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Rules are presented for calculating loop diagrams in a dual-resonance theory with nonlinear trajectories.
Explicit expressions for the self-energy graph, the vacuum bubble graph, and the vertex graph are given.
In the limit of linear trajectories the integrands of these graphs diverge. This is in contrast to the behavior of
the tree graphs which approach the Veneziano tree graphs in the same linear limit. It is also shown that
when the trajectories are nonlinear, the self-energy graph including the J'de is finite. It should be empha-
sized that these rules have been developed without consideration of the factorization properties of the non-
linear E-point Born term. In this sense they are analogous to the original Veneziano-loop-diagram rules of
Kikkawa, Sakita, and Virasoro, which were subsequently modiled by the requirements of factorization.
However, although our rules may likewise be modihed, they present a simpli6ed context for developing
techniques which are of general value for the study of the nonlinear theory.

I. INTRODUCTION

~N a previous paper' we have given rules for con-
stl"uctlQg gcQcl allzatioQs of tlic Vcnezlano E-point

functions' ' which have nonlinear trajectories. The
pole structure of these generalizations is that of the
E-point planar tree graphs. In a certain limit the
trajectories become linear and the functions become the
Veneziano Ã-point functions. This limit and other
properties will be investigated in another paper. '

Our rules for constructing planar tree graphs are
simple and suggest simple rules for loop diagrams. In
this paper we assume these simple rules and investigate
the properties of vacuum polarization, self-energy, and
triangle graphs.

It is possible that a study of factorization might
modify the rules set forth here just as the work of
Fubini and Veneziano modified' the loop-diagram rules
of Kikkawa, Sakita, and Virasoro. ' However, we have
not yet studied in detail the problem of factorization at
the high-spin poles. This may be more dificult than it
was in the case of linear trajectories. The results of the
present paper provide considerable motivation to pursue
that problem. Briefly, our results are as follows. (i) In
the limit where trajectories become linear, our rules
lead to expressions which are diGerent from those ob-
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tained from the rules of Kikkawa, Sakita, and Virasoro.
(ii) In the same linear limit our expressions for the
integrands of loop diagrams generally diverge. (iii) The
self-energy bubble with nonlinear trajectories has been
shown to be finite. The finiteness of other graphs has
not been investigated.

The self-energy graph is treated in the most detail
because it is the simplest example of techniques which
apply equally well to other graphs.

II. RULES FOR LOOP DIAGRAMS

First we will state the rules found in Ref. 1 for con-
structing a dual Ã-point Born term for spinless external
particles corresponding to a given set of tree graphs.

(a) Introduce a quantity o.;=ap,'+b for each internal
line I„which carries distinct momentum p, in the given
set of graphs.

(b) Write a multiple product over I.; including for
each L; the factor

where fo=1,

and q is a parameter, 0(q&1. The factor (1) has an
infinitenumber of polesatg;=q ', where'=o, 1, 2, . . ..
The product defined by rule (b) yields a multiple power
series in the variables 0., with simultaneous poles in all
the variables.

(c) Under the resultant multiple sum, introduce a
factor q"'"i for each pair of variables p, and p, which
are dual to each other. (p; and p; are dual if there is no
Feynman diagram among the given set of tree graphs
which contains both lines I-; and I-,.) The q"'"i factors
guarantee the absence of simultaneous poles in the
"dual" variables 0.; and 0;. They produce a residue at
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each pole in 0; which is a polynomial in the dual
variables. '

We now use the same rules (a)—(c) in order to con-
struct the integrands corresponding to planar loop dia-
grams such as those depicted in Figs. 1, 3, and 4. This
guarantees that the residues of the spin-zero poles of
these integrands wi)l be products of amplitudes corre-
sponding to planar tree graphs. (See Secs. IV and VII.)
We are unable to say anything about factorization prop-
erties at the higher-spin poles. To complete the rules for
loop diagrams we add:

(d) Include 1'd'k for each loop, where k is the loop
momentum. (In Figs. 1 and 4 the loop momentum is

po, while in Fig. 3 the loop momenta are pq and p2.)
The first three rules define the loop-diagram inte-

grands within the domain of convergence of the pre-
scribed multiple power series. Using formulas given in
Sec. III one can perform summations and thereby
obtain expressions which permit analytic continuation
to all values of momenta except for neighborhoods of
the propagator poles. This procedure provides useful
representations of integrands and is explicitly carried
out for each of the examples discussed in this paper.

