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Most of the hard work remains to be done. Can one
succeed in finding the equivalent "0"model for these
6elds, so that one can once again try to solve the
current-algebra problem? What are the correct inter-
actions to use? Are the perturbation sums for the
interacting case 6nite? We hope that this formalism
will be a help in answering some of these questions.
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Some inequalities involving 6nite numbers of partial-wave helicity amplitudes are derived for the elastic
scattering process ub —+ ub (arbitrary spins and masses). One set of inequalities involves algebraic combina-
tions of t-channel (au ~ bb) partial-wave helicity amplitudes and holds for any value of t between 0 and
4p' (p is the lesser mass of the two particles involved in the scattering). A second set places restrictions on
integrals over s-channel (ab —+ ub) partial-wave helicity amplitudes. Finally, the above relations are applied
to the particular case of ~ -nucleon elastic scattering, where inequalities among partial-wave helicity ampli-
tudes are obtained.

I. INTRODUCTION

' 'N recent years there has been a rebirth of interest in
~ ~ finding constraints on amplitudes which follow

purely from analyticity and unitarity. ' The present
paper is an effort to bring together some' of these re-
sults with the work of Balachandran and co-workers'
on crossing properties of partial waves and in particular
the work by Balachandran, Modjtehedzadeh, and
myself" on constraints on partial waves of helicity
amplitudes which follow from crossing symmetry. For
the elastic scattering process ab —+ ab (s channel),
inequalities are found for algebraic combinations of
partial waves of t-channel helicity amplitudes for
0~& t&4p, . This is done in Sec. II and the inequalities
are given in Eqs. (6) and (10). In Sec. III in.equalities
for integrals over partial waves of s-channel helicity
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amplitudes are found for the same process t result given
in Kqs. (13), (17), and (18)]. The main features of
these constraints are as follows: (1) They follow from
analyticity, unitarity, and crossing symmetry; (2) they
involve only a 6nite number of partial waves in each
inequality: and (3) they are constraints in the unphys-
ical region.

In Sec. IV the results of Secs. II and III are applied
to the special case of x'-nucleon elastic scattering.

II. t-CHANNEL CONSTRAINTS

s charinel,

t channel,

e channel,

ab —+ ab,

aa —+ bb,

a5 ~ a6.

We express, for the case of elastic scattering, the Kibble

We begin by introducing various definitions and
conventions. For the scattering process 1, 2 —+ 3, 4, we
de6ne

s—= (pr+ ps) ',
~=—(pr —ps)'

Q= (pr p4)

We will be considering the elastic scattering ab —+ ah
where both particle a and b may have spin. Particles 1

and 3 are taken to be of type a with spin 0. and mass m
while particles 2 and 4 are of type b with spin 0-' and
mass p. We also assume, without losing generality, that
m&~ p. Physical processes in the various channels are
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function:

y =st[2(r/i'+ p') —s —t]—t (m' —p, ') '.
sponding quantity with the poles removed. The disper-
sion relation for M is

We further express the cosines of scattering angles in
the c.m. system for various channels:

z, =2st/8'+1

N—1
M= Q a„z,"—

n=o

st~ z"' » dst'Aha

z,'~(z, ' —z,)

dst' AbsM

where

2s+ t —2(m'+ p')
st=

(t 4m2) 1/2(t 4p2) 1/2

z„=2N t/%L'+1,

8'—= $s —(nz —p) ']$s—(no+ p) '],
(1)[I=—(m—p) —'5[u (m—+p) 'j

Note that 2, and s„are defined as the cosines of the
angles between particles of the same type. Using the
above expressions for s„st, and s, the Kibble function

Q may be written as

/t = (1/4s) 8'(1 —z, ')
= i~t(t —4m') (t —4p') (1—zP)
= (1/4u)e'(1 —z ') . (2)

Mahous and Martin4 have shown that the combina-

tion of s-channel helicity amplitudes

M=8"+")P Mi„,i„' for 0+0' an integer,
X,p,

M&z""(z/) (1 z') "d—z,

—Z(t; m, »
AbsM(t, z,')

X(z"—1)' Q
' ' (z,')dz, '

(/.. .„)z/'~(z/' —z,)

where E is the number of subtractions required, and

Z(t; m, p)= (4—mp+t)((t —4/I')(t —4p') j '/'.

