""(»)=LQ"(»),Q"(1))=o~e(»)g"" (Bv)

which proves our initial relation (B1).We also comment
that we reach the same conclusion if we had constructed
E by boosting with Ko instead of Jo.

Finally, we mention that we have checked this formal
method by expanding E in a number of diferent ways.
For example, we break up

Jo ———2ag1.0+6,
vrhere Lo is just the ordinary dual-model mass operator
of Sec. II, and. expand in powers of h. Because LLo,h)
~0, we obtain an "interaction-picture" expansion,
vrhich at any finite order in 6 sums infinite subsets of

P=e-'&" NIO}„o——0, N=J+K
for arbitrary g. This gives us the identity

(C3)

(0I &»e~[* (BlEI &l. . .e&», (*~(()H.
&&I 0)„o (, (."4)

g)l(» () =e or KIl.)l(»)e+oL I—
Choosing ( to map», -o 0, »2 —+ 1, »„-+~ results in

(0
I
ee2E(0 $}'(ol, , elm»

(to p) ' Tc~
I 0} (C6)

It is easily verified that Jo has (some) nonintegraliy
spaced eigenvalues. (It also has, of course, families of
integrally spaced eigenvalues going up from each eigen-
value. ) Thus, for example, we have no reason to expect
that e '~' ohio(»)e'~'~o returns to E(»).

In proving cyclic symmetry of the n-point functions
for external ground states, we can argue that the sheet
structure causes no trouble. Our path is 6rst to note
infinitesimal projective invariance —which implies that
the integrand

(0I e&a»(ot) kz. . .el'»(oil) k~l 0}

is a function only of cross ratios. Then the integrand is
invariant under finite projective transformations. In
particular, the projective transformation which takes
8; —+ 8;+2m leaves the integrand invariant. That is to
say, although each E(»;) has terrible cut structure, it all
cancels out of the integrand.

This makes us wonder if we cannot implement the
sl —+ 0, s2~ 1, s„—+~ finite projective transformations
(and later twists) by single-valued generators. The only
candidate for this in the theory is the set of generators
N whose eigenvalues are integrally spaced. I.et us see
what kind of transforma, tions are generated by N. Ke
study the single-valued transformation
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Now we can formally undo the K g transformation,
which annihilates on the vacuum, giving finally the
g-independent result. This last step is only formal, since
we should really worry about the sheet structure for the
Gnite E transformation. On the other hand, we have at
least given a plausible argument that cyclic transfor-
mations should be implemented by N. %e will risk the
conjecture that such is in fact so, and furthermore
that "twists" should also be implemented by N. An
interesting consistency check on this conjecture is the
following. The twist operator defines a "signature" for
the various states; it would be a disaster if the signature
varied among the E-degenerate states necessary to
form "real" states. In fact, we shall show tha, t twisting
by N defines a unique signature for all the contribu-
tions to a real state. Moreover, of course, the signature
will be integral (&1),and the "square" of the N twist is
unity.

The twist transformation in the usual dual model is

pier(L0+y )gL+ (C7)

So, we find, assuming transformation by N, in our case

g gs~XgÃ+ (C8)

~+&IS)o=O (C10)

Then, we generate this state's E-degenerate family via

{IE)}=(E,) " (E,) IS)..

What is the signature of IS)p? Noting that

iV+r I S)o= (&+r+E+r) I S)o=0,
we have

nl 5&,=(—1)"
I 5), (C11)

where n is the sector number of
I
5)p. Now we claim that

where X=Xo+p' is the "sector operator" introduced
in Sec. IV. The derivation of this formula is identical to
the usual derivation, since it relies only on projective
invariance and field commutation relations. Now we
need a language to discuss all the states E-degenerate
with a given state.

We define the lowest state IS)p (lowest sector num-

ber) in a E-degenerate family by the equation

E+& I 5)p ——0, f&0. (C9)

If this were not zero, then there would be a K-degener-
ate state n sectors lower. We also take I S)p as a mass-
shell state" (zero-intercept theory), JpIS&p=o. Note
tha, t

I S)p is in general not real because

K,
I 5&.=xpI 5& oo.

Finally, we also require that 15)p is free of J spurious
states:

for all the states in the family. As a, simple example, we

calculate

&scalarsI QK )IS)p=(scalarsI e' ~ex+'E &IS)p

= (scalars
I
e x+'e' ~K

& I S)p

=(—1r)"+'&scalars Ie x+'E &IS) o

/+1= (—1)"+'(scalars
I g (—1)"K )+ „I5)p

)c=o K

—
& &'l+1q

=(—)"+' g I I(
—1)" &scalarslE, IS&p. (C13)

a=o k K

In this last step, we used the fact that

&scalars
I
E KpI n& =—0

for m) 0 and arbitrary I, n) (Ward identities). The sum
over binomial coefficients is precisely (—1)'. We have
checked this result also for (K t) 'I 5)p, etc. , but we do
not have a general proof to present. Thus we claim that
any state

I S)p with odd sector number, together with its
entire E-degenerate family, decouples after Bose
symmetrization.