III. NOTATION AND USEFUL FORMULAS

In Ref. 1, some formulas are derived which are useful
in performing the sums we will encounter. They involve
the infinite product

G(z) ~=o f„
(7)

In this paper we will use formulas from the mathe-
matical literature dealing with basic hypergeometric
series" "which are de6ned by

A@8(&1& 2o& roA i f 182& .&~Bi z)

- (~~)a,- (~~).,- z"
(g)

-=o (&~)Q,-" (&s)Q,- f-
The series in Eqs. (4) and (7) are special cases of this
series. - There exist tables" of identities involving these
functions with which one can study various asymptotic
limits.

As the simplest example of the use of the rules of
Sec. II and formulas (4) and (5) of this section, let
us construct the four-point-function Born term B4(s,t)
in the case where N,-channel exchanges are forbidden.
The rules of Sec. II then give the following expression
for B4(s,t):

and

f-=(V)e,-=(1—0)(1—i)" (1—p). (6)

The expansion (4) converges for ~z~ (1.When a=0,
Eq. (4) becomes

G(az)/G(z) possesses the power-series expansion'

G(~z) - (o)..-
z"

G(z) n=o f„

(3)

where a=as+b and r=at+b
Using Eqs. (4) and (5), we can carry out the above

double summation. This yields the result

0" r G(0r)'
B4(st)= Q —q""—=

""=' f- f- G(~)G(r)
(9)

The right-hand side of Eq. (9) is just the form of the
four-point function or'iginally proposed by Coon. ' The
poles of B4 arise from the zeros of G(0) and G(r). The
pole at 0=as+b=1.—has spin zero because the residue
obtained from (9) is independent of r and hence also t.

Fxo. 1. Self-energy Feynman-like
diagram (a) and the two tadpole
Feynman-like diagrams (b) and (c)
which are related to (a) by duality.
The external lines have momentum
pj.—p2. The various internal lines have (b)
momenta po —pI, po —p~, or 0. The
terminology used in describing the
diagrams and the momentum labeling
follow Kikkawa, Sakita, and Virasoro,
Ref. 9.

(c)

Pp

P)

Pp

P2

IV. SELF-ENERGY GRAPH

The simplest loop diagram is the spin-zero, self-
energy graph of Fig. 1(a).This graph is dual to the two
tadpole graphs of Figs. 1(b) and 1(c).These graphs are
analogous to those of Kikkawa, Sakita, and Virasoro'
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U. P., London, 1935)."Higher Transcendental Functions, edited by A. Erdelyi
(McGraw-Hill, New York, 1953), Vol. 1, p. 195.

"L. J. Slater, Generalized Hypergeometrk FNnctions (Cam-
bridge U. P., London, 1966).

» D. B. Sears, Proc. London Math. Soc. 53, 158 (1951); 53,
181 (195i).

14 D. (."oon, ',, Phys. Letters 29B, 669 (1969).
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and form the basis for the construction of the self-
energy graph according to the rules of Sec. II.

The momentum of the external line in these graphs
is Pl —P2. The momenta of the propagators in the loops
are pl —pp and p2 —pp and the tadpole tails have zero
momentum. According to the rules of Sec. III we
introduce

apl=2201(pl pp) +bpl

a02 2202(p2 pp) +b02 2

all 1111(pl pl) +bll bll 2 (12)

Or22=i222(p2 p2) +b22=b22 ~ (13)

We must write a quadruple sum Lrule {b)j which has
poles in each of the 0,, From Fig. 1 we see that the
propagator corresponding to 01~ never occurs with the
o02 prOpagatOr (i.e., the p2 —pp internal line) Or With
the 0-22 propagator. Similarly the propagators corre-
sponding to 0.~2 and Ooj do not occur in the same dia-
gram. The duality of these propagators is incorporated
in the multiple sum by introducing the appropriate
22"'"2 factors according to rule (c). Including one integral
over the loop four-momentum k=pp )rule (d)j, we
obtain the expression

Ke now illustrate the use of the formulas of Sec. III
in connection with our rules by deriving the correct
factorization properties of Eq. (15) at spin-zero poles.
&»ng Eq. (&) we can carry out the summation over
2202. This yields the factor G '(o.02'"»), which from Eq.
(3) has poles at o02 ——q '"»+", where l=0, 1, 2, . . .. The
spin-zero pole at cr02

——1 arises only from the term ej l =0.
The residue of cT02 at this pole is then proportional to
the remaining sums over @2~ and eo~, i.e.,

~oj. "" ~22 ""
gn01n22

n22 2n01 n22

which is just the four-point function Eq. (9) for the
forward scattering of particles of momenta pp —p, and
p, —p, . (See Figs. 1 and 2.)

