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The correct Feynman rules for chiral-invariant theories differ from the naive rules, The difference is
such that the soft-pion theorems, including the vanishing of the pion mass, are preserved to each order of
perturbation theory. In particular, there are special definitions of the pion field for which all higher-order
corrections to the off-shell pion-pion scattering amplitude cancel at low momenta.

I. INTRODUCTION A calculation which seems to indicate such anomalous
behavior has been carried out by Charap. 4 He finds,
using naive' perturbation theory, that the worst di-
vergences in perturbation theory' do indeed violate
the Adler condition for ~-m- scattering. Moreover, the
pion seems to acquire a mass. However, there is one
definition of the pion field for which Charap shows that
these divergences vanish and for which, therefore,
current algebra is maintained in perturbation theory
(at least to sixth order, which is as far as he carries the
calculation). His procedure does not determine the pion
transformation function f(7r') completely. ' Only the
first four terms in a power-series expansion of f(s.s) are
given':

f(~2) —1 s () 2~2) (F2~2)i
7X5'
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~HIRAL-INVARIANT effective I.agrangians were~ introduced' as a compact device for deriving the
low-energy restrictions placed on S-matrix elements by
current algebra and partial conservation of axial-vector
current (PCAC). The techniques for implementing this
are well known and amount to using only the tree
graphs in the perturbation expansion for any physical
process. I.agrangians obtained from each other by
making general point transformations of the pion field
are all equivalent and yield the same S-matrix elements.

The usefulness of such I.agrangians leads to the
speculation that they might be the basis of a dynamical
theory. For example, restricting attention to pion
I,agrangians, we may define conserved vector and axial-
vector currents, which generate the chiral SU(2)
XSU(2) algebra'; the pion field itself is massless in
such a theory, so that all of the current algebra and
PCAC conditions will presumably be satisfied by the
exact solution and hence by. the perturbation solution
in al/ orders, not just in the tree approximation. This
would possibly provide a method for making unitarity
corrections to current-algebra low-energy theorems.

The question we address in this paper is the following:
Are the masslessness of the pion, the Adler zeros, and
the general-current algebra theorems maintained, order
by order, in perturbation theory? There is reason to
believe they might not be, since the theory appears to
be highly divergent, and examples of anomalous be-
havior for commutators and divergences of currents are
known to exist in perturbation theory for some models. '

A possible interpretation of Charap's work is that
indeed anomalies do exist which render the chiral in-
variance of the theory invalid except for the particular
field of Eq. (1.1). This might be anticipated because

*Work supported in part through funds provided by the
Atomic Energy Commission under Contract Nos. AT(30-1)2098
and AT (30-1)3668B.

f Alfred P. Sloan Foundation Fellow.
'We shall use the notation and conceptual framework of

S. Weinberg, Phys. Rev. 166, 1568 (1968). References to other
papers will also be found in this article.

'S. L. Adler and R. F. Dashen, Current Algebra (Benjamin,
New York, 1968).' See, e.g., J. S. Bell and R. Jackiw, Xuovo Cimento 60, 47
{1969);S. L. Adler, Phys. Rev. 177, 2426 (1969).
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' J. Charap, Phys. Rev. D Z, 1554 (1970).' By naive perturbation theory we mean the theory for which
XI= —Zl and the propagator

d'x e '~ (0 TB„q (x)B„q (0) 0)

is taken to be ik„k„/k'.
6 In this calculation the interaction Lagrangian contains two

derivatives. These derivatives, when acting on external lines, yield
just the powers of momentum needed to obtain the Adler zeros.
In higher-order calculations, however, the derivative can act on
internal lines which are integrated over. These terms, which
violate the Adler theorem, are typically quartically divergent or
are products of quartic divergences.' See Ref. 1 or our Kq. (2.2) for the definition of f(x2).' In Ref. 4 the numerator of the fourth term is given as —163.
This is an error which comes from Kq. (2.4) of that paper. The
quantity (1+2o.~)' must be subtracted from the right-hand side.
When this is done, the values of n; and p; computed there lead
to our Eq. (1.1).

