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Most of the hard work remains to be done. Can one
succeed in finding the equivalent ‘“o” model for these
fields, so that one can once again try to solve the
current-algebra problem? What are the correct inter-
actions to use? Are the perturbation sums for the
interacting case finite? We hope that this formalism
will be a help in answering some of these questions.
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Some inequalities involving finite numbers of partial-wave helicity amplitudes are derived for the elastic
scattering process ab — ab (arbitrary spins and masses). One set of inequalities involves algebraic combina-
tions of ¢-channel (e — bb) partial-wave helicity amplitudes and holds for any value of ¢ between 0 and
4p? (p is the lesser mass of the two particles involved in the scattering). A second set places restrictions on
integrals over s-channel (ab — ab) partial-wave helicity amplitudes. Finally, the above relations are applied
to the particular case of w°-nucleon elastic scattering, where inequalities among partial-wave helicity ampli-

tudes are obtained.

I. INTRODUCTION

N recent years there has been a rebirth of interest in
finding constraints on amplitudes which follow
purely from analyticity and unitarity.! The present
paper is an effort to bring together some? of these re-
sults with the work of Balachandran and co-workers?
on crossing properties of partial waves and in particular
the work by Balachandran, Modjtehedzadeh, and
myself?* on constraints on partial waves of helicity
amplitudes which follow from crossing symmetry. For
the elastic scattering process ab— ab (s channel),
inequalities are found for algebraic combinations of
partial waves of ¢-channel helicity amplitudes for
0<t<4u. This is done in Sec. IT and the inequalities
are given in Egs. (6) and (10). In Sec. III inequalities
for integrals over partial waves of s-channel helicity

* Supported by the U. S. Atomic Energy Commission.
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amplitudes are found for the same process [result given
in Egs. (13), (17), and (18)]. The main features of
these constraints are as follows: (1) They follow from
analyticity, unitarity, and crossing symmetry; (2) they
involve only a finite number of partial waves in each
inequality: and (3) they are constraints in the unphys-
ical region.

In Sec. IV the results of Secs. IT and III are applied
to the special case of w%nucleon elastic scattering.

II. t-CHANNEL CONSTRAINTS

We begin by introducing various definitions and
conventions. For the scattering process 1, 2— 3, 4, we
define

§= (?1+P2) 2 ’

I= (PI*P3)2 )
u=(p1—ps)*.

We will be considering the elastic scattering ab— ab
where both particle ¢ and & may have spin. Particles 1
and 3 are taken to be of type ¢ with spin o and mass m
while particles 2 and 4 are of type b with spin ¢’ and
mass u. We also assume, without losing generality, that
m2> u. Physical processes in the various channels are

s channel, ab— ab,
{ channel, ad— bb,
u channel, ab— ab.

We express, for the case of elastic scattering, the Kibble
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function:
=st[ 2(m?*~+pu?) —s—t]—t(m*—pu)?2.

We further express the cosines of scattering angles in
the c.m. system for various channels:

zs=2s51/82+1,

251 —2(m2+-u2)
T =
2u=2ut/U*+1,

where
8*=[s—(m—w*Ils—(m+u)],
W= Lu— (m—p)* Lu— (m+p)].
Note that z, and 2, are defined as the cosines of the
angles between particles of the same type. Using the

above expressions for 2, 2;, and z,, the Kibble function
¢ may be written as

¢ =(1/45)8*(1—2z?)
= 1i(—dm?) (1 — ) (1)
=(1/4u)uU*(1—2,%). (2)

Mahous and Martin? have shown that the combina-
tion of s-channel helicity amplitudes

(1)

M =82etea) 3 My,a\® for oo an integer,
Aop

i 1/2
M'_‘(——) §2(eto”) Z M)\u,)\us (3)
—¢ W

for o+d”’ a half-integer,

is free of kinematical singularities and the absorptive
part obeys the inequalities®

AbsM(s,2,)20 for s2 (m+4u)?
and 0<t<4p? (or 1<2,<8su?/8%+1),

AbsM(u,2,)>0 for w2 (m+tpu)?
(and 0<it<4u? or 1<z, <8up?/U+1).