We can use Kqs. (9), (7), and (5) to obtain

G(Orola22g ") lr02"" oil "
E— gn02nll

0 G(apl)G(2722I1 '2) f2222 f2222

G(o'plo 22I1"22)

n, 22=0 G(o 0 1)G(o'22'" 22) G(lr02q222") f
G(apl~22)

G(a.pl) G(a 22) G(0.02)

where 8 is given by the analytic continuation of

n01 0 n02 0 nil 0

all nz~=o n01 n02 nil n22

)(q22022222+22022211+22»2222 (15)7

which has four propagator terms and three duality
factors and which convergesfor all ~o,;~ (1.The ~a~ (1
restrictions on the constants O.i~ and 0-~~ are just re-
strictions on the parameters b~l and b22 whereas the
other restrictions can be met by choosing appropriate
ranges for the values of the momenta. Analytic con-
tinuation to all momenta is trivial after we perform
some of the sums in Eq. (15). If we should want

~
bll

~

or ~b22~ to be greater than 1, we can define E by
analytic continuation of E in b~~ and b22.

|722 q, nil &02 q, nil oil

00%'2& q, nil nil
{16)

By the ratio test, the sum in Eq. (16) is seen to con-
verge because ~all~ (1 has already been assumed.
Thus, Eq. (16) provides a continuation of E which is
suitable for use under the integral in Eq. (14). In the
notation of Kq. {8),

G(lrpllr22)E= 2C l(o222a022 Orpllr222 lrll) ~ (11)
G(apl)G(022) G(o02)

%e will now investigate the asymptotic behavior of
E in the ko component of the loop momentum k because
of its relevance to the convergence of the self-energy
loop in«gratlon
~oo2~ —+ 022. To determine the behavior of E in this
asymptotic region we note the following particularly
useful identity":

G —
~G

—~G(e) 241(a,b; e; x)
b) e)

FIG. 2. Loop diagrams and the tree graphs which are
obtained from them by factorization2

"The particular identity we use is designated III(c) on p. 178
of Ref. 13.
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5'(s) —=G(s)G(V/s).

The I/0 and 1/I} factors in the C"s will lead to simple
eXpreSSiOnS aS b ~ oo and e —+ cc. StraightfOrWard
substitution of tllls ldelltlty II1 Kq. (17) gives

E=
G(~01)G(~02)G(V/~01)G(g/~02)

g(p 02011) 0'010'22

6 G„,, „, .„.„...)
g go'o2

X24'j.
0'oy &p&022

S(0PIO 22) 0 02011 g
-- G

g g(Top g
X2C I —. . .022, (20)

goa Ooaozs Oo201x

which exhibits the o-(g~o-o2, o.ji~ a22 symmetry of
the defining representation (15). We note that

plicated but harmless multiplicative, nondecreasing
factors to G(s). Using Kqs. (24) and (25), we find that
as (kp! —+ ~,

ln'( —aplk02) —', »{—opikp')

111 ( &02kp )ln( —+02kp )in&»

lng
+c2 exp

2 lnq

ln( —apikp )lnp. 22—
2 1I1(—II02kp')—

lnq

where the constants ci. and &2 depe
arid. 0-22. Since 1.nq is negative, it is clear that E decreases
faster than any power of ~kp~ as ~kp~ ~ pp alollg ally
path which avoids the poles of 8 coming from 1/G(p 01)
and 1/G(002). The usual 20 prescription displaces the
poles into the second and fourth quadrants of the kp

plane and the asymptotic behavior (26) allows us to
rotate the kp contour from the real to the imaginary kp

axis. In the resulting four-dimensional Euclidean inte-
gration we take pi —p2 spa celike, let pl —p2 ——Q,
i (pl p2)0 —Qp, sh——ift the origin and change to spherical
coordinates to obtain

G(0) =1 (21)

&o1 @oj.
lim

! o! 0 02 goo
(22)

M( —Q') = —42r2

and from Kqs. (9), (5), and (4),

2CI(o,o; 0; s) =Iep(o; 2) =G(as)/G(s).