2486



CHIRAL LOOP S

the theory as it stands is meaningless unless a cutoff is
introduced to deal with ultraviolet divergences, and
this cuto6 might be the agency which breaks chiral
invariance. Our investigation shows (perhaps unfor-
tunately, depending on one's point of view) that this
suggestion is false. In fact, Charap's results, for all but
the field defined by Eq. (1.1), are due to an inapplicable
use of naive perturbation theory. ' We show in Sec. II
that a careful use of the canonical quantization pro-
cedure yields rules for expanding the 5 matrix for which
the leading divergences which plague the naive calcula-
tion never appear, this result being true for all pion
fields. Since it is precisely the leading divergences which

appear to give the pion its mass, violate the Adler
theorems, etc. , in Charap's calculation, we are now
able to afhrm that a correct set of perturbation theory
rules does maintain current algebra order by order, all
pion 6elds being on the same footing.

As a byproduct of our investigation we ask, in Sec.
III, whether there is a particular de6nition of the pion
field for which the correct rules as derived in Sec. II
are just the naive rules. The answer is yes, for the 6eld
de6ned by

f(2r'} = (/1'/2r')'/' cot-',y(2r2),

Where y(2r2) SatiSfieS

(1 2)

II. PERTURBATION THEORY FOR
CHIRAL DYNAMICS

We begin by summarizing the relevant parts of the
theory of chiral dynamics following Ref. 1. The gen-
erators of SU(2))&SU(2) transformations are Q', Q2'
with the usual commutation relations. The pion field
satisfies

@ ~b jgabG~G (2 1)

y (2r2) —siny (2r2) = 4 P122r2)2/2 . (1.3)

Since this 6eld gives rise to a Lagrangian for which the
naive perturbation theory is correct, it must be the
field that Charap found, and indeed the expansion 0'f

Eqs. (1.2) and (1.3) in powers of ) 22r2 is exactly Kq. (1.1).
In Sec. IV we consider whether current algebra may

be used to give meaningful theorems for o8-shell am-

plitudes, as well as for physical processes, in a chirally
invariant theory. We 6nd that there are such theorems
for particular dehnitions of the pion field (for which the
double commutator of 2r with Q2, the generator of chiral
rotations, is linear in 2r). These theorems show that to
order q' the loop contributions in perturbation theory
can be interpreted as renormalization e8ects.

~"=—al-'[f(~2)S"+g(~2)~ '],
and it is easy to show that

'[( ' '+ - '+ " ')f( ')g( ')
+2~'~'~'(g'(~')+g'(~') [f(~')+~'g(~') j}].

(2.4)

The invariant Lagrangian for the interaction of these
massless pions has the form

z = ', (D~~). (-D„~),

where the covariant derivative is given by

(D„~).=d./, (2r) 8„~2,

d. 2 (2r) —=d 1 (2r2) /I. 2+2 2 (2r2) 2r.2r 2,

(~2) [f 2
(~2) +l12~21—1/2

d2(2r2) = —[f2(212)+V2r2j '

X [2f I (~2)+g2[f(~2)+[f2(~2)+$2~2jl/2] —1]

Tlllls lf we write Eq. (2.6) as

,'8„2r G-.2(2r)8&2r',
we have

G, l, (2r) =/I2. 2(2r),

(2.6)

(2 &)

(2.8)

(2 9)

(2.10)

(2.11)

(2.12)

which, in terms of the function f(2r2), becomes

G 2 (~) —[f 2 (~2)+$2~2j—lg +[f 2 (~2) +F12~2j—2

X[4 'f'( '}f'( ') —4f( ')f'( ') —~') ~ . (2 13)

We now develop the perturbation-theory rules ap-
propriate to this Lagrangian. Calling II the momentum
conjugate to the 6eld vr„we have

II.= //z/8822r. =G.2(2r) c/22r 2,

ao~. =G-'.2(~)112.

The Hamiltonian is therefore

%=II G ' 2(2r}111,—Z,

(2.14)

(2.15)

(2.16)

K =-', II.G—'. /, (2r) II/, —-'28'2r. G. /(2r) 8,2r 2. (2.11)

It is convenient, for the purpose of dividing the Lagran-
gian and Hamiltonian into free and interaction parts,
to write

tude. Tile fllnCtlOI1 g(2r ) lS

g(2r2) =[l12+2f'(2r2) f(2r2)$[f(2r2) —22r2f'(2r2) j ' (2 3)

and f(2r2), normalized by f(0) =1, is arbitrary and de-
6nes the pion 6eld. It is convenient for our purposes to
de6ne

a1 ag c)t, ~b . . . —&aIe2 ~ c)sb

According to Kq. (2.2),

[Q2'p'g= —2' '[f(2r2)8'+g(2r2)2r n'j, (2.2)

where ) '= f2 is the unrenormalized pion decay ampli-

9 By inapplicable we mean that it violates chiral symmetry.
J. Reif and M. Veltman Lwucl. Phys. 813, 545 (1969)j give a
regulator procedure which justi6es the use of naive perturbation
theory, but the regulator mass is not chirally invariant.