We now write a fixed-f dispersion relation for M in
the region where 0<¢<4u? If M contains dynamical
poles, we must subtract them out first and write the
dispersion relation for the result. M will be used to
denote M after these poles have been removed and in
general a bar over a quantity will denote the corre-

)

4 G. Mahoux and A. Martin, Phys. Rev. 174, 2140 (1968). The
expression given here for o+¢’ half-integer is slightly different
from that used by Mahoux and Martin. The treatment in their
paper is sufficient to show that the expression given in Eq. (3) is
of the form Y, C, cosvfs =3, C,’ cosvf, where C, and C,’ are all
positive. This condition alone is enough to guarantee.the in-
equalities given in Eq. (4). Thisis not sufficient for the inequalities
used by Mahoux and Martin [Egs. (4) and (5) in their paper]
and hence they are forced to use combinations of amplitudes
multiplied by higher powers of s and .

5 The upper limit on #is due to the presence of the ¢-channel cut.
Also see Ref. 4.
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sponding quantity with the poles removed. The disper-
sion relation for M is

v sl [~ZGmw ds/ AbsIT
M=73 anz,"——/ —_—
n=0 T J—w Zc/N(ZL’—Zt)
g dz/ AbsiM
_I___

™ Z(t;m,p) Zt,N(Zz,—Zz) ’
where N is the number of subtractions required, and
Z(t; mou)= (dmu+0[(1—4m?) (1 —4u?) T2

We have assumed that there are no two- or higher-
body thresholds open for s<(m-u)? and likewise for
u< (m-+u)% We now project partial waves using the
Jacobi polynomials Pr°7°7(z,) [op=2(c-+0¢")] with the
corresponding measure (1—2z2)7 and require that
L> N. This leads to a Froissart-Gribov relation:

+1
MPoror(z)(1—22)7dz,

-1

2 p—Z(tmu) _
= f AbsiT (1,3/)

T
X(2d2—=1)1QLoTo7 (2 )dz/

2
+ -

™ JZ(t;m,u)

AbsM (4,2/")

X (z/*—=1)1Qr°r7 (3 )dz/, (5)

where the following relations for the Q77T functions®
are used:

+1 (1 _z2)vTP oo Z)
Querer) =1y | T,

-1 2 —32

The range of integration of the second integral in Eq.
(5) corresponds to s> (m-+u)? with ¢ fixed at some value
between 0 and 4u? Similarly, the first integral is over
the region %> (m+u)? with ¢ fixed at the same value. By
the inequalities given in Eq. (4), we have that the Absi
factor in the integrand is positive.” In the Appendix the
following inequalities are shown:

For 2'>1,
< —1,

(#'2—1)°1Qroro7(3) >0 for all L;
(z"2—1)1Qrror(3') <0 for L even,
>0 for L odd.

for

From these inequalities we see that the integrand is
positive at every point of the integration for L even,

6 Bateman Manuscript Project, edited by A. Erdélyi et al.,
Higher Transcendental Functions (McGraw-Hill, New York,
1954), Vol. 2, p. 171.

" Note that AbsM = AbsM since subtracting out the poles does
not alter the discontinuity.
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and we have

+1
M'(t’zt)PLUTUT(l __.ZI2) ”szt> 0

-1
for L even and 0 <t<4u?. (6)

Martin'e has obtained a similar inequality for ==
scattering by the same argument.