Using Kqs. (19)—{23),we easily find that

G(+020 II)G(F010 22/II02)

G(p 01)G(p 02) -G{+01022/+020 11)G(0ll)

G(&01022)G(F1020»/&Ip1)

G(+02&»/+010 22)G(&22)-

(23)

(24)

Inspection of Kq. (26) shows that the asymptotic falloff
of K is independent of pi or p2. Thus, without repeating
any arguments we can see that independent of Q and. 0
the E&00 behavior of

' E—is given by (26) with the
replacement ko' —+ —E'. Therefore, the E integration
in Kq. (27) is obviously convergent for 0& 8(m. and a
region of Q (including the spacelike pi —p2 region) con-
trolled by singularities of the integrand. We conclude
that the self-energy graph is finite in the nonlinear q& 1
theory.

lnG(s)-—
ln'( —s)

+-', ln( —s)
2l

(25)

as!s! —+ 00, as long as we remain a finite distance away
from the zeros of G(s). In the Appendix we derive the
asymptotic behavior of G(s) on large circles in order to
provide a clear proof that the asymptotic behavior
(25) holds everywhere on the circles as long as these
pass between the zeros. The next leading terms in the
asymptotic series (25) for lnG(s) all contribute corn-

"J.E. Littlewood, Proc. London Math. Soe. 5, 361 (1907);
G. N. Watson, Trans. Cambridge Phil. Soe. 11, 281 C'1910).

as
~
kp! —+ ~ . The leading terms of the asymptotic series

of lnG(s) are given by' "" V. SELF-ENERGY GRAPH IN THE LIMIT OF
LINEAR TRAJECTORIES

tA'e will now investigate the interesting question of
the initeness of the self-energy graph in the Veneziano
limit q~ 1. In the case of our four-point planar tree
graph''4 it was necessary to include a multiplicative
constant which vanishes as q ~ 1 in order to obtain a
6nite four-point function in the limit q

—+ 1. In order
to determine the corresponding q-dependent factor for
the self-energy graph we mill relate the self-energy
graph to the four-point planar tree graph by factor-
ization of a spin-zero pole.

In order for the four-point planar tree graph to be
nontrivial in- the limit q

—+1, the fT,;s must have q
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dependence of the form' " In Ref. 14 it was shown that

where
o =1+(1—q)o',

lim o'&0.

(28)

(29) G(o01)G(o»)

(1—q)G(q)G(~»o22)
lim- =8(—o.01', —o.22'), (35)
q-+0

In the limit, we obtain'" the Veneziano four-point
function with (limo') as the linear trajectory function.

Using Eqs. (17) and (3), we find that the residue of
the spin-zero pole of E at o 02' ——0 (ao2= 1) is

G(aoio22)
2c1(o22)1 j o01o22j o11) ' (30)

(1—q)G(q) G(o»)G(o22)

From Eqs. (8) and (5), we see that this 2C 1
——1. We can

write the residue (30) in the form

(1—q)G(q)
lim

G(o02)

Using Kqs. (3) and (28), we can write

(36)

(1 -q)G(q)

G(o02)

1—
q oo 1 q

1—oo2 &=» 1—q"0'o2

where B(x,y) is the beta function which is finite every-
where except at its poles. We next consider

(1—q)'G'(q)

(1—q)G(q) G(o 01o»)

G(a»)G(o22)
(31)

qO

&=1 1 —
q

—(1—q)o'02 q

where the term in square brackets is just our four-point
function' " evaluated at zero-momentum transfer as it
should be (see Fig. 2). The constant factor (1—q)G(q)
ensures" that the limit q

—+ 1 of the four-point function
exists. Of course, we still have the arbitrariness of an
over-all constant which does not vanish as q

—+ 1. The
minus sign in the square brackets leads to a positive
residue of the spin-zero pole at 0'p»=1. To be consistent
with the q dependence of the four-point function, we

should therefore make the replacement

E~ Ei (1—q)'G'(q)E. ——

We can then write E» in the form

qR

exp o02'(1 —q) P
0'o2 n=l 1 —q

1—
q

q",
~=» 1—

q

(38)

qR 1 —
q

Xn exp q"o02' ~. (37)
=1 1—q"—(1—q)o02'q" 1 —q" J

In the limit q
—+1, the factors in this last in6nite

product are just those of the infinite-product repre-
sentation" of the gamma function p( —o02'). The sum

which occurs in the exponent in Eq. (37), logarithmi-

cally diverges as q
—+ 1. We have already seen that the

other infinite series and products in Eqs. (33), (35),
and (37) which enter expression (32) for Ei all

converge for Re(o02' —o01'))0. Thus, we have isolated
in rather simple form a divergence of the representation
of E» in the limit q