We have assumed that there are no two- or higher-
body thresholds open for s((m+p)' and likewise for
u((m+p)'. We now project partial waves using the
Jacobi polynomials El,'r'r(z, ) for 2(o—=+o')j with the
corresponding measure (1—z/z) '~ and require that
L&~ E. This leads to a Froissart-Gribov relation:

1/2

82(~+~') P M s
Z(t; m, p)

Aha(t, z)/

X(z/" 1) rQr, 'r'—"(z,')dz, ', (5)

for 0+0.' a half-integer,

is free of kinematical singularities and. the absorptive
part obeys the inequalities5

AbsM(s, z,) ~&0 for s&~ (m+p)'
and 0& t(4p' (or 1&z, (8sp'/8'+1),

(4)
AbsM(u, z„))~ 0 for I&~(/)i+ p)'

(and 0& t(4p' or 1& z (8''/'tt'+1).
We now write a fixed-t dispersion relation for 3f in

the region where 0~& t(4p'. If 3f contains dynamical

poles, we must subtract them out first and write the

dispersion relation for the result. M will be used to
denote M after these poles have been removed and in

general a bar over a quantity will denote the corre-

' G. Mahoux and A. Martin, Phys. Rev. 174, 2140 (1968).The
expression given here for 0.+0' half-integer is slightly different
from that used by Mahoux and Martin. The treatment in their
paper is sufhcient to show that the expression given in Eq. (3) is
of the form Q„C„costa,=g, C„' cosve&, where C„and C„' are all
positive. This condition alone is enough to guarantee the in-
equalities given in Eq. (4).This is not sufhcient for the inequalities
used by Mahoux and Martin LEqs. (4) and (5) in their paper)
and hence they are forced to use combinations of amplitudes
multiplied by higher powers of s and u.

' The upper limit on t is due to the presence of the lt-channel cut.
Also see Ref. 4.

where the following relations for the Qr, r'r functions'
are used:

QL~rr(z') —i (z'2 1) ~r—+1 (1 z2)rTP ryan(z)
Zs'.

The range of integration of the second integral in Kq.
(5) corresponds to s&~ (m+p)' with t fixed at some value
between 0 and 4p, '. Similarly, the 6rst integral is over
the region u&~ (m+p)' with t lixed at the same value. By
the inequalities given in Eq. (4), we have that the AbsM
factor in the integrand is positive. ~ In the Appendix the
following inequalities are shown:

For z'&1, (z"—1)'rQz'r'r(z')) 0 for all L;
(z"—1)"QI.""(z')(0 for I. even,

&0 for L odd.

From these inequalities we see that the integrand is
positive at every point of the integration for L even,

'Bateman Manuscript Project, edited by A. Krdelyi et al. ,
IIigIter Tronscendenta/ Functions (McGraw-Hill, New York,
1954), Vol. 2, p. 171.

' Note that AbsM =AbsM since subtracting out the poles does
not alter the discontinuity.
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III. 8-CHANNEL CONSTRAINTS

18 (t,k,)PI.""(1 kP—)"Ck,& 0

for I. even and 0 ~& t(4hs'. (6)

Martin" has obtained a similar inequality for ~z
scattering by the same argument.

The integration may be carried out when the com-
bination of helicity amplitudes denoted by M are re-
placed by their t-channel Jacob-Wick expansions. ' The
regularized hcllclty amplitudes which Rrc sumIIlcd ovcI'

in Kq. (3),

2(o-+o') even,

1/2

P),„s„'=
~

g'& +"&My„),„', 2(o +o') odd,

may be written as a linear combination of the t-channel
regularized hehcitv amphtudes (RHA) given ln Ref. 8:

CATE) s, Papys
n»8

P' p~~' is of the form

p ~

g (t) p LM P shsP. I~P—h-s)ii~p+r , si(k,)—

s&jp. I
~ P+r sI I&——P-(r——s)I(k&)j (9)

WhelC gn»g lS R funCtlon Of ~~

n=—max()hr —P~, [y —B~),

st is a constant (see Table Ix of CMN for the detailed
expression), and some factors involving only j have
been suppressed. From the crossing relations for ordi-

nary helicity amplitudes and the definition given above,
one sees that Cq„),„"»~is a polynomial in s Rod hence in

sf. Collecting the above expressions, we see that 3f is
a sum of nonterminating sums of Jacobi polynomials
where each nonterminated sum is multiplied by a
polynomial in k&. When this is substituted in Kq. (6) the
sum over j will be terminated because of the orthogo-
nality of the Jacobi polynomial of Eq. (9) where the
measure is formed from part of the (1—kP) r factor of
Eq. (6). A similar argument for terminating such sum-
mations is used in Ref. 3e. This will result in a series of
inequalities (a series for each even 1.) of the form

3/I 0' str strslr

E p, s(t)M p,s's(t)&0 for 0~&t(4hs', (10)
j=0 n, P, y, b

each involving R 6nite number of partial waves of
helicity amplitudes. The E»q&'), of course, are all
completely determined, but to obtain them will require
a liberal use of identities relating Jacobi polynomials.