The integration may be carried out when the com-
bination of helicity amplitudes denoted by M are re-
placed by their {-channel Jacob-Wick expansions.® The
regularized helicity amplitudes which are summed over

in Eq. (3),

Frow'= 82T M0, 2(c+0’) even,

_ i 1/2 _ (7)
F)p)\psg <—'—) 82 (cr+a')M)w)‘”s’ 2(0'+0',) Odd 5
—¢

may be written as a linear combination of the ¢-channel
regularized helicity amplitudes (RHA) given in Ref. 8:

Frpn®= Za Crinu®F 455" ®)
afy

F 5,5t is of the form

Fapys' =gapys(t) o [Mapys P jpl o= DLl emBbr=il(z)
. 7

+77Maﬁ — _5U‘Pj__n(a—ﬂ+7—5l ,la—ﬁ*(v—ﬁ)l(zl)]’ (9)

where g5 is a function of ¢,
n=max(|a—8], |y—38]),

7 is a constant (see Table IX of CMN for the detailed
expression), and some factors involving only j have
been suppressed. From the crossing relations for ordi-
nary helicity amplitudes and the definition given above,
one sees that Cy,,*#7? is a polynomial in s and hence in
2. Collecting the above expressions, we see that M is
a sum of nonterminating sums of Jacobi polynomials
where each nonterminated sum is multiplied by a
polynomial in z,. When this is substituted in Eq. (6) the
sum over j will be terminated because of the orthogo-
nality of the Jacobi polynomial of Eq. (9) where the
measure is formed from part of the (1—z:)°7 factor of
Eq. (6). A similar argument for terminating such sum-
mations is used in Ref. 3e. This will result in a series of
inequalities (a series for each even L) of the form

M ¢',0',0,0 _
Y X KapyiMapys'(t)20 for 0<i<4p?, (10)

=0 a,B,v,8

each involving a finite number of partial waves of
helicity amplitudes. The Kop,:®, of course, are all
completely determined, but to obtain them will require
a liberal use of identities relating Jacobi polynomials.

8 The conventions used here for Jacob-Wick expansions are

those of G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann.
Phys. (N. Y.) 46, 239 (1968), hereafter referred to as CMN.
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III. s-CHANNEL CONSTRAINTS

Inequalities involving integrals of s-channel partial
waves may be obtained by multiplying Eq. (6) by
judiciously chosen functions and integrating over ¢ from

0 to 4u® The functions used are®
o7

—T(!
raeelCl
where T'(t) is any polynomial in ¢ which is positive for ¢
between 0 and 4u?. By Eq. (2) we see that ¢77/(1—3,2)°7
is dependent only on  and hence this entire expression
is purely a function of {. Finally we note that when the
positive determination of the root is taken this expres-
sion is positive for ¢ between 0 and 4u? and leads to the
inequality

4pu? +1 _
/ [ MPLorer(z,)(1—3.2) ""dzt:'
0

~1

BL(1—dmt) (—dy2) 001

o7

XL (=) (=) T2 — 270
(1 “Zﬁ)qT

X3[(—4m?) (F—4u2) 1 2dt > 0. (11)

We now change variables from ¢, 2, to s, z, so that we
may project s-channel partial waves:

(mtu)?  pt+1 _
/ MPrerer(z)[(¢—4m*) (1 —4u?) J412
(

m—u)2 J—1

82
qu"TT(t)dzsz—dsZ 0. (12)
s

M is now written as a combination of s-channel helicity
amplitudes which are in turn expressed in their Jacob-
Wick expansion.

or even:

M=s°r Z Mx,,x,“’
A

1+Zs)|)\"‘ﬂl

= §°T Z (
A 2

XZ (]‘+%)M)\n)\uij—l)\—pln’m)\_m(Zs) s
J

142, [A—pl—1/2

)

XZ (j+%)M)\u)\p8‘7Pj—l)\-—ylo’2I)‘—‘”'(Zs).
J

= gor—1 Z (
A

. 9 The factor [ (t—4m?) (#—4u2) T2 is introduced to remove the
singularity in the variable £ from Pro7o7 (z,). §[ (1—4m?) (1— 4u2) V2
is included with an eye on the coming change of variables:

SL(—4m?) (1—4u?) M2z, dt = dsdi= (82/2s)dsdzs.