G.2(2r) = 5.2+6.2(2r),

so that Kq. (2.17) becomes

K—3C11+Kr' )

3.'p =
g IIl)II', —2 8'm'g, 8s7rg, )

Kr = —Zl ——2'822r.62.2(2r) 822r 2,

(2.18)

(2.19)

(2.20)
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where the interaction Lagrangian is simply

&r= ,'a„-~.G.b(~)a ~b (2 21)

We see that, as in all cases with derivative coupling,
the interaction Hamiltonian is not simply the negative
of the interaction Lagrangian but there is an additional,
n.oncovariant piece. Of course the Feynman-Dyson
expansion of the S matrix is always covariant; non-
covariant contributions to the propagator of pion field
derivatives ensure this.

The interaction Hamiltonian, Eq. (2.20), is written
in terms of the Heisenberg-picture field operators and
so is not the operator which enters into the perturbation
expansion. To write BCI as a function of the interaction
picture (IP) field operators, we first write it as a func-
tion of 7r, Biz, and II„and recognize that these oper-
ators transform simply into the IP,

~a + Pap

~i~a + ~i Pa p

IIa + ~opap

where q, is the IP pion field. Making these substitu-
tions, we have the interaction Hamiltonian in the IP

~r = 2~pV —aRb(g)'~ Fb

+k~oV.{&'(V)D+&(V)j ').»o~b (2.22)

The usual perturbation rules are to expand in powers of' the object

{OiO(x) i0)={0iTO(x)&' &

Xexp —i d y SCI&' ) y 0 z, 2.23

where O(x) is any operator. Here the S matrix is

S=T exp —i d4y BCI&'P& y

I

(2.24)

8 bh(k') = d4x e' {0~Tq. (x) pb(0) ~0), (2.25a)

5,bh„(k) = d'x e'b*(0~ TB„p,(x)pb(0)
~
0), (2.25b)

and the subscript C indicates that only connected dia-
grams are relevant.

Upon expanding Eq. (2.23) in the usual way, we shall
encounter, for interactions of the type in Eq. (2.13),
the following IP propagators:

The explicit form of these is

A(k') = i/(k'+i 4),

h„(k) = k„/(k'+i 4),

A„,(k) =ik„k„/(k'+ie) i—g„og,o

(2.26a)

(2.26b)

(2.26c)

Equations. (2.22), (2.23), and (2.26) completely
specify the Feynman-Dyson expansion. Although both
Eqs. (2.22) and (2.26c) have noncovariant pieces, the
perturbation theory will be covariant in every order.

III. COVARIANT PERTURBATION THEORY

It is somewhat inconvenient to use the formalism
developed in Sec. II to do higher-order calculations.
It is frequently supposed that one can ignore the com-
plications which arise from the noncovariant pieces. It
can be shown, for certain interactions with derivative
coupling, that not only do the noncovariant pieces of
the Hamiltonian and propagator combine to give a
covariant result but these extra pieces cancel. That is,
it is correct to do perturbation theory using the naive
iules I

For nonlinear Lagrangians, of the type we are con-
sidering, this result is not true. This may easily be seen
from the explicit calculation of Appendix B. In fact,
it is precisely the terms which violate chiral invariance,
using the naive rules, which are canceled by the addi-
tional terms in the Hamiltonian and propagator.