SThe conventions used here for Jacob-Wick expansions are
those of G. Cohen-Tannoudji, A. Morel, and H. Wavelet, Ann.
Phys. (N. Y.) 46, 239 (1968), hereafter referred to as CMN.

Inequalities involving integrals of s-channel partial
waves may be obtained by multiplying Eq. (6) by
judiciously chosen functions and integrating over 3 from
0 to 4p, '. The functions used are~

fhr yt

—:E(t-4-')(t-4")ji" i — —2'(t),
(1 k s)er

where T(t) is any polynomial in t which is positive for t

between 0 and 4th'. By Eq. (2) we see that p'r/(1 —k&')'r
is dependent only on t and hence this entire expression
is purely a function of t. Finally we note that when the
positive determination of the root is taken this expres-
sion is positive for t between 0 and 4p' and leads to the
inequality

am — +1

MPr, ""(k,)(1—k ') "Ck
0 — —I

$0'sf'

XL(t—4m') (t —4th')]~i' 2'(t)
(1—kP)"

Xk L(t—4ssh') (t —4hs') jrh'Ct ~& 0. (11)
We now change variables from t, s& to s, s., so that we

may project s-channel partial waves:

(m+hlt) & +1

MPr, 'r'r(k, )t (t —4m')(t —4th')]~"

$2

x4 "T(t)ck.—cs&0. (12)
2$

M is now written as a combination of s-channel helicity
amplitudes which are in turn expressed in their Jacob-
Wick expansion.

op even:

XZ (i+a)M~P) g"P,-rx-, i
"I' "I(k,,),

oT Odd:

$o'p —I
M= —Q M),„),„'

cos&8, )tu

(f+g, )~lk
—

t
—'i

grrr 1+~—
~. k 2

X& (1+k)M~,~,"P;-i~ .i"I"-si(k.).
9 The factor f(t—4m') (t—4p, ')7~'2 is introduced to remove the

singularity in the variable h from Pr~r r(kg). ksL(h —4sa') (h—4shs)g"s
is included with an eye on the coming change of variables:

ssL (h —4ms) (h —4Ns) j' sdk~dh =dsdh = (Ss/2s)dsdk,

@ &j(j.—sP) & will supply the measure required in the s channel.
Approaches similar to this may be found in the papers of Ref. 3.
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(12) becom~~is su stitutip»

oy even.

p (j+'-, )
+1 gG «ran+2

)o, (»')o,~i~—~~ s.)(1—')2)]LI2TP~ n—v'
„.,( )L(t 4m')(t —«'

))-~1-'I2(1+st
p i0..."(')I

2(4s) aT xP

0~ pdd ~

p (j+s)

~,(s s„)Z'ds. &&0dS

'
nsfor ~

1

bove expre

(m—~&

. (13) g/hen theral with those Phe above illt gwhere gs s~ ' '
(14) we see that ware used in Eq.

ti+j+1dg, ds )L.j)2ds, ds=E ~' ~gst(
i=0

r

p&

«) p+'dsads
~b;b,.g s(4P, 2 —«) ( b .p) 'ds. ds =

T pf pdd Prder

p&

(m+S )
2

2 ezdg, &0. 13b)

ds

o, s~ a—yl (s„

2

4p )
'

coefBclent o

LI2+p& 1),—Isl

(m—P)

r(st) Dt ™(
that the entire

pplynpmia s

de ree I- in an
pf the

olynomial oi g.
h orthogona '"v

L+q, where g»
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l er ynite num er

Since PI, ( '
)2[&—

&~ is a P y
ill vanish for J g

~

volve integra s

pmial T.

nequalities gi

g the poly

lynpmial y t.order
'

l waves.
~

pre easily if we

ppt&4P can

s-channel p "'
'

ay be studied o"
h' h is positivIt can be sh
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N ELASTIC SCATT ERGOT 6IV. ~o-NUCLEO

d - l stic'-nucleon e as icwe cons» erIn this section
scattering:

pm' —+ pn'
or equivalently,

oic d because it has only even
1 h

olcc ls IDR e c
RrtlRl wRvcs lnpar
ppli bl t somewhat wl er c

' 't am li-I'OCCSSCS. CclRstlc scRttcI'lng p . c
tude for this process is given y

