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The infinite-component wave equation (8„1.&—M}q =0, whose fields are an infinite sum of (2k, lk) repre-
sentations of the Lorentz group, is shown to be invariant under a set of gauge transformations of the second
kind. This invariance leads us to consider a new class of second-order Lagrangians which are invariant
under these gauge transformations. The Lagrangians are a generalization to the infinite component field of
the ordinary Stueckelberg formalism for a spin-1 field. This new formalism allows us to use ordinary field-
theory techniques to discuss canonical quantization and to introduce local interactions. Ke explore two sepa-
rate theories, one with full invariance under the gauge transformation, and one with invariance only under
a restricted set of transformations L(Q'+m') A(x) =0). The former theory presents a natural framework
for discussing the p trajectory and conserved vector currents with an infinite number of poles. The gauge
current in that theory is conserved, contains the p and p daughters, and has finite e-number Schwinger terms
(as in the algebra of fields). The latter theory seems a possible framework for the ~-A1 trajectory, the axial-
vector obeying a generalized PCAC (partial conservation of axial-vector current) relation.

I. INTRODUCTION

CERTAIN amount of progress has been achieved'
in understanding the mathematical structure of

infinite-component wave equations, and in investigat-
ing the question of which physical systems they may be
applied to. One result which has been periodically
reinforced is that the use of in6nite-dimensional irre-
ducible representations of the Lorentz group in these
theories is likely to lead to some kind of disaster: non-
causality, completely degenerate mass spectra, particles
with spacelike four-momenta, and similar undesirable
results. Consequently, the alternative of using infinitely
many 6nite-dimensional representations remains an
attractive one. However, while theories with in6nite-
dimensional irreducible representations are unduly
restrictive, those with only finite-dimensional repre-
sentations are in a sense not restrictive enough: Any
mass spectrum can be obtained by appropriately choos-
ing the parameters of the wave equation.

In two previous papers, ' ' the wave equation

tential in a Schrodinger-like equation for the in6nite-
component field y. The choice of M determines whether
the spectrum contains only bound states, bound. states
plus a continuum (scattering states), or only scattering
states. Also, the bound-state spectrum may be of any
shape (linear if one wishes), and hence can be made to
agree with current ideas about meson Regge trajectories.

Since the mass spectrum is not specified a Priori by
this type of theory, it is of especial interest to investigate
some of its other physical properties. In this paper we
construct a Lagrangian formalism for in6nite-com-
ponent fields based on an extension of the well-known
Stueckelberg theory5 of vector fields. Fujii and Kame-
fuchi' showed how to generalize Stueckelberg's treat-
ment to the case where the spin-0 and spin-1 pieces have
different masses. In the present work, we extend the
Stueckelberg formalism to the case of an infinite number
of fields. We consider two theories. The first possesses
gauge invariance of the second kind, restricted in the
seilse tlia't the gauge filllctloil A(x) iilllst, satisfy

(8„1.1" M) y (x) =0, — (CI '+m') A.(x) =0 (1.2)

which involves only 6nite-dimensional irreducible rep-
resentations of the Lorentz group, has been explored
in detail. It was shown that the matrix M acts as a po-
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' A. Chodos, Phys. Rev. D 1, 2937 (1970).
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and yields an equation of motion equivalent to the
original inhnite-component wave equation (1.1). The
second possesses unrestricted gauge invariance, and is
equivalent to a new type of wave equation not pre-
viously considered.

In Sec. II we perform the transformations necessary
to take us from the language of in6nite-component wave
equations to that of Stueckelberg fields, and present a
brief review of the Stueckelberg formalism. In Sec. III,
we postulate two Lagrangians, and determine the
in6nite-component wave equations that follow from

5 K. C. G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938).
Y. Fujii and S. Kamefuchi, Nuovo Cimento 33, 1639 (1964).
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them. Section IV is dev'oted to the canonical quantiza-
tion of these theories, and to a discussion of the currents
associated with the gauge transformations. In Sec. V
wc look ahead to thc possibility of applying foI'"
malism we have developed to the case of interacting
hadronic systems.

v)ul" vk(z) =2 Tw )lL"ivy»o(+) l (2.11)

(L,'+'L"' ))».);.= —l(k+2)'4v&;, '&.. (2 10)

Notice that by adding (2.9) and (2.10) we recover (2.4).
We now define

Il. GAUGE INVARIANCE OF WAVE EQUATION
whcrc

Z=P e(-,'k, —;k)
k=o

(2.2)

of the homogeneous I orentz group. That is, we label

y(x) with the index kjo., k=0, 1, 2, . . . , 0&j&k,
—0&j&0, and require that

U(A)(». (*)~ '(A)
=D;„;;("'""(A ')(P),v'. (Ax). (2.3)

Although we have previously worked exclusively in the
'kjo" basis, in this and succeeding sections we shall

be interested in the form of equation (2.1) where we
replace q», by y„,...„„where (p). . p), ) is a traceless
and fully symmetric set of 4-vector indices.

To obtain the matrix which transforms the "kjo"
bRsls to the "py. pI,

" bRsis, we study thc vector I.„
that appears in (2.1). From Ref. 3, we know that

Wc bcgln with the ln6nltc-component wRvc cquRtlon

(()„LI'—M') q (x) =0, (2.1)

which has been studied in previous work. We recall'
that p(x) is taken to transform according to the in-
6nitely reducible representation

( 1))v2)'v

+PI' ' 'Pk PP I ~ v ~ P @
g 0' J(r &

(k!)'
(2.15)

From this it follows that

(2.16)

T.,-'a,i.=(L. L..)o,»' (2.12)

Observe that (2.4) and (2.5) guarantee that (2.11) will

be traceless and symmetric, as required. Furthermore,
since (2.12) requires us to go from zero to k in exactly
k steps, we can replace L„, by L„,(+). in (2.1.2) if we so
desire.