—+ 1.
Upon comparing the sum in Eq. (37) with an integral

we find that

(1 q)G(q)G(ooio'22) (1—q)G(q)

G(o01)G(o22) —— G(o02)

X2@1(o22)&02j o01&22 j o11) (32)

To see what happens to E» in the limit q ~ 1, we

examine each of the three factors in Eq. (32) separately
and quote a few results which are easy to verify.

Using Kqs. (5), (6), (8), and (28), it can be shown

that q*
dS ——

qZ

oo q

m=1 1—q~
(39)

where

iim 2@1(o22yo02 j oolo22 j all) »
q~l

All terms in the sum are positive. We next evaluate the
integral and obtain the lower bound

ab a(a+1)b(b+1)
2P1(a)bj cj s) =1+—s+- s'+ . (34)

c c(c+1)
qQ

(1-q) 2
n=» 1 qn

1—
q

ln(1 —
q) .

lnq
(4o)

is Gauss's hypergeometric series, which converges'~ for
Re(c—a—b))0 when ~s~ &1. Hence for Re(o02' —o01')

)0 (and elsewhere by analytic continuation), we see
that the limit of 24» exists.

"See Ref. 11, p. 57. Is See Ref 11

lim --—= —1 7

q ' ln(
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we see that our lower bound approaches +~ as q ~ 1.
The sign of the real part of the exponent involving this
sum in Kq. (37) is determined by op2'. If R«02' is
negative, then the limit of the expression in Kq. (37) is
zero. This implies that

lim E1=0

Po
Pp

for Rea02'&0 which includes all or almost all of the
spacelike momentum region of P2 —pp=pp —& If Ki
could be defined when q = 1 by analytic continuation,
then Eq. (42) would hold for all values of momentum.
However, the crucial exponential factor in Eq. (37)
becomes infinite as q

—+ 1 if Rea02'&0. Thus, in addi-
tion to finding that the limit of E1 does not exist for
Rea02'&0, we also find that the q

—+ 1 limit is not
analytic. Actually we could have guessed that there
was some subtlety in the linear limit on the basis of
the previous results (33) and (35). In (33) we saw that
all of the possible dependence on o-11' dropped out
whereas (35) would contribute poles in o 22' to the final
answer. These results conflict with the initial symmetry
under o.p1 ~ o p2 and O11~ o.22 unless the limit q ~ 1 is
zero or does not exist.

The above conclusions regarding the limit of E1 do
not imply the nonexistence of

lim d'k E1.

If this limit (43) could be shown to exist, it could have
very interesting consequences for attempts'' to find
expressions for loop diagrams consistent with the
Veneziano lV-point functions.

The nonexistence of the q
—+ 1 limit of E1 shows that

in the limit where trajectories become linear our rules
for loop diagrams do not become the same as those of
Kikkawa, Sakita, and Virasoro which lead to a finite
result for the integrand of the 1'dpk. However, their
rules also lead to expressions with incorrect factorization
properties. ' This gives one additional motivation to
investigate the problem of factorization for general
q& 1 as was done7 in the case of the Veneziano E-point
functions.

VI. VACUUM BUBBLE GRAPH

We now apply our rules to the construction of an
expression which represents all those two-loop planar
graphs (Fig. 3) which are dual to the vacuum bubble
graph. Six propagators appear in these graphs and so
we introduce: ap1, g.p2 o12, opp o11 and a». Inspection
of the graphs in Fig. 3 tells us which propagators, such
as those associated with opi(pp —Pi) and p22(p2 —p2)
=lr22(0), never occur together. We can then straight-
forwardly apply our rules and find that the graphs are
represented by

Po

Fxo. 3. Vacuum graphs related by duality.

where

g 101 g 1
12 g +02

01 12 02
H P qnpln22+n12n00+n02nll

a 11 n» =0 n01 n] 2 n02

gpp 00 g]1 ll g22 22

X qnDDnll+nlln22+n22noo (45)
'000 '0 ],], R 22

which converges for all
~
o;;~ (I.