-'0 [A+-2'8(s —2N2 —/22) j,2- 0 =~ 2 0 2. 0 =COS g

and. 8 have the stan d 't'ons.ard de nltions.where A an d t ons.
special case Eq. eco

=2 t '—//}) '/2SM»2 ——2/A+-'2B(s —2/2—

naIDlCR plitude contains a yThis ampi u
term" which must e su

E7=2LA+~8(s —22/2 —
/ 2)],

coseg I

/' —42/22) '" (t—4/22) '/'
nd

')~- "(~)&,"( ),~pop = J g —,'-,'oo

1/2j+1&M;;I'
2

sln0 g

de20) and use is mad%hen this ls su bstituted into q.
the Rco l poof relations among th

22/2 +I-

(/, —42222)'/2 2I,+3

(L+1)(2L+5)
3f,=,pp

(2I.+3)'
/ }2 I1/2(Ly1)—

3f)=~op

(/,
'—42/22)'" 2L+3

/I+I} /1+3}'"
(2L+3) EL+2

~1/2 I 1/2

2—2 o

(/ 4 2) },/2 L+2

where L & 2, 0 ~& /(4/22. (21

ein
'

in E . (21) isa special casese of thatThe inequality given in Eq.
q (o).

The integral inequa
'

y g'

+1 (m+p} 2 g6

de;/}, 2'/'(s)Z (j+2)

XI'L ~ Sf, — ' —4~ "( )L(~-4 ')(~-4 ')j"'
& 0. 22)X2'(1 —k, I' ' '(k )(1+k,)dk, ~

8=8—G'

' toE . (6), wegetSubstituting this into q.

'—') jPr, ' '(k, ) (1 —k, )dk, &0 20)—8 s —sb —p,2 LA+2 (

W. . o, Mod. Phys. 35, 737

—1

W. S. Woolcock, Rev. o .J HRDllltoD RQd W. . o )
(1963).

$6
=Z (i +2) ~:2:2"(s

XI'~"(«)L(& 4~')(& 4/ ')—l"'—
iven in Eq. (17), we nowKith the definition of 8",;L given in q.
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have the set of inequalities given in Kq. (18) which are where the orthogonality of the polynomials Pi, 'r'r has
equivalent to that given in Eq. (22). been used. From (A3) we see that co=PI, 'r'r(s') and

ACKNOWLEDGMENT

I RIQ IQost grateful to PI'ofcssol A. P. Balachandran w{. hav{
for his encouragement and recommendations during
the course of this research.

APPENDIX

Pi, r'r(s') &0 for s') 1,

+1P eraar(S) (1 S2)er
ds=2(s" —1).rQI" r(s')

Proof" of the following inequalities: This is the first of the inequalities given in (A1).
For s'& —1, a similar argument leads to

For s'&1, (s"—1)~rQi~r~r(s') &~0 for all I. ,
for s (—1, (s 2 —1)'rQI, 'r r(s ) (0 foi' I cvcn (A1)

~~ 0 fol I odd.
ConsldcI

+' LP~""(s)j'{1—s')"

For s'&+1,

Slncc

0&P;"r(s')
+1 P wrrr(s) (1 s2) ar

ds.
—1

Pi, 'r r(s')) 0 for s'( —1, L even
Pi,""(s')(0 for s'( —1, I.odd

+I Lp&rrrrr(s)]2(1 S2)aar—ds.

Since Pi, 'r'r(s) is a polynomial in s of order I.,
I

pr, ""(s)=Q a;{s'—s)'.
i=o

When this substltutlon ls made, (A2) becomes

(A2)

(A3)

+1P arer(s) (1 S2)ar
«= 2(-"—1)"Q~""(s')

—1

foI' 3 & —iq I cvcn

+I p&arar{s) (1 sa.) ter

ds=2(s' —1)"Qi,"'{s')

+I p' aarer(s)(1 s2)ar
0&go dSq

~3 This proof is due to A. P. Balachandran and M. 1.. Slackmon
(private communication) .

fol 8 & —j.q
I odd

which proves the second of the inequalities given in
(A1). These inequalities may also be proven using
generalized hypergeometri. c functions.