'5'e also de6ne

Till lllV' =(I ill ' ' 'LVlk)) '
0 (2.13)

T is symmetric and traceless for the same reasons that T
is, and in (2.13) we may, if desired, replace L» by L»( '

without changing the value of T. Using (2.9), we can
derive the following relation:

"'ivT» "v),i" =-[(—I)'/2'j(k!)'4'~«', (2 14)

and therefore, defining

(L„L&)g;, ), i.;———L2+k(k+2)]4g i);; i)„(2.4)

Rnd also that
LL. L j=&~"

where M„„are the six generators of the Lorentz group.
Therefore,

'P)ll" Vk(~) 2 T)ll"'IVV, JV~ VV'PV1"'VIV(~) l

so we conclude that

(2 I&)

(2.18)

P )lVLV j»'V, )V'j'V' ~ f))V)V' ~ (2.5)

Furthermore, because I.„transforms as a 4-vector under
I.orentz transformation, it can connect only neighboring
irreducible representations. That is,

(L.)»..';.=L~;.,;.'-)(k,i)4,~ pr
+4..i "")(k,i)4 ~+rj (2.()

where A&+~ are matrices whose exact form need not
concern us here. It will be convenient, however, to
define two new sets of matrices by

(L„+);., ;..=A;, ,;.. +'(k,„)8 . , (2.'I)

Here 8»...»"'""' is the unit matrix in the (~k,—,'k)
representation of the homogeneous Lorentz group. It is
symmetric and traceless separately in its upper and.

lower indices; when acting on an arbitrary tensor with
k 4-vector indices, it projects out the symmetric and
traceless part. For example,

vlvm —($xv1$ vg+$ vms vl 1g gvlvR) (2 19)

and so forth.
We can now proceed to the task of transforming

(2.1). We multiply (2.1) by T„,...„,to obtain

2 T. - ",i.L~"(L.(+)+L.( ') —i' j~., ~ i"
I =I (+)+J ( ) (2.8)

&(sv). ;, (x) =0. (2.20)
By an extension of the techniques of Ref. 3, we can From (2.12) we have
derive the following useful formulas:

TV1 V/„, ill(LV )RJV, k+ri ll TV1'' VVV i V l (2'21)'
(L ' )L"(+))~ ~ ' = —-'k'4~ & '& ~
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while the I-& ) term can be written

2 Z 2'.i -.k,s.()u(J-»( ')k;. , k i&'.
jO' j 0'

x~"' "'"""~u .k -(*)=E 2'. - „,;.
jO'

which from (2.13) and (2.15) is

& h2R yes" -pk-Ia2'" ui" 'uk »(~»1 'uk "i(~)-)

where we have used (2.18).
Since M is a matrix of the form

~kg@ k'g'e' ~k~kk'~gy'~ra' (2.23)

8 8 uI "Pk+IA
»P1» u ~ 1&kV LJ P,j+1 l9Pk+1 V+1~

(&—j+1)(&+j+2)
2(@+1)s

~~»&+ ~ukV» "'; (2 29)

for any V that satisles conditions (i) and (ii). Therefore,
(2.24) will be invariant under (2.25) provided that

,(&
—j+1)(&+j+2)—2m'— ~k+I"'

()'r+1)'
=mkVk")+sf&'Vk-i") (2 30)

Changing variable to e=0—j, and letting

the M term in (2.20) just becomes mkq„, ...„k(g). Thus
(2.1) becomes, in our new basis,

c&' 0'k+I mkgk+ sled f&r)V k—11 (2.24')

which is to be understood as meaning (2.24).
In Ref. 4, it was shown how (2.1) led to a second-

order di6'erence equation that determined the mass
spectrum. The following question arises: Can we see
directly that (2.24) contains the same information,
i.e., does the difference equation follow from (2.24) in
a natural way?

We proceed by considering the effect on (2.24) of a
countable set of gauge transformations of the following
form. Let

(j)~ 1'1' ' '1'k
~P j,"'lk +Pl'"IIk +k P1"'lk ~j I"'1'k 1'1 "1

j=0, 1, 2, . . ., yk(&'=0 for k&j, (2.25)

where V„,...„,. is taken (i) to be symmetric and traceless,
(ii) to be divergenceless,

Vuluk" uj 0 (2+ )'0 (2.26)

(iii) to satisfy the Klein-Gordon equation with some
mass fQg~

(C1s+m&s) V„,...„,.=0.

Then the changes in (2.24) are given by

(2.27)

(Change in left-hand side)
=Vk+t")~"~ i-'k u'"u"'~u. .i "~uk, iV»r -; (2 28a)

+1&pg ~ ~ upk %'kppyu ~ upk

+s ~~1"'uk ~ A»"r' urk(2 24)

For brevity, we shall sometimes write

D'(~+j+1)5' (—2)"
~, (i) —

( (
D (~) (231)

I'(is+2 j+2)I'(I+1) ( m ']
we have

D ~t("=m„+;D„('&——,'mpn(n+2 j+1)D„ i(&') . (2.32)

This is to be compared with Eq. (3.6) of Ref. 4, with

X=mp, r s=kk, and X=2j+1. We See that (2.32), iS

in fact, the equation for determining the allowed

masses N,;,. and that the parameters of the gauge trans-
formations (2.25), i.e., the Vk(&'), are related to the
eigenvectors that solve (232).

The fact that the mass conditions embodied in (2.24)
are most readily expressed as an invariance requirement
under the gauge transformations (2.25) leads us to ex-

plore more fully theories that involve the set of helds

{y„....k}, & =0, 1, 2, . . . , and that are invariant under

gauge transformations such as (2.25). An extension of
the Stueckelberg formalism would seem a natural
place to begin.

The Stueckelberg formalism'~ is a way of describing
a massive vector-meson 6eld by 6ve variables A„and 8
satisfying some subsidiary conditions. The formalism

has the nice properties that the vector field A„has the
same properties under gauge transformations A„—+

A»+B»A(x) as the electromagnetic field, and. the re-
normalizability of the interacting theory depends only
on whether the 6eld 8 can be transformed away by a
gauge transformation.

The free-6eld Lagrangian in the Stueckelberg for-
malism is given by

Z = ,'(a„A„a—»A-msA„A")—
,'(a„Ba»B m'B')—, -(2.33)—

which leads to the equations of motion

(U'+m') A, =0, (Cl s+m')B =0. (2.34)

(Change in right-hand. side)
—pmkpkB)+ips~k i(i)5f&„, ui uk

~ ~@~+I ~Pk VIZ"'Pj (2.28b)

%e notice that under the transformation

A„+a„il., B Bym~, (2.35)

'S. Kamefuchi, "Lectures on the Stueckelberg PormalisIn, "
We state without proof (the proof depends only on Mstscience Report No. 14, 1963 (unpublished).