Using Kq. (7) to do the npi and 2202 sums, Eq. (9) to
do the nip and ripp sums and using the notation (5), we

obtain

G(~22~00)

G(api)G(ppp) G(o22)G(a'pp)

apl q, n22 a02 q, n11 app g, n11+n22

&11 '+22=0 a12app q, n11+n22

g 11 ll g22 22

qnlln22 (46)

To study the limit q
—+ 1, we apply the techniques of

Sec. V. Thus, we find that in the linear limit the doubly
infinite sum" in Eq. (46) converges, the four-point
function structure involving 012 and o pp converges, and
the remaining G(lrpi) G(o'p2) factors again lead to
divergence problems.

We can repeat the spin-zero-factorization and linear-
limit arguments made in the case of the self-energy

graph. While examining factorization at any one of the
Spin-ZerO pOleS o.01=1 ap2=1, Or o12=1, We Can deter-
mine the q dependence of an over-all constant and thus
obtain consistency with the self-energy graph and the
four-point planar tree graph. Spin-zero factorization is
consistent with the replacement

H —+ H, = (1—q)'G'(q)H .

d'Pid'P2H(P 0 Pi Po P2)— —(44)
"In the limit q ~ 1 the double sum in Eq. . (46) becomes one of

Appell's hypergeometric functions (I'I) of two variables. See
Ref. 10, p. 73 and Ref. 11, p. 222.
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Pp

P(

Pp

Pg

This is one among many formulas which we can derive
using our summation formulas. Such representations
permit analytic continuation beyond the region of
convergence of the power series (48) and allow us to
investigate the linear limit.

As in Secs. V and VI, we combine the (1—q)8G8(Il)
normalizing factor with the three factors in front of the
multiple sum in Eq. (49). As before we find that the
lone 1/G(g 02) factor leads to nonexistence of the
integrand in the limit q ~ 1.

F1G. 4. friangle graph and some representative graphs ~high
are related to it by duality.

VII. TRIANGLE GRAPH

Three representative graphs related to the triangle
graph by duality are shown in Fig. 4. Here we will

simply write down the representation we obtain from
our rules for the integrand T of the fd4p0T expression:

gpln g02 g03 3 g12 g23 3 g31

811 nisp=p npl np2 np8 n12 n28 n31

nl 1 g n22 g n38ll 22

g
n12n23+n28n81+n81n12

nil n22 n83

)(qnP 1 (n23+n22+n 83)+nP2 (n 31+n38+n 11)+nP3 (n12+n ll+n22)

nlln23+n2an31+n33nla+nlln23+n22n33+nssnll (48)7

which converges if all g,, satisfy ~g;,
~

(1. Again, by
factorization of a g.01, 002, or fT03 spin-zero pole, we can
obtain a five-point function, ' ' or by factorization of
two spin-zero poles, we can obtain a four-point func-
tion and find that the q-dependent normalizing factor
is (1—87)8G8(q). Using Eqs. (4), (5), (7), and (9), we
can evaluate five of the sums in Eq. (48) and thus
obtain

G(gal&23) G(g03g12)

G(g01)G(lr28) G(g08)G(g12) G(g02)

gpl q, n22+n83 g23 q, n81+nllxE
nil=0 n22=0 n38=0 n81=0 gplg23 q, n22+n33+n81+nll

(g08) q, nll+naa(g12) q, nas+nsa
X

&03g 12 q, nll+n22+n31+n38

(lrlagas/sr22) q, nsl+naa(g02) q, nsa+n31+nll
X

g12g23 g22 q, n31 nil n22 n83 n31

X~nlsnaa+naanss+nssnsl+nasnalgi 'nllg 822gsa'nasgainal (49)1 22

VIII. CONCLUSION

(A) We have formulated a simple procedure for
calculating loop diagrams in dual-resonance theories
with nonlinear trajectories.

(8) We have investigated the properties of the
integral for the self-energy loop and have shown that it
converges.

(C) We have shown that the linear limit of the
integrand for loop diagrams does not agree with the
finite in. tegrands arrived at by Kikkawa, Sakita, and
Virasoro in the case of linear trajectories. In fact, this
linear limit does not exist at all values of the loop
momentum for those diagrams which we have investi-
gated. This is in contrast with the situation for tree
diagrams where the q

—+ 1 limit of the nonlinear theory
yields the Veneziano E-point functions.