In order to see more clearly what these extra terms
contribute, it is convenient to reformulate the theory
in terms of a covariant interaction Hamiltonian. We
show in Appendix A that for a system defined by Eqs.
(2.22) and (2.25) we can drop the noncovariant piece
of the propagator Eq. (2.25c) by using as the interac-
tion Hamiltonian

4™Pa~IIb(V')4i~V'b

+-', i64(0) Tr in[1+6(q) j, (3.1)

which, of course, is covariant. Explicit calculation veri-
fies that the two theories give the same results. A similar
structure was first discovered by Lee and Yang in a
related context. "

We are now in a position to understand Charap's
result that, using naive perturbation theory, there is a
unique pion field, for which the leading divergences,
which are responsible for the violation of chiral in-
variance, vanish. Since these terms are not present for
any theory using the correct Hamiltonian, Eq. (3.1),
and since this Hamiltonian is to be used with the naive
rules, it is clear that Charap's field is the one for which
Eq. (3.1) reduces to the naive Harniltonian, i.e. ,

Tr ln(1+6) =Tr lnG=O. (3.2)

h.ba„„(k)= d'x e'"*(0~Ta„y.(x)8„qb(0) ~0). (2.25c) "Y.Nambu, Progr. Theoret. Phys. (Kyoto) 7, 131. (1952)."T.D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962).



C H I RAL LOOP S 2489

so that Eq. (3.2) becomes

The use of Eq. (2.12) for G, gives

To find the pion field corresponding to Eq. (3.2), we previously been established that this is sufficient to
use the identity construct the entire amplitude to second order in the

Tr lng=ln detG, four-momentum. "The comments we make are easily
generalized to the m-point amplitude with two oft-shell

pions, although we shall not give the details'for these

detG=1. (3.3) processes here. As usual, we define

detd =1, (3.4)
abed(q q q ) — d4Xd4yd42 e

—rq&a—4qqq —4qcc

where the positive sign has been chosen so that (ulti-
mately) the boundary condition f(0) =1 can be im-

posed. Finally, from Eq. (2.8) we see that the following
is equivalent to (3.4):

dib(qr2)+qrqdi2(qr2)d2(qrq) = 1. (3.5)

This yields a differential equation for the function f(qr2)

which determines the transformation law of the pion
field. From Eqs. (2.9) and (2.10), we obtain this differ-
ential equation,

X(0~ TA„(x)A b(y)qr'(s)qrd(0) ~0), (4.1a)

T abc(q q ) — d4xd4y e rq)a iqqy— —

X(O~ TU (x)qrb(y)qr'(0) ~O), (4.1b)

T'ab''"l(q) = d'x e 4qa(0~ To"(x)o'"(0) ~0), (4.1c)

[f2 (~2) +$2~2]2 f(~2) 2~2f I (~2) (3 6)
Ta["'l (q) = d4x e 'q*(0

~
Tqr (x)ob"(0)

~
0). (4.1d)

In order to solve (3.6) we let

f(qr2) = (xqqr2)'" cot-', y(qr2) (3.7)

and find that y(qr2) satisfies the transcendental equation

y(qr') —siny(qr') =-', (]l'qr')2". (3.8)

As pointed out in Sec. I, this yields an f(qrq) whose
power-series expansion agrees with the terms computed
by Charap.

It is worthwhile emphasizing that our approach shows
that this field is not special in the sense of being the
unique one which satis6es chiral invariance in pertur-
bation theory. Att definitions of the pion field are on an
equal footing when the correct perturbation rules are
used and they all yield a chirally invariant 5 matrix. It
might be convenient to attempt to use Charap's field
in calculations since the perturbation theory, using it is
the naive one, but the complexity of Eqs. (3.7) and (3.8)
appears to negate this convenience.

IV. OFF-SHELL CURRENT-ALGEBRA
THEOREM S

We have seen in Secs. I—III that a chiral-invariant
perturbation theory exists for all definitions of the pion
field. The hope has often been expressed that such a
theory could be used to carry out dynamical calcula-
tions that go beyond the tree approximation. However,
in such calculations one generally has to deal with soft
pions that are o8 the mass shell. "We consider, in this
section, the current-algebra theorems which can be
used to validate the tree approximation even off the
mass shell.

We shall derive a theorem for the vr-m. scattering
amplitude with two pions o6 the mass shell. It has

"S. Weinberg, Phys. Rev. D 2, 674 (1970).