2464 A. CHODOS AND F. COOPER

the above Lagrangian is invariant if A. is restricted to
obey

(Cl'+m')h. =0.
The subsidiary conditions (B„A&+mB)=0 make this

theory identical with the usual formalism for massive
spin-1 fields. ' The usual Lagrangian for spin 1 is

,'—G„—„(Bp" B—"y )+-,'G„,G""+-', mq „(p ) (237)

which leads to the 6eld equations

Gpu Bkpv Bvpu. ) BAG" +m+=0.
Taking the derivative of (2.38a) we get

Equation (3.1) can be written, in obvious shorthand, as

Gk1 ~ =BB@k 1+—~k g'k+0kB' &pk'1 (31)
If we make the gauge transformations

Pk~ Pk+Vk"'~(B)' 'V;, j=0, 1, 2, , (32)

then Gk& ' will remain unchanged provided

(k —j+1)(k+j+2)
Pk 7k+1 +&k'Yk +"Yk—1

2(k+1)'
X~(B)k 'V;=0. (33)

B„(p"=0. (2.38b)
Assuming ( '+m ) V, =O, we have

If we now let p"=A&—(1/m) B&B, we notice that &p„

and G„„are fully gauge invariant under (2.35). We get

'A" —B"B A&+m'A) mB"8=—0 (2.38a')

't-j'8 —mB„A"=0. (2.38b')

But the Lagrangian

~= —-'G (B~A" B"A—k)+ 'G G-k"

+-,'m'[A~ —(1/m) Bk8$' (2. ;7')

is invariant under (2.35). Thus we can always choose a
gauge in which B„A"+mB=0 ("Lorentz" gauge).

In that gauge, Eqs. (2.38) reduce to

( '+m')8=0 ( '+m')A"=0. (2.39)

The theory in the "Lorentz" gauge is still invariant
under the restricted gauge transformation with

( '+m')A. (x) =0. One can describe a spin-1 particle
and a spin-0 particle with dif erent masses with a
slight modification of the above formalism. One merely
adds to (2.37') the quantity ~(B„A&+mB)'=~X' to
obtain

Z= ,'G~"(B—„A—„B„A„)—+'G„„G&"-
+-'m'[A~ —(1/m) BkBj'+-'(B Ak+mB)' (2.40)

The last term breaks the total gauge invariance under
A„-+A„+B+,8 +8+mA, but -leaves the Lagrangian
invariant under the restricted transformation with
(P'+m')A. =O. This theory is discussed in detail by
Fujii and Kamefuchi. '

III. CONNECTION BETWEEN WAVE EQUATION
AND STUECKELBERG FIELDS

Using these Gk's written in terms of the fields y, we can
construct the Lagrangian density:

~"'=2 Z nkGk""(P, B.P) (3.5)

from which follow the equations of motion (see Sec. IV
for details)

gk+1B'Gk+1"'+Pk 1/k 1BBGk 1~'&=gk~kGk"') (3.6)

which are manifestly invariant under the gauge trans-
formations (3.2). These transformations, however, are
really only restricted gauge transformations, because
the gauge functions V; are required to satisfy the Klein-
Gordon equation. We can obtain a fully gauge-invariant
theory by setting all the pk ——0. We then have

Gk&"&=BBPk,+~kgk, k=1, 2, . . .

which are invariant under

Pk ~ Pk+Vk~(B) kA

for any scalar function A., provided we choose

&k 'Yk—1/'Pk ~

(3 7)

(3.8)

(3.9)

However, rather than a series of gauge transformations,
there is now only one that leaves Gk ~ '~ invariant.
Defining the Lagrangian density

(k —j+1)(k+j+2)—Bmoc' Pg k—'1"'
(k+1)'

+oak"'+vk-1"' =o. (34)

To generalize the Stueckelberg formalism discussed
in Sec. II, we define quantities

6 0) Pl ~ Pk At

yI ~ ~ oyk vyIa ~ oyk LJp, Ipp2e ~ oak l QkpyI ~ ~ oyk

+PkB"cp„„, „„k=0..,.1, 2, . . . . (3.1)

&""=k Z nkGk""'(~, B.'),
k=1

we have the equations of motion

' 6k+1 Pk&kok

(3.10)

(3.11)

Here the pk are symmetric, traceless fields, which should
not be confused with the qk of the previous section.

J. Schwinger, in Lectures on Particles aed Field Theory
(Prentice-Hall, Englewood Clips, ¹ J., 1965), pp. 147—288.

where fk =gk/gk+1
We now wish to establish a precise connection be-

tween the equations of motion (2.1) and (3.6), and to
express (3.11) in dii7erence-equation form.
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Choosing Ak to satisfy

O.k~k+ -x +8 x~,). (3.12)
l4A a+i

(3.13)

and defining diagonal matrices A, 2, and P by

~ kk' ~k+l~kk' y

Ai =8&41,
we see that (3.12) can be rewritten

(3.14)

We turn 6rst to the expression (3.1) for Gi, &", and let
q k=Akxk, where Ak is to be chosen. We have

obtained either way. This is most easily done by
remembering from, e.g., Eq. (3.8) of Ref. 4, that the
allowed masses are determined by the combination
tli, mq i. We calculate from (3.16), (3.13), (3.20), and
(3.18)

(iVi) s(~i)~-1= —(a~i—1/A-i) 2&'

= (M2) i, (Mp) 1 i. (3.23)

We add a 6nal remark about (3.21). The presence of
(A 'P) suggests that for the purposes of applying the
gauge transformation (3.2), we identify A ' p with the
q of Sec. II. Here A is given by (3.13). In fact, making
the replacement pi&"=Alger, "& in (3.4), and putting
~k = ~@A0/j9lxA k+.1, we 1'ccovel' (2.30).