¢°7/(1—22)°r will supply the measure required in the s channel.
Approaches similar to this may be found in the papers of Ref. 3.
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With this substitution, Eq. (12) becomes

o even:
(mtu)? +1  gsor+2 _ 14-2,\ !+l
5 (7+3) / £ Mo~
i (m—p)? 1 28(48)”7' Au
XProrer(z)[(t—4m?) (¢ —4p2) J*PTP ;e ¥# (2,) (1 —2,2)77d2, 2 0, (13a)
or odd:
(m+n)2 +1 gSor+l 14-g,\ IM—ri=1/2
T (+) / f S Mo w@)( )
W S 2stagyer 2

XProroT (z) [ (t—4m?) ({—4u?) JE2 TP pe 2 H (2,) (1 —2,2)Tdz, > 0. (13b)

Since Prorer(z,)[({—4m?)(t—4u?) ]%/2 is a polynomial of degree L in { and s, we see that the entire coefficient of
Pip®?P#l(z,)(14-2,)2*# is a polynomial in 2, Using the orthogonality of the Jacobi polynomials
P ™2 #l(z,), we see that the sum over j will vanish for j greater than 207 —3|\—u| +L+¢q, where ¢ is the
order of the polynomial T'(f). Hence the inequalities given in Eq. (13) involve integrals over finite numbers of
s-channel partial waves.

These inequalities may be studied more easily if we have a more symmetric way of writing the polynomial 7.
It can be shown'® that any polynomial in ¢ which is positive for 0<#<4u? can be written in the form

odd order: T(t)=i[A®) >+ 4u2—t)[B() ]2,
evenorder: T(t)=[C() 2+t(4u2—8)[D@) ]2,

where A, B, C, and D are real polynomials in ¢. The converse of this theorem is obviously true as well.
To simplify the expressions, we write the inequalities of Eq. (13) as

(m+p)? +1
/ ds Ji(s,2)Tdz,20, (14)

(m—in)* -1

where J1.(s,2,) is defined by equating the above integral with those of Eq. (13). When the above expressions for T
are used in Eq. (14), we see that we have four inequalities:

( r ) I3 )
0< f / It (X aith)dzds=3 a.a; / / Jrittitidzds,
=0 i

0< / / Gl —1)( b)dds =3 bib / / o )+ dnds,
L % %7

(Og //ch(Z bili)2dzsds=2 CiCj//(ﬂLti+jdzst,
i @5

r—1 r—1
0< / Jut(du?—1) (3 dit?)?)dads= 3 did; / / Ir(du— )1+ 1dg ds
[3 ij

T of odd order:

(15)

T of even order:

.

where {a:}, {b:}, {c:}, and {d;} are sets of arbitrary real a necessary and sufficient condition that the form be
constants. From the above theorem, its converse, and  positively definite is'!

the linearity of integration, we see that these inequalities woe>o0,
are equivalent to those of Eq. (13) or (14). oo o
Given a quadratic form, o Wi 20,
2w Wi, {w) real W o e (16)
K
—_— W10 Wll 121 >
10 N. I. Akhiezer, The Classical Moment Problem (Oliver and w20,

Boyd, London, 1965), p-

W W Ty
1. M. Blumenthal Am Math. Monthly 35, 551 (1928). :
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When applied to any of our inequalities,

{ / / grttitidgds,
/ / oyt — )t ds

Wit=] (17)
/ / Jultidzds ,
/ / Jr(Bu2—i)1+i+1dg,ds
it will give a set of inequalities for each even L:

Wa*20,

W oo™ W

W™ Wu >0, (18)

WOOL WOIL WDZL

Wil Wuk Wik 20

W20L W21L W22L

IV. x-NUCLEON ELASTIC SCATTERING

In this section we consider w0-nucleon elastic

scattering:

pn0— pr?
or equivalently,

nr® — nw.

This particular choice is made because it has only even
partial waves in the ¢ channel. The same approach is
applicable to a somewhat wider class of pion-nucleon
elastic scattering processes. The diagonal helicity ampli-
tude for this process is given by

Myo0=M_30y0=cos30,[A+3B(s—m*—p?) ],

where 4 and B have the standard definitions.'? For this
special case Eq. (3) becomes

M=2(t/—¢)"*8 Mo =2[A+3B(s—m*—u?) ].