Here the vector current V„' and the axial-vector current
A„are related to the generators of chiral transforma-
tions of Eqs. (2.1) and (2.2) by

Q = d'x Uo (x), (4.2a)

Qb = d'x Ao (x). (4.2b)

hm qql qqq"T„c '"(ql, q2, q2
——q)

qI —&0; q2-+0

=(q') 'A '~'""(ql=o, q2=o, qb=q)

—1Td [abc] (q)+1Td [bac] (q)+1Tc [abd] (q)+2 Tc [bad] (q)

+T[bcl [ad] (q)+T[acl [bdl (q) (4 4)

In this equation the constant A is the inverse of the
physical pion decay rate, A= f ', and M'b'd(ql, qq, qb)

"S.Weinberg, Phys. Rev. Letters 17, 617 (1966).

It is easy to derive the Ward identity (recall that in a
chiral-invariant theory, of the type we are considering,
the axial-vector current is conserved):

qql" Zqq"T„, ' (ql, qq, qb)

=Zq 22(q2 ql) "Tlc (ql+q2) qb)+ 2T (q4)
+1Td [bac]

(q )+1Tc[abd] (q )+1Tc[bad]
(q )

+T[bc] [ad]
(q +q )+T[ac] [bdl

(q +q ) (4 3)
where

q4= —qj —q2 —q3.

We now let q~&, q2" —+ 0, remembering to pick up the
pion poles in the axial-vector current lines on the left-
hand side of (4.3),
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In general, a theorem of this type is not very useful,
beyond telling us that the pion scattering amplitude
vanishes as q ~ 0, which is simply the Adler condition.
This is because 0", as given by Eq. (2.5), is a com-
plicated function of x, and we have no way of evaluating
the right-hand side of Eq. (4.5). To make further pro-
gress, we must ask for what definitions of the pion field
is 0'" simple enough for us to find the right-hand side
of Eq. (4.5) exactly? The answer is clear; 0'b' must be
linear in the pion field. We see from Eq. (2.5) that to
implement this we require

f(pr2)g(2r2) =const=c, (4.6a)

g'( ')+g'( ')Lf( ')+ 'g( ')]=0 (4.6b)

Equations (4.6) have two solutions [g(pr2) is defined

by Eq. (2.3)].In the first place, we have

g(2r2) =0,
which satisfies Eqs. (4.6), and so

&abc &a/bc

From Eq. (2.3), then, we find

f(~2) (1 g2~2)1/2

(4 7)

(4.8)

(4.9)

This solutions corresponds to the well-known nonlinear
version of the 0- model.

The other solution obtains when g(2r2)WO, so that
[reCalling that f(2r2) CannOt be ZerO SinCe f(0)=1]
c&0. It is easy to combine Eqs. (4.6) and (2.3) and
obtain c= —A.', so that for this model

is the usual Lehmann-Symanzik-Zimmermann (LSZ)
off-shell pion scattering amplitude. The 0. propagator
terms have no pole at q'=0, and hence start o6 like
a constant in a power-series expansion in q', while the
amplitudes T &""' do have such a pole and so start off
like q '. Therefore, we see that we have the theorem

~abed(0 0 ~)
—+2~2 ljm 2q2[ 7d[abc] (~)+T [dbac] (~)

q2~P

+&"'"()+2"""()]+0(f') (45)

(4.9) and (4.12). Respectively, this theorem is

&abed(0, 0,(1)

(gad/bc +.gacg bd)

=A'q' +o(9') (4 13)
(2$abgcd+3)ad/bc+3)acgbd)

We see, of course, that the o6-mass-shell theorems differ
for the two different definitions of the pion field. Equa-
tion (4.13) represents a kind of renormalization theorem
for these two models. In the tree approximation, using
the Lagrangian appropriate to either Eq. (4.9) or Eq.
(4.12), it is easy to find

(g dgabc+gacgbd)
1[d' '"(00 (7) =]2(72 (4.14)

(2)abfcd+3)adgbc+3t]acgbd)

The total effect of all the higher-order (in ]12) graphs
is simply (to order (72) to renormalize multiplicatively
]12=(f ') '. This can be verified by explicit calculation
using either version of the chiral-invariant perturbation
theory which we have developed.

Alternatively, we may say that for these two theories
the tree approximation is as good off the mass shell as
on the mass shell. The effect of loops, to order q', is
taken into account by simply replacing the unrenor-
malized pion decay constant by its physical value. Of
course current-algebra theorems of this type are in-
herently low-energy theorems, so we are not implying
anything about the validity of the tree approximation
for hard pions.