The same general procedure can be appbed to theory
II, where now we make the correspondences

(3.15} 21' 4" Ixa"' ~n V'xi xi ~"
(&.L' ')a .I ';pa;;, (3 24)

(3.25)
and choose

with
yr, ),.=-( .A,/P, A„,)4,

In (3.11) we let
NOW 111 (3.6) WC Iet tfyGy~ 1=BgXg, Wl'tll Bix to be ap- 6
propriately chosen. Then (3.6) becomes

Pi iBa 1- @kk+1

"+'+ ~~Xi'—' X"=0' (3'17} so that (3.11) becomes
~k+1 . +k+ j,

%e Iet Bk satisfy

(3.26)

(P~-1B~-1/%+1)= ——',&'

and (3.17) is therefore

I 8 L—iVi]B 'gG"&=0

&kk =&Akk, qkk =gk~kk,

(3.19)

Here g is a constant inserted for dimensional reasons.
The mass spectrum will of course be independent of the
value of g. In (3.7), we let P =AX, and choose 3 so that

(gAi, 1/n&g) = ——',k', (3.28)
which yields

G""=(~/g)L~ L' '+g)X

(~2)1 a = (~i%/%+1)4~"
Putting (3.19) and (3.15) together, we write

(8 L—Mi)D(8 L Mi}A 'p=0, —
where D is the diagonal matrix

(3.20)

(3.21)

D=B 'pe. (3.22)

Thus (3.21) looks like the product of two 6rst-order
wave operators of the form (2.1). At 6rst. sight, it
might appear that two different mass spectra are
allowed by (3.21); we can either choose A 'p to satisfy

(8 L—Mi)A-'@=0

or we can pick D[8 L—iVi jA '&p=f to be a nonzero-
solution of

(8 L—JV,)/=0.
However, we show that the two procedures are equiv-
alent, in the sense that the same mass spectrum is

(Lo'+') l l = oi+1"'4 1+1, —
(Lo' ')iv=oi"'41+i, (3.32)

o~"'=II:(&—i)(&+j+1)j'".

Combining (3.27) and (3.29) gives

L~ L" d(~ '~/g-)L~ L-'+g jA "=-0 (3-30)-

The advantage of having proceeded in this particular
way is that we have shown, in (330), that the properties
of the system are governed by a single function of k,
namely,

&A 1/gA—=A, (3.31}

with A" and B determined by (3.28) and (3.26). To
reduce (3.30) further, we use the standard technique of
considering Xi(p), 'tile Folll'lci tlallsfol'in of (A p) i,
and using the manifest covariance of (3.30) to go to the
rest frame. Then 8 L'+'-+ —ip~LO&+1 and we have
the explicit expressions
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Using this in (3.30) gives Displaying the first three cases, we have

G=«1V+POI}«1V «

G"=~"O+~IV "+PI~.V "",
G""= o (~"~"+~'~" og'—"~"v»)

+«O ""+Po~& V
""",

We make the following changes in. (3.33):We let

gp
k

(3.34} nI~.G"=«rloG,

go8'1«G" +gopoB G= III'/IG

goI}kG"" +o glpi(8 "G'+8"G"——g""I}kG")

LPo Ilk+I dk+1 g r}kjxk +1Pogrkk+I dk+ixk+1

+1'pogIIk"'dk&k i"'=0. (3.33)
(4.4a)

(4 4b)

ek =g dk/dk+I « (3.35) =n2g2GI"".

to obtain the equation

Dk+i = )po'Ilk+I"" ek]Dk—+po'ekIIk""Dk I, -
As stated before, the Lagrangian is invariant under the

(3 36) following set of gauge transformations of the second
kind:

which is the analog for theory II of the difference
equation (2.32) in the theory determined by (2.1).
In a succeeding paper we shall study the solutions of
(3.36) and elaborate on the physical properties of the
system it describes.

IV. QUANTIZATION OF FIELD THEORY

A. Derivation of Equations of Motion

Let us now consider the 6eld-theoretic aspects of the
foregoing theories. The most elegant formalism for
discussing both the equations of motion and the
canonical commutation relations is Schwinger's quan-
tum action principle. ' By varying the action with Axed

end points„one obtains the Euler-Lagrange equations
of motion. Quantization follows by identifying the
generator 6, associated with the boundary variation,
with the in6nitesimal generator of unitary transforma-
tions on a quantum-mechanical system.

Wc Illodlfv tile Rctloll (3.5) to yield not ollly 'tile

equation of motion for 6"I"'f' but also its de6nition in
terms of pl, . That is,

e'v, " v, e'«1" «k+7»v, vk"' -»~o, 4 (*), ( 5)

provided. that h.(x) is constrained to satisfy

(g'+ m')A(x} =0
(4.6}

PkV k+1 L(II+2)/2 (to+ 1)]III —'yk —I+Ilk Yk

If we consider a particular Z~ with

~"=onkG"' ""(O)"G, 'k(O)-, (4 &)

then it is invariant under a gauge transformation on the
y's of the 6rst kind. For example,

&'= ohio(«O+Po~. o ")'

is invariant under
pV ~ pV+gV (4 g)

with A." a constant. However, the entire I agrangian is
Ilot lllvRIIRIlt under (4.8) slllce G" colltallls oo". I}ut wc

can use the Gell-Mann —Levy equationo to determine
the current that generates this gauge transformation,
and its divergence.

Speci6cally, we consider the single transformation
W = d'oo p pqkG" "(b„,„~ "»a„,e „, ".

Is 0
VI ~ ~ ~ Vf ~ VI ~ v VVJe } $ VIV v «VI (4 g)

—=0 )
Vl' ' «VI

bz, bz
Ll }k

~~)If, +VI ~ ~ V Jg8+VI".VA,

(4.2)

%e thus 6nd for the equations of motion

+&k V'«1 vk+Pk I} O'v«1 "vk)"
——,'gkG" 1" "kG„,...„„j. (4.1)

(In this section for simphcity we replace O1 everywhere

by ov.) Leaving the end points fixed, we obtain from
b8'=0 the usual Euler-Lagrange equations:

j"1'"vk (+) «

Sa A 1" "k(X)
(4.10a)

where J'j„,...„ko(x)do@ is the generator of the above
transformation and

*ePJ V I"~ Vfe

)+VI « ~ ~ V Ie

(4.10b)

where A""'"' is an arbitrary symmetric and traceless
tensor. The Gell-Mann —Levy equations are

G }III.~ .}tkkgvl" vk vl«V vk, »6'1"'»—1++k@1~ 'vk

+Pk~ k vv1'''vk «

}III ~ p}eggk+kovI« ~ «v}e gk—leak —l&vIV ~ vA ~}kIe~}k1"' }jkk-I

+pk&"Gv«1" vk.