Since the general situation with loop diagrams is
still unclear even in the usual Veneziano theory, point
(C) suggests the possibility of a new set of rules for
linear-trajectory loop diagrams which may be con-
sistent with the E-point Veneziano tree graphs. In this
regard, the present paper leaves open the possibility
that the linear limit may exist if it is carried out after
the integrations over loop momenta have been
performed.

Of course, we do not yet know whether a completely
consistent dual-resonance theory of the linear and/or
the nonlinear type can be constructed. It might turn
out that only the nonlinear theory is of interest. How-
ever, even if only the linear theory turns out to be of
interest it still may be important to regard it as the

q
—+ 1 limit of a nonlinear theory in order to calculate

higher-order effects.

(D) These results are preliminary since we have not
investigated the problem of factorization at higher-spin
poles. However, we hope that the simplicity of these
6rst results will stimulate further study of the detailed
properties of dual-resonance theories with nonlinear .

trajectories.
(E) A successful unitarization program via higher-

order diagrams would indicate that the undesirable
fixed-angle behavior" ' of the tree graphs of the non-
linear theory is only a characteristic of the Born series

'P F. Capra, Phys. Letters 303, 53 (1969).
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APPENDIX: LARGE-CIRCLE ASYMPTOTIC
BEHAVIOR OF G(s)

The asymptotic behavior of the function

G(s) = g (I —sq")
n=o

(A1)

plays a key role in determining the convergence of loop
diagrams discussed in this paper. Here we will give a
simple derivation of the behavior of G(s) on large
circles in the complex s plane.

We consider the product

which converges for all 6nite ~s~ )0. After rearranging

and not a difficulty of the theory itself. This problem is
associated with the fact that the real part of the
trajectory n(t) = —1n(/It+A)/1nq rises as /, ~ —ee1. But
the dual Born term is expected on physical grounds to
be a good approximation only for peripheral processes
with t fixed, s ~ oo or s fixed, t —+ ~. Thus, we would

expect that higher-order diagrams would modify 12(t)

as t —& —~ so that the resulting fixed-angle behavior of
the full amplitude would be consistent with the Froissart
bound. We are of course still a long way from seeing in

detail how this would occur.

(F) Although the expression for the self-energy

given in Sec. IV is 6nite, the bad Axed-angle behavior
of the tree graphs might be expected to give rise to
divergences in the integration over loop momenta in

higher-order diagrams such as the box diagram. Some
relevant information concerning the convergence of
such loop-momentum integrals could be obtained from

our conjectured rules because these rules correctly
incorporate the lowest-mass spinless particles in inter-
mediate states.

terms in this product we find that

= —sS(qs) .

Successive apphcation of Eq. (A3) gives

g (S) ( S)mqm. (m—1)/2+ (qmz)

(A3)

where m is an integer.
We next consider a circle of radius q

+' about the
origin in the complex s plane. Any circle corresponds to
some integer m and 0& &&1.The circle is described by

wltll —II+$+2 . SubStltlltlllg (AS) III Eq. (A4) RIld

using Eqs. (AI) and (A2) gives

~(—~"q')
G(s) —&emgqmeq m(m+I) /2—

G( e
—iQqm+I —e)

(A6)

As I/2 ~ «c the factol' I/O ~ 1. Tlllls 011 1Rlgc cllclcs
(large 112) we find that

G(s)~eempqmeq —m(m+1)/2g( &epqe) (A'/)

Since 0(q& 1,
~
G(s)

~

increases as we go to larger circles
as long as we avoid the zeros of G(s), i.e., as long as

~
etc

~
& Ir or c/0. The zeros appear on the right-hand side

of (A/) in the factor S(—e'&q').

It is a simple matter to show that the leading asymp-
totic behavior of lnG given in Eq. (25) agrees with lnG
as computed from (A7). Thus we have established that
(25) holds everywhere on circles which pass between
the zeros of G(s).

With regard to the p=arg( —s) dependence of (A7)
it Inight be worthwhile to note that the function S(s)
which we have encountered in this Appendix is closely
related to tllc clllp'tlc tllctR fllllctlolls. Tllus, {A7)
involves only elementary functions and a well-known

special 'function.

"E.T. Whittaker and G. N; Watson, cVoderN Aeclyszs (Cam-
bridge U. P., London, 1963),p. 469.