1Vote (bdded in 222anuscnf)[ While. this work was being
prepared for publication, we received papers [J.Honer-
kamp and K. Meetz, Phys. Rev. D 3, 1996 (1971),
and J. Charap, Phys. Rev. D 3, 1998 (1971)]which pre-
sent essentially the same material as our Sec. III. Also
we have learned of the following related investigations:
D. G. Boulware, Ann. Phys. (N. Y.) 56, 140 (1970);
A. Salam and J.Strathdee, Phys. Rev. D 2, 2869 (1970).
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&abc 2~at]bc+debt]ac+~cd')ab (4.10) APPENDIX A

In addition we have from Eq. (4.6b)

g2 ( 2) +g& ( 2)[ ] 2g
—

1(~2)+~2g (pr2)] —0

which has the solution

g(2r') = —2]).'[1+(1—4]).'2r')'"] '

f(2r') =-'[1+(1—4](')r') '"]
(4.11)

(4.12)

This solution has the property that the pion 6eld trans-
forms as a member of the (1,1) representation of
SU(2) XSU(2).

Returning now to Eq. (4.5), we see that we have an
exact current-algebra theorem for these two cases,

We derive the e[fective Hamiltonian [Eq. (3.1)),
which permits the use of naive Feynman rules in the
Dyson expansion of the S matrix. The result was ob-
tained by Lee and Yang, " in another context, by ex-
plicitly summing the relevant graphs in perturbation
theory. Here we use an elegant functional technique. "

The S matrix is given by

z
5=T e P — d'* c".(*)H., „„(*)c,(*)); (Ai )

2

'4The formalism employed here is due to J. Schwinger. We
learned how to exploit it from K. Johnson, whose instruction is
gratefully acknowledged.
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H b,„,=G.bg„.—LG'(1+6) '7.bn„n„. (Alb) Thus the formula for S is

A unit timelike vector e„has been introduced. For
future use, we determine H ', ~ „„,the inverse of II y,„„.

ay- — (S=:exp — Q+il &
I

H Q+il &:.(A6)
2 4 BQl 4 BQ

+ah, fjtv+ bc, v'cogvv = ~acgpe p (A28)

H '
b, „.=G '~bg„.+a.bn„n. . (A2b)

The propagators which are used in evaluating (A1a) are

S satisfies a differential equation in Q which is de-
rived by differentiating (A6) by Q:

5S
t

=I iHQ —H~ S.
5Q E 5Q

(A78)(oI 2'b. (*)b b(y) I o)=i~.b(x —y),

&olr~ .(*)&,(y) I o) =ia ~.,(x—y),

(A3a)

(A3b)
The solution is

&olrp~. (*)p"b(y) lo)=-'a~a ~..(x-y)
in'"a—.ba4 (x y)—

iA~—".b(x y)— (A3c)

S=c:expLliQ(H '+&) 'Q7: (A7b)

Here C is a constant independent of Q. To determine C,
we differentiate (A7b) with respect to H and set Q
equal to zero:In order to study the effect of replacing the nonco-

variant propagator A"",b(x y) b—y the covariant object

Z&",b(x y) =—h&",b(x y)+—n~n"a, bb4(x y)—
= —a~a "a.b(x-y),

8H g p 5H
(ASa)

a
= —-', xC——,'i a—~ S

hQJ 8Q o=p6Hgp

An alternate formula for 5S/6H may be obtained from
we exhibit the dependence of S on &"" b x—y; i.e., we
perform all the contractions in (Ala) between &p", and

q "q. The computation may be performed by a trick: bS
y&, (x) is replaced by

~~.(*)+i d4x'Z»'. ..(x—x')
aq".(x')

= —,'~c+-,'&(H-'+~)-'~c
= —-'(4 '+H) 'C. (ASb)

ZS=:exp — d4x (p&.(x)
2

+i d4x'44»'. ..(x—x')
a~- "'(*')-

XH.b, „„(x) (p".(x)

+1 d x"6""'bb~ (x—x") —:. (A4)
ay"'b (x")