(4.3)

These equations yield

Jv«1 ~ vk(a) —
&k pk Ig v1 ~ ~ «kg1«»Gk1

+q Gk+"Iok1(4.11)
o M. Goll-Mann and M. Levy, Nuovo Cimonto 16«705 (1960),
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ri P& j.' ' '&0 —
I OI G&1' ' '&k (4.12)

Th18 teHs us that

These generalized partially conserved current equations
are identical to the equations of motion for the G"'"""
[Kq. (4.3)J. Thus we see that the G's play the role of
the gauge currents, while the p's are the gauge 6elds.

B. Canonical Quantization

[i'"'""k(x))O.l- »(x') jd'». 1-'0=~.1 '0-(4 19)

2[jo" "." (x),O0„,...»(x') j.,=.,
"1 ""k)0(x—x') (4 20)

If we allow the boundary to be varied, we obtain which is equivalent to (4.15) and (4.11).
from the Schwinger action principle

C. Gauge-Invariant Theory

8W=P d~„,q„G"1""08„....„»" »8O „,...„, ,
k aI

+2 dir IlkPOG ~ pv1 vkv~
k O' I

dOX( p (likGvl vl —111+Ilk
IO

Xg00-loG» .»-0))OO„„„) (4 l 3)

Thus if all the o0., „, , are independent (aside from
being symmetric and traceless) we have the identifica-
tion that

G[9 vl" 'I'k-l j d x(0ikG +0ik 28k 2——

The previous theory becomes invariant, under gauge
transformations of the second kind if we set pk=0 and
leave out the term with Z(0). The equations of motion
(4.4) now become equations of motion and equations of
constraint:

lipid„G" =0, G"=8"Vp+nIlp"

0i 8 G "=nr0igG" G "='(8 ip-"+8"Oo 'g"—"8-"&pk) (4 21)
+I22O "".

At 6rst glance it looks like G, G ", . . . , p, y", . . . all

obev equations of motion, whereas G~ G~' . . . obey
equations of constraint. However, the Lagrangian is
invariant under the gauge transformations

O»vv pk O» "»+rk8111"» vl' ' ' ~vk (X) 1 ( 22a)'

provided
'rk —1+02k+k =0 ~

X&»...» 1"1"'"k 'g» "G"'""'0)&20„...» „(4.14) In particular we can choose a gauge where

(4.22b)

where 6 is the generator of the displacement 5y. This
1Dlplles the commutation 1elatlons P B,y'=0 (radiation gauge). (4.23)

["-"-(*),"G., —.„.(")+".t . .~..- .. ."' "—

Xfkk-1OGkl"'kk-0(x ) lk0=00
For if 8;q'/0, we can make a gauge transformation.

=28„,...„vl'"vk-lbk(x —x') (4 15)

[ip"(x),o0~(x')].,=„=0;
[0r"(X) 0r~(X')j.,=.0 =0,

where p~ is any of the canonical 6elds p"'""~ and x+
is any of the canonical momenta,

Choosing

or

vpi = vpi+'r 1 i'~ ~

8'pd x

i
x—x'i

(4.24)

(4.25)

W—1 / a a )y ~ ~ Xg Igg&PI ~ v vga ]0~gg 2+@—2VPj ~ ~ vga

&&gkN loG»- k~ 2 (4 16)

Ke can derive these commutation rules again from the
gauge invariance properties of the theory. The charge

ensures that y is divergenceless. Thus q;=q;~. Con-
sider Go~. %e can always break a vector into its trans-
verse and longitudinal components:

(4.26)

jovl
' ' 'vk(x)dkx= Qvl' 'vk

GokL qkg(x)

g„Gok —qkg(x)
with

is the generator of the constant gauge transformations.
That lsq

The longitudinal piece can be written in the form
(4.17)

p(&Q" '''""&vl" vk)9» "»(X ) eXp( ~Q" '''" ~vl" vk)

—20„,...„,(x )+A.„,...». (4.18)

I
GokI (x) — qk

4vr

8iG"(x')d'x'

fx' —x/
(4.27)
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But
ok 1 go~k+olk~0)+o ~ok

e - '
n the radiation ga g,e 3-divergence ln e

(4.28)

~G&1' ' '&kO) p8W= d'x Q gk+I
k

(4.30)

o
'

he k=1 term, we haveConsidering t e

If we now taktake th

ok (4 29)
we 6n(l

Ok

atio aint hidden in the equauRtlons
Ol 1110 1

are qk~ an
i om the previous case.tion rules from case.

h term obtaine y
'

e otheory t e

t2

in (4.11) with Pk ——0,

))))' ' ')k(g) —
gk IG)))1' ' ')kyP

g
. ors of the constantthe generators o
h " urrents in

s. Since
Ru C tI'RnsformatlOIiS. C

p, =0 with g"=pi

11 ith the eof the po trajectory an a w n
i let of p mesons w en uce n

au c tI'Rns ormaAbellan gauge
uatlon = ' + a=8 (p+A]p Rq

LO)(x), q xGo(x') 7=i''(x —x ) )

we indeed 6nd

= I', 8kb'(—x x') —4.38aLGk(x), G0(x')7.,=., =o—k
' —x' 4.38a

Now

0 (Gko F+GkoL) g ~I kr 431)+ d xY/0

GO kr (g) — 'IP

4m

BiGOi(x')

i
x—x'i

V'Oo'(x') ~px'

i x—x'J
(4 34)

to obtain

Oke have dropped the 0.2 kq
wi ith G") and the

t tio 1 tio of

&p x 0" ' =. =iP(x—x[0 '(g),~0G"(x')7*.=*, =

p k|"GOk(g) GOO(y)7 — k
V'80(y —x')

d s
fx —x'f

Vkv(x y)—
282

(4.36)