This amplitude contains a dynamical pole in the B
term!? which must be subtracted out:

M=2[A+3B(s—m*—u?)],

_ 1 1
B=B—G2< — )
mi—s  mi—u

Substituting this into Eq. (6), we get

(19)

where

+1
2 [A+3B(s—m2—u2) 1P (3)(1—22)dz. > 0, (20)
_y=1
(1;2 J) Hamilton and W. S. Woolcock Rev. Mod. Phys. 35, 737
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where we must require L2>2 since there are two

subtractions.!?
This may be written as an algebraic condition on the

t-channel partial waves by using

_ dm
M= ————M 300
(1—4m2)12

+ 1/2[ cosf, 1 jl
A —
(t—4m2)”2 (5_4“2)1/2

M 30 Z (DM 300 ()P, (1) ,

) ] 1/2 _
- 1Y (i (——) st )Pz,

sin0t J

When this is substituted into Eq. (20) and use is made
of relations among the Jacobi polynomials, we obtain

M 33005 (1)

2m [L—l—l
(t—4m*)1 2L2L+3
(L+1)(2L+35) _
- %—%00"“2(0]
QL+3)?
tl/? Ll/Z(L+1)l/2 _
- [ M 300" (2)
(—am?)?l 2043

(L) LA\
+ (2L+3)(L—|—2) Misoot 2200 :l

t1/2 L+1 1/2_
).
(=4t \ 142

where L2>2, 0<i<4u?.

t L-H(t) ; 0,

(21)

The inequality given in Eq. (21) is a special case of that
given in Eq. (10).
The integral inequality given in Eq. (13b) becomes

(mtw)? g6

= (D) / — sl )
i (

XP LM z)[(1—4m?) (1—4u®) JH1

m—p)*

XT(1—2,)Pi 1" (z5) (1 +2:)dz: > 0. (22)
We now note that
8¢ _
Jr=2_ (G+3)—Myo10*1(s)
i 452
X Py (e[ (1—dm?) (e —4s?) T2
X(1=2)Piy" (z:)(1+2,), L2>2.

With the definition of W% given in Eq. (17), we now
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have the set of inequalities given in Eq. (18) which are
equivalent to that given in Eq. (22).
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APPENDIX
Proof®? of the following inequalities:

For 2>1, (2'2—1)77Qroror(z") >0 for all L,
for < —1, (z'2—1)7Qr°r°7(3')<0 for L even, (A1)
20 for L odd.

Consider
[Py (s) (1 —s)r
[ dz.
1 2 -z
For 2'> 41,
[Py (=)
0< / dz (A2)
-1 Z/ —2
Since Pr777(z) is a polynomial in z of order L,
L
Prorer(z) =3 a:;(s’ —2)°. (A3)

=0

When this substitution is made, (A2) becomes

+1 PLvrTaT(Z)(l _22)07'
0<ao /

dz, (A4)

—1 2 —z

18 This proof is due to A. P. Balachandran and M. L. Blackmon
(private communication).
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where the orthogonality of the polynomials P77 has
been used. From (A3) we see that ao=Pr°77(z') and
since

Prerer(z)y>0 for 2'>1,
we have

+1 PLVTVT(Z)(l __22)0-7'
o< |

- dz=2(z"2—1)1QT1(%).
—1 2 32

This is the first of the inequalities given in (Al).
For /< —1, a similar argument leads to

+1 PL”T”T(Z) (1 _22) or
0> Proror(y) ds.

-1 7 —z

Since

Proror(z)>0 for z’<—1, Leven ‘
Proror(z)<0 for #'<—1, L odd

we have

+1 .PL“TGT(Z)(I _ZZ)o-T
o> [

1 2 —z

dz=2(z'—1)°1Qror°7(3’)

for 2’<—1, L even

+1 PLvTa-T(z)(l __22)”-
0< / dz=2(3' —1)77Qroror(3’)

—1 2 —z
for #’<—1, L odd

which proves the second of the inequalities given in
(A1). These inequalities may also be proven using
generalized hypergeometric functions.