Note that H, ~,„„does not depend on yt",. Since we are
uninterested in contractions with y„ the dependence of
H &„„on that variable may be ignored. The colons
in (A4) indicate that normal ordering, with respect to

q», has been performed; however, contractions with

y, have not been evaluated.
What follows will be vastly simpli6ed by using matrix

notation. The field y", (x) is considered to be the vector
Q, labeled by the isospin index a, space-time index t4,

and coordinate "index" x. Also the matrix 4 is intro-
duced: A=AI'", b(x —y). Finally, we define the matrix
H and its inverse H '

H=H. b,„,(x,y)= .Hb, „,( )xB'( xy), (ASa)

H- =H-'„, ,„„(x,y) =H-'. , „,(*)a'(x —y) . (ASb)

S=S expL:', ln det(1+Hn) 7, (A11a)

S=exp( ——,
' ln detH) expL ——,

' ln det(H '+X)7
X:expl -', iQ(H '+X) 'Q7 . (A11b)

From (A2b) we see that H is given by the covariant
expression

(A12a)

(A»b)

H =G.b(x)g„.a4(x —y),

Hn=G. b(x)n„n„a'(x y) . —

The second equality follows from the 6rst with the
help of (A7b); the last term in (ASb) is a rearrangement
of the previous expression. The resulting equation for
Cis

ac/bH = —-'(4 '+H) 'C. (ASc)

The solution is given in terms of the Fredholm deter-
minant:

C=l det(1+cLH)7'". (A9)

fn offering (A9), we have fixed an arbitrary constant
by the boundary condition SIH=b ——1. Therefore, the
explicit form for S is

S=exp( ——,
' In detH) expL ——,

' ln det(H '+4)7
X:expi-;iQ(H-'+~)-'Q7: . (A1O)

Let us now rewrite (A10) in terms of X=4+n, and
H—'=H —'—n. Here n is the noncovariant matrix
n~n"a. b84(x —y).
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FIG. j.. First-order contribution
to pion propRga, tor.

The explicit factor occurring in (A11a) may be eval-
uated from (A12b).

In det(1+Hn) =Tr In(1+Hn)

d4x 8'(0) Tr inL1+G(x) g. (A13)

On the right-hand side of (A13), the trace is performed
only over the isospin indices.

The final expression for 5 is

5=8 exp i d—'x -,'ib'(0) Tr lnG(x) . (A14)

According to (A10), (A11b), and (A12a), 8 is the 5
matrix computed from the interaction Hamiltonian
—&y& G,gyes„with the covariant propagator

Z"".i, (x—y) = —8"8"A.i,(x—y) .
Therefore, 5 may be evaluated with naive Fcynman
rules, provided the interaction Hamiltonian is chosen
to bc

Xr"P& = —-'p" G, i, p„i+-', i84(0)Tr InG. (A15)

APPENDIX B

In this appendix we consider the correction of order
X~ to the pion propagator, using the noncovariant per-

turbation theory developed in Sec. II. We expand Eq.
(2.22) as a power series in Ii' and obtain

3'.I&'P&= ——,'O.gX'q'8 q 8&q

—-', Pili'p'8„y'q '8&y'+0 (Ii') . (81)

We take note of the fact that the expansion of the non-
covariant piece of Eq. (2.22) starts off as I~' and, thus
does not contribute to this calculation. The constants
ni and Pi are those defined by Charap.

Now since, to this order, 3.'~('P& =—ZI, the calcula-
tion proceeds just as in Refs. 4 and 5 except that we use
the noncovariant propagator of Eq. (2.26c). The Feyn-
man diagram is shown in Fig. 1.We note that the most
divergent contribution, the term which apparently gives
thc pion its QlRss occuI's wlicn both dcI'lvatlvcs Rct on
the lines of the closed loop. Working this out, we 6nd
it is proportional to the trace (in p and i) of b,„„which,
from Eq. (2.26c), vanishes. Thus there is no term which
breaks chiral invariance coming from loops which begin
and end at the same point. The total contribution of
thi. s diagram to the pion propagator is

Thus we scc thRt thc pion I'cn1Rlns massless to this OI"dcI'

independent of thc choice of the pion field.
The point we wish to emphasize is that the nonco-

variant piece of Kq does not enter the calculation; the
chiral-invariant result follows simply by taking the
noncovariant character of d„„into account. From this
we sce immediately and directly that the two nonco-
variant pieces do Not simply cancel; they cannot be
dropped.