This CRn bc rewritten Rs

4.3/)=-', igov k8'(x —y), ':.
,Ljo"(x),jO'(y) 7"="=-.o~o

onl Gok~ enters as a gcncrRtoI'
h lt

81DCC

of the q variation. t e
mu atation relation

j k3 ~T

=i 5' —Bk8,/r7')80(x —x ),
'

h 's consistent wiic is c th Bk&pk=D.

b
6 onc IIiust usc t c RcOk p

mating t

'
h Pirst-Order LagrangianD. Corny arison wit i - rang&an

M h ve obtaine
have gcncl
forIQRllsID uwith t e
we postulated the Lagran

'

, .(x)E~„I. ~7k. ,k.'.Z(x) = Q Pk;. x
kj~; k'P~&

Xpk;. (x). (4.39)

Here )t)=)I)tQ, where

(4.40). '..=(—1) S..S;,'S...
re the l,orentz invariaserted to ensure t elS R IIlRtI'1X lIl

Z(x). Notice that Q as

QJ ) (L,v)&Q—
x is to . 3 treating P(x)be Hermitian. y

the equationstandard way,

(B„l.& M)$ =0—(2 1')

mmutation rulesandt ech anonical commu

""(x')7*,=*.

2.1').to ivc equRtlon 2.%C have, of course) toe chosen/ x to
ests us here is t e co

.42). We multiply
'o.'). Employing essen i(jo.) ancl (j o. .

'
x .,=., =' ' —x'). (4.38b)

OI'

x go=)0' —l ggBk8'(g xLjk(x) jO(g

are reminiscen outation relations a c~en oThese comm
of 6elds, the main i

describes the p meson
. It thus seems that t is a

theory might be t e ap
'

e ic e
he vector current.
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niques used in Sec. II to convert (2.1) into (2.24), we

arrive at the following commutation rule:

PI ~ ~ ~ Pg 0

2~ apl" pk
"'" V»" pk l(x)A'" "'" '{x)]*o=po'

=ib'{x—x') b ... "' "k["(k!)'/2k]bkk. . (4.43)

Here we have dropped the distinction between Pp, ...»
and g». ..»t in order to compare (4.15) with (4.42). By
looking at (2.1') and. (3.19), we conclude that the
simplest correspondence we can make is

lt(x) o-o 8 'o)G(')(x}. (444)

If this is true, then (4.43) becomes

[o)k+1Gpl" pko (x)+ ) 2klPk lupi—"pk

&&Go,...pk-, "'(x)jG"'""'"']zo=po

(&!)'A&ko-i=ibo(x x')—b„„„,"l... "2" {4.45a)
'gk

E. Relativistic Invariance

Schwinger has showns that the necessary and suf-
hcient conditions for a system to be local and have
Lorentz invariance is that the equal-time commutation
relation.

(1/i) [T"(x),T"(x')]
= —Bkbo(x —x') [T'"(x)+T'k(x') 7 (4.47)

is obeyed with just a gradient of a 8 function. He finds

spin 0, 2, and 1 have this property, whereas higher
spins have extra terms that do not contribute to the
commutation relations between I'„, and J„„where
Ep= J'T'pd'x, etc. We find that T""'(x)does obey this
condition, and. the T (') commutation relation contains
extra terms which are not local (in the Schwinger sense,
since they are third derivatives of b functions).

The stress tensor TI"" is defined as the measure of the
response of the system to the space-time displacement
xp ~ xp+bxp

where we have used (3.18); i.e.,

[~„,...„„(x),G" . "'(x')].,=..
bW = d'x ()pox, TP"(x) . (4.48)

(&!)'&k&k+2
= ib (x x )apl. ~ pk"

' ' '"
bkk~ (4 45b)

gk

5Z
Tpv gv~ gyve 4 49

~~a&~& ~ ~s

2)kGvl'
' 'vkG —Q gk

k[or„,...„„(x},0 """""'(x')].,=.,
=iso(x x')b .—.. "l" "kbkk, (4.15'a)

we have for the spin-1 piece of the stress tensor

9'pl" pk(x)jor"
'' " '(x')]*o=oo'=0 j (4 15'b)

[0 p -.-(x) v"'"""'(x')]0=*'=0. (4 15'c)
bz

gpv (1)— gv ~ gyve (1)

88pp
Although (4.45b) has certain similarities with (4.15 a),
it turns out that one can derive a contradiction between
(4.45b) and (4.15'b). The momentum or(x) conjugate
to the scalar field rp(x) is just G'(x), and therefore from
(4.15'b)

Thus for the gauge-invariant theory,

Too(l) 9 [Goy P (Go)2+ (Gk)2

=nil 2(G')'+2(G')'-~i(j oG'],

(4 46) wher[orpi- -(x),G'(x')]*o=*o =o.
gko(l)' —

~ Qkgo~

Usin~

One might wonder if this is possibly a consequence of Using
the commutation rules already derived, viz. ,

(4.50)

(4.51)

(4.52)

[oro(x),GO(x')].,=.o =O.

But (4.45b) tells us that

[oro(x),GO(x')].,=., =iso(x —x')('2)B)82/))i.

Since the 8's are assumed not to vanish, we have arrived
at a contradiction. This means that, assuming the con-
sistency of Eqs. {4.15'a)—(4.15'c), the Lagrangian (3.5)
and (4.39) generate canonically .inequivalent theories,
even though the 6elds obey the same equations of
motion. The fact that functions obeying the same equa-
tions of motion can have diferent canonical commuta-
tion relations is known even on the classical level in
terms of Poisson brackets. "

' H. PrImako6 I'pnvate communIcatIon).

[Gk(x),G0(x')] = (i/o)i) ()kbo(x x') —(4.53)

~»'(x x') [f( )g(x)+—xf( )gx( )]x
=Bkbo(x —x')[f(x)g(x)+f(x')g(x')], (4.54)

(1/;) [Too(i) (x) Too(l)(x )]
= —8 bo(x —x')[T"("(x)+T'"")(x')] (4 55)

Thus the spin-one piece is local.
We can rewrite T"") in terms of the independent.

variables. In the radiation gauge y~ = y~~, and thus

Too(l) 0 [(Go)2+(()k+) 2+Ojl2(0)kT) 2

—o)l(oloooG0+(3-dimensional divergence) . (4.56)



A. CHODOS AN D I . COOPER

In calculating [Too&"(x) Too&'&(x')] one needs the
commutator

8'8;
8'(x —y) . (4.57)

g2

Thus at the spin-2 level we obtain nonlocal terms,
which are third derivatives of 6 functions. Ke have not
attempted to verify the commutation relations to all
orders owing to the increasing difhculty of the task.