APPENDIX D: CONSISTENCY CONDITION
ON E"(z& AND THE VACUUM

Here we want to argue for the identity

lim I'(k,s)
I
0)„=p——

I
0)s~=p,

1'(l'r s) =s—&os&~Ql» sz&0 Ps =0

relevant to the integration of the n-point functions for
the model of Sec. IV. Ke study

s—J'oe&uQ (1) ~ ss Jp
I 0)

—~
—J'pgv2Q (1) k I 0Kin=0

=& s ")In(p)-&&~(p) Is '«'&'I 0&„„(D2)=

where we have introduced a complete set of eigenstates
of Jo,

~(p)l (p)&= (p)l (p)&. (D3)

Clearly, however, we need sum only over states with
p'=0. Thus far, in our study of the spectrum of Jo we
have found no reason to suspect that p'=0 states exist
with o(0; assuming this, then only states with +=0,
p'=0 survive in the limit s —+~. Thus,

lim I'(k,z) I 0)p=p=&Pe~o "&'"I0)„=p,
z ~no

(scalarsI QI K) =(—1)"&scalarsI K) (C12) where
"The discussion can be generalized to Jo I S)o ———I

I S)o but we
omit the complications for the sake of brevity. In the analogous
discussion of the model in Sec. V, we would of course use only
&oIS&o= IS&o. is the sum over the k'=0 vacuum and its entire E-
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degenerate family. We now claim that

peleq(1 il 0) l 0& (»)
conditions"

this reduces to
[Ei—EO,Q"(1)]=0, (D7)

that is, only the true (sector zero) vacuum contributes.
For example, consider

~*=o(ol «(P)~~"'"'I o&.=o (»0)
="=o(olL&i(P),~~"'" "3

l o).=o; (D6)

then using the fact that Q4(1) satisfies the "stability

~ =o«ILI~'o(P), s «& «jlo&, ,=o.
Similarly, one shows that

(0l (X ) ie&«» i'lo& =0

etc. Q.E.D.

(D9)
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We use analyticity arguments to obtain the constraints imposed by factorization and broken O(4) sym-
metry on Regge daughter sequences coupled to spinless external particles. Our results hold for arbitrary
external masses.

I. INTRODUCTION

"'N Papers I and II of this series, we derived the
~ - consequences of broken O(4) symmetry for Regge-
daughter sequences corresonding to Toiler poles with
half =0,' and integer M~& 1.' Our results were not based
on O(4) symmetry directly, but rather on the require-
ment that scattering amplitudes be analytic at zero
total energy (t=o in our notation). Thus, our work is
partially a derivation of new results, and partially a
demonstration that the requirement of analyticity is
interchangeable with the study of O(4) symmetry.

In Papers I and II we emphasized the trajectory
functions n(k, i'), k=o, 1, 2, . . ., which make up a
daughter sequence. Here we wish to study the reduced
residues y(k, t), and the many new complications which
arise in a discussion of them. In the present paper we
bypass the complications connected with spinning
external particles. Among these are conspiracy relations
and the requirement of factorization in the helicity
indices. We do this by studying reactions involving
spinless particles, as in Paper I. Accordingly, we can
study only sequences with M =0, as coupled to spinless
channels. However, even for this restricted case much
remains to be shown beyond the results derived in
Paper I. First, we want results which are valid for
arbitrary external masses, and which show how the odd
daughters decouple when either the initial or the final

~ This work is supported in part through funds provided by the
U. S. Atomic Energy Commission under Contract No. AT(30-1)-
2098.
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particle pair have equal masses. Second, we must
impose the requirement of factorization, and verify that
the daughter sequence constitutes a Toiler pole when
coupled to equal-mass initial and 6nal particle pairs.
Third, we want to 6nd out if factorization is necessary
to get a Toiler pole, starting from analyticity require-
ments. It has been known for some time that analyticity
and factorization are sNPcieiit to get a Toiler pole
in equal-mass scattering, ' ' but a Toiler pole might
also result from analyticity and continuity in the
masses. We verify that factorization is necessary.

A modification of the procedures of Paper I must be
made so that our results will be valid for arbitrary
masses. We must recognize that a pseudothreshold
(a point where the c.m. three-momentum vanishes)
moves to 1=0 when channel masses become equal. We
must therefore deal only with functions which are
analytic at pseudothresholds, as well as 1=0, if we want
our results to be valid in a neighborhood of t=0 for
all mass configurations. For example, the function
R(k, t) defined in Eq. (I10), which differs from y(k, t)
by a kinematic factor, has a square-root singularity
at pseudothresholds for odd tt because of the kinematic
factor. Such kinematic singularities must be avoided.
Our procedure for doing this is to use the expansion of

Q—(o i( s~) in terms of powers of s,—' instead of the
expansion in powers of (1+s,) ' used in Paper I. The
new choice entails one more summation, but is useful
for all mass configurations.
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