To obtain the stress tensor in the theory with PWO,
we erst have to reexpress Bop in terms of p, B~q
and m~. The problem is soluble in principle, but we have
not found a simple expression for the solution. Briefly
we shall sketch how to make the inversion.

Suppose we want to find Boy =f(x~, q M, Big~) One.
needs to look at m-, zoo, x00, etc. :

In general we get the inGnite set of equations

~OS'+Pi~os' =fo(iry~&V' ~V' ) y

r g ~00+P g @ODOO —f (x ~Q0 g ~M ~3f)

g +0 ~ ~ ~ 0 (N indices)~p g 0 ~ ~ ~ 0 (%+2 indices)+~M+1 Og

g 'ry ~ ~ e pX y
~ ~ ~ ~ (4.59)

So we can solve in principle for all the Boy~. Since we

have not found any simple way of expressing these
equations we have as yet not been able to verify that
T" is po iti e d fi it, d th t (I/')LT"(*),T"( ')]
= —8~8'(x —x')LT'~(x)+T'i(x')]+terms not contrib-
uting to the [J&",P ]commutation rules.

It has come to our attention" that it has never been
shown even for a massive spin-2 Geld that, when one
turris on interactions, T'0 is positive definite or satisfies
simple commutation relations, because of the over-
whelming amount of work involved. Thus it seems a suf-
ficient achievement to have been able to verify the
stress-tensor relations for the spin-1 part of the gauge-
invariant theory.

conserved gauge current G„, whereas the theory with

the P's contained a partially conserved current
B„G&=cG. Ke would like to point out in this section
that the conserved G~ suggests itself as a generalized

p field, whereas the partially conserved G& suggests
itself as a generalized axial-vector field, the divergence

being the generalized x Geld with an infinite number of
pseudoscalar mesons. Thus we have the skeletal be-

ginnings of a connection with current algebra. In this
section we will explore this connection and also briefly

discuss how to introduce interactions so as to reproduce
Veneziano-type scattering amplitudes. In the gauge-
invariant theory, B„G&=0and

This leads to the following equations:

which implies

F" 8A"—O'A

~i F" =vi~(&i p +~ p) ~

g Gp, 0 g J(em)p,
P

Jr )~

(5 3)

These two equations are identical to those obeyed by
the usual free p Gelds, except here G& contains an

infinite number of vector mesons, with the masses de-

termined by the eigenvalues of the inGnite-component
wave equation. The G~ suggests itself as the generalized

p field (and therefore the "free" gauge-invariant
Lagrangian as the Lagrangian for the p trajectory). We
can therefore use Geld-current-identity methods" to
obtain nucleon form factors which will be infinite-pole

dominated at the first order of perturbation theory. The
current then will also have finite c-number Schwinger
terms. In what follows we will introduce a naive field-

current identity (which is not gauge invariant) which

is suggestive of models which we eventually hope to

pl oduce.
Ke introduce the following free Maxwell Lagrangian

with an interaction with G&=(nip&+B&y):

In the previous sections of this paper, we developed
a Lagrangian formalism for Gelds obeying an inGnite-
component wave equation. The fields in the theory, say,
y& or G&, had the interesting property of having an
inhnite number of particles associated with them. The
theory which was gauge invariant (P=O) contained a

"Tung-Mow Van (private communication).

This interaction is not gauge invariant with respect to
the dectromagnetic Geld, since under

(5.4)

"T.D. Lee, in Theory and P'henomenology in Particle Physics,
edited by A. Zichichi (Academic, New Vork, 19N}, Part A.

"See J. J. Sakurai )Currents and Mesons (Chicago U. P.,
Chicago, 19N)j for a discussion of this point.
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This causes problems" with the maintenance of the
zero mass of the photon under renormalization. Ignor-
ing this problem for the moment, (we have not yet
found an appropriate gauge-invariant interaction), let
us see what such an identity implies.

We can introduce an interaction with nucleons via
the replacement

y e

Gp.

9„—+ 8„—igG„

in the free-nucleon Lagrangian. That is,

(5.5)
FIG. 1. Nucleon electromagnetic form factor

which follows from the Lagrangian (5.7}.

Z("""-n}=if' (8&—igG&)P —wc~ (5.6)

The total Lagrangian then becomes

g —g(p}+g (om}+g(non}eon} (5.7)

The full Lagrangian tEq. (5.7)] leads to a Born term
for the nucleon form factor as illustrated in Fig. 1. As
is well known, a sum of an infinite number of spin-1

poles leads to form factors which are hypergeometric
functions, and. can lead to any asymptotic power be-
havior for large negative q' that one desires. For ex-

ample, in the Veneziano model, form factors have
infinite pole dominance and turn out to be ratios of F
functions, for example, '4

I'(1-,(~))
n, (/)=t+ 21 (the p trajectory-)

~(-:.—-,(~))

Ke 6nd that the interactions maintain the commuta-
tion relation Eq. (5.1).Thus the electromagnetic current
has 6nite c-number Schwinger terms

P(-}'(~),~(-}'(y))=—(ill/nl)~»'(* —y) (5.g)

Thus with the identi6cation of 6 as the 6eld containing
the pion and all the pion satellites, and with the full-
current identity postulate, we 6nd the generalized
PCAC (partial conservation of axial-vector current)
condition

(5.12)

where now both A& and (}} contain an infinite number
of particles.

tA'e do not advocate taking the above Lagrangians
too seriously. We are merely suggesting that once one
has Bn ordinary I agrangian formalism for describing
in6nite towers of particles, one can start using the
techniques of Gell-Mann and Levy and hope fully 6nd
the correct "n" model. The new "0"model (if found)
will automatically be Regge behaved and hopefully
will be free from the in6nities inherent in ordinary 6eld
theories.

The problem of introducing general vertices in thjs
type of theoly has already been considered by Abar
banel. '5 He studied two possible trilineal' couplings
of fields

which behaves like t &~'+'.

It is tempting to consider the theory with /+0 as the
infinite-component 6eld corresponding to the ~-A&

trajectory. One is then led to postulate a 6eld-current
identity for the axial-vector current

A"=cG"=c((}"p}+nl pn+p18, pn") .

Consider, for example, the Lagrangian

&=&0'7n(iV+7&4''rn7 p4'((1"&+nl &"+Pl(l~ p}")
+2(pr —A 1 system) . (5.10)

np}}pG=glB,G"+yp(},Vp"=}}I(LG" (5.11)

&4 p. { ooper, Phys. Rev. D 1, 1&40 (j.970}.

Now lf wc let lp ~ 8'}pQ, wl'tll A. Constant) 2 ~2 alld
thus Vp&= Py„y,f obeys—B„Vp&=0 With thi.s inter-
action we find the equation for 6& from

t}&lt}P= (}n((}&/~~n9') ~

&I(&)= Q gl(LMN)PA„, ...„~(x)B„c,...„~ „
X(a„~ „"a,„)C ' j (513,)

(wllcl'c tile dcllva'tlvcs will go on Q A (}I' B depending
on whether M)L+N, L)M+N, or N)L+.M
spectively). The second coupling we considered ws, s

~,(*)= Z „(LMN)LA„,...„„(.)B„„,...„„„(,)
LMN

X((}nc+}I+}'' (lnar)c"' '"~(&)j, (5.13b)

~=p1{~—~).

With trilinear couplings of this type he was able to re
produce the Veneziano amplitude (with (}Iwith(}ut odd
daughters). However, Abarbanel dealt only with the
interaction Laglanglan ln the spirit of Weinberg. le

Here we have instead a complete Lagrangian formula
tion of the problem.

» H. D. I. Abarbanel, Ann. Phys. (¹V.}SV, 525 (1970}.
~6 S. steinberg, Phys. Rev. 133, 31318 (1964}.



A. C HO DOS AN D F. COOPER

Most of the hard work remains to be done. Can one
succeed in finding the equivalent "0"model for these
6elds, so that one can once again try to solve the
current-algebra problem? What are the correct inter-
actions to use? Are the perturbation sums for the
interacting case 6nite? We hope that this formalism
will be a help in answering some of these questions.
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Some Constraints on Partial Waves of Helicity Amplitudes which Follow from
Analyticity, Unitarity, and Crossing Symmetry*

WILLIAM CASE

Physics Department, Syracuse University, Syracuse, Eem Fork 13810
(Received 16 December 1970)

Some inequalities involving 6nite numbers of partial-wave helicity amplitudes are derived for the elastic
scattering process ub —+ ub (arbitrary spins and masses). One set of inequalities involves algebraic combina-
tions of t-channel (au ~ bb) partial-wave helicity amplitudes and holds for any value of t between 0 and
4p' (p is the lesser mass of the two particles involved in the scattering). A second set places restrictions on
integrals over s-channel (ab —+ ub) partial-wave helicity amplitudes. Finally, the above relations are applied
to the particular case of ~ -nucleon elastic scattering, where inequalities among partial-wave helicity ampli-
tudes are obtained.

I. INTRODUCTION

' 'N recent years there has been a rebirth of interest in
~ ~ finding constraints on amplitudes which follow

purely from analyticity and unitarity. ' The present
paper is an effort to bring together some' of these re-
sults with the work of Balachandran and co-workers'
on crossing properties of partial waves and in particular
the work by Balachandran, Modjtehedzadeh, and
myself" on constraints on partial waves of helicity
amplitudes which follow from crossing symmetry. For
the elastic scattering process ab —+ ab (s channel),
inequalities are found for algebraic combinations of
partial waves of t-channel helicity amplitudes for
0~& t&4p, . This is done in Sec. II and the inequalities
are given in Eqs. (6) and (10). In Sec. III in.equalities
for integrals over partial waves of s-channel helicity

* Supported by the U. S. Atomic Energy Commission.
~ (a) Y. S. Jin and A. Martin, Phys. Rev. 135, 81369 {1964);

135, B1375 {1964); (b) A. Martin, Nuovo Cimento 47A, 265
{1967);{c)63A, 167 (1969).

~Similar approaches have been used for various processes:
S. M. Roy, Phys. Rev. Letters 20, 1016 (1968); A. P. Bala-
chandran and Maurice L. Blackmon, Phys. Letters 31B, 655
(1970); F. J. Vndurain, ibid. 31B, 368 (1970); A. K. Common
CERN Report No. 1145, 1970 (unpublished); A. K. Common and
F. J. Qndurain, CERN Report No. 1185, 1970 (unpublished).

3 (a) A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821
(1968); (b) A. P. Balachandran, W. J. Meggs, and P. Ramond,
ibid. 175, 1974 (1968); (c) A. P. Balachandran, W. J. Meggs,
J. Nuyts, and P. Ramond, ibid. 176, 1700 (1968); (d) 187,
2080 {1969);(e) A. P. Balachandran, W. Case, and M. Modjte-
hedzadeh, Phys. Rev. D 1, 1773 (1970); (f) A. P. Balachandran
and M. Blackmon, Syracuse University Report Xo. 223, 1970
(unpublished).

amplitudes are found for the same process t result given
in Kqs. (13), (17), and (18)]. The main features of
these constraints are as follows: (1) They follow from
analyticity, unitarity, and crossing symmetry; (2) they
involve only a 6nite number of partial waves in each
inequality: and (3) they are constraints in the unphys-
ical region.

In Sec. IV the results of Secs. II and III are applied
to the special case of x'-nucleon elastic scattering.

II. t-CHANNEL CONSTRAINTS

s charinel,

t channel,

e channel,

ab —+ ab,

aa —+ bb,

a5 ~ a6.

We express, for the case of elastic scattering, the Kibble

We begin by introducing various definitions and
conventions. For the scattering process 1, 2 —+ 3, 4, we
de6ne

s—= (pr+ ps) ',
~=—(pr —ps)'

Q= (pr p4)

We will be considering the elastic scattering ab —+ ah
where both particle a and b may have spin. Particles 1

and 3 are taken to be of type a with spin 0. and mass m
while particles 2 and 4 are of type b with spin 0-' and
mass p. We also assume, without losing generality, that
m&~ p. Physical processes in the various channels are


