PHYSICAL REVIEW D

VOLUME 3,

NUMBER 10 15 MAY 1971

New Lagrangian Formalism for Infinite-Component Field Theories*

Aran CHODOS
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

AND

FrED COOPER
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033
(Received 14 December 1970)

The infinite-component wave equation (8,L#— M) ¢=0, whose fields are an infinite sum of (3k,3%) repre-
sentations of the Lorentz group, is shown to be invariant under a set of gauge transformations of the second
kind. This invariance leads us to consider a new class of second-order Lagrangians which are invariant
under these gauge transformations. The Lagrangians are a generalization to the infinite component field of
the ordinary Stueckelberg formalism for a spin-1 field. This new formalism allows us to use ordinary field-
theory techniques to discuss canonical quantization and to introduce local interactions. We explore two sepa-
rate theories, one with full invariance under the gauge transformation, and one with invariance only under
a restricted set of transformations [ ([02+4?)A (x) =0]. The former theory presents a natural framework
for discussing the p trajectory and conserved vector currents with an infinite number of poles. The gauge
current in that theory is conserved, contains the p and p daughters, and has finite c-number Schwinger terms
(as in the algebra of fields). The latter theory seems a possible framework for the -4, trajectory, the axial-
vector obeying a generalized PCAC (partial conservation of axial-vector current) relation.

I. INTRODUCTION

CERTAIN amount of progress has been achieved!

in understanding the mathematical structure of
infinite-component wave equations, and in investigat-
ing the question of which physical systems they may be
applied to. One result which has been periodically
reinforced? is that the use of infinite-dimensional irre-
ducible representations of the Lorentz group in these
theories is likely to lead to some kind of disaster: non-
causality, completely degenerate mass spectra, particles
with spacelike four-momenta, and similar undesirable
results. Consequently, the alternative of using infinitely
many finite-dimensional representations remains an
attractive one. However, while theories with infinite-
dimensional irreducible representations are unduly
restrictive, those with only finite-dimensional repre-
sentations are in a sense not restrictive enough: Any
mass spectrum can be obtained by appropriately choos-
ing the parameters of the wave equation.

In two previous papers,®* the wave equation

(0uL¥—M) p(x)=0, (L.1)

which involves only finite-dimensional irreducible rep-
resentations of the Lorentz group, has been explored
in detail. It was shown that the matrix M acts as a po-
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tential in a Schrodinger-like equation for the infinite-
component field ¢. The choice of M determines whether
the spectrum contains only bound states, bound states
plus a continuum (scattering states), or only scattering
states. Also, the bound-state spectrum may be of any
shape (linear if one wishes), and hence can be made to
agree with current ideas about meson Regge trajectories.

Since the mass spectrum is not specified a priori by
this type of theory, it is of especial interest to investigate
some of its other physical properties. In this paper we
construct a Lagrangian formalism for infinite-com-
ponent fields based on an extension of the well-known
Stueckelberg theory® of vector fields. Fujii and Kame-
fuchi® showed how to generalize Stueckelberg’s treat-
ment to the case where the spin-0 and spin-1 pieces have
different masses. In the present work, we extend the
Stueckelberg formalism to the case of an infinite number
of fields. We consider two theories. The first possesses
gauge invariance of the second kind, restricted in the
sense that the gauge function A(x) must satisfy

(O+m)A(x) =0 1.2)
and yields an equation of motion equivalent to the
original infinite-component wave equation (1.1). The
second possesses unrestricted gauge invariance, and is
equivalent to a new type of wave equation not pre-
viously considered.

In Sec. II we perform the transformations necessary
to take us from the language of infinite-component wave
equations to that of Stueckelberg fields, and present a
brief review of the Stueckelberg formalism. In Sec. I1I,
we postulate two Lagrangians, and determine the
infinite-component wave equations that follow from

5 E. C. G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938).
6Y. Fujii and S. Kamefuchi, Nuovo Cimento 33, 1639 (1964).
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them. Section IV is devoted to the canonical quantiza-
tion of these theories, and to a discussion of the currents
associated with the gauge transformations. In Sec. V
we look ahead to the possibility of applying for-
malism we have developed to the case of interacting
hadronic systems.

II. GAUGE INVARIANCE OF WAVE EQUATION
We begin with the infinite-component wave equation
(0uLr—M)e(x)=0, (2.1)

which has been studied in previous work. We recall?

that ¢(x) is taken to transform according to the in-

finitely reducible representation
R=3 ©@kIH) 22)

k=0

of the homogeneous Lorentz group. That is, we label

o(x) with the index kjo, k=0, 1, 2, ..., 0<j<k,

—0< j<g,and require that

U(A) @rjo(x) U1 (A)
=Djojror *1PHD(A) @1jr o (A%) .

Although we have previously worked exclusively in the
“kjo” basis, in this and succeeding sections we shall
be interested in the form of equation (2.1) where we
replace ¢rjs bY @up...up, Where {us---ur} is a traceless
and fully symmetric set of 4-vector indices.

To obtain the matrix which transforms the “kjo”
basis to the “uy---us” basis, we study the vector L,
that appears in (2.1). From Ref. 3, we know that

(LuL#)kjo bt or = —[ 2+ (k+2) 10518158500 (2.4)
and also that

2.3)

I:Lva:l =iM, oy

where M, are the six generators of the Lorentz group.
Therefore,

CLuyLyJkjo b v or o Stk « 2.5)
Furthermore, because L, transforms as a 4-vector under
Lorentz transformation, it can connect only neighboring
irreducible representations. That is,

(L) riowrirer =[Ajo.ra T (o) 81 111
FAjo,50 P (leyu)1r k1171,
where A& are matrices whose exact form need not
concern us here. It will be convenient, however, to
define two new sets of matrices by
(Lu®)kjo it or = Ajo it or (ko) 81 1x1,
so that

2.6)

2.7

Ly=L,+L,. (2.8)

By an extension of the techniques of Ref. 3, we can
derive the following useful formulas:

Ly LR kg prjrgr = — 5ROk 85j000r  (2.9)
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and
(L DLE) i 1rjror = —5(k+2) 2011855850 . (2.10)

Notice that by adding (2.9) and (2.10) we recover (2.4).
We now define

Pureeoi(X) =Z T irevpriio @hia(%) 5 (2.11)
jo
where
Tm'-'uk,iw:(Lm' . ‘Luk)O.kJ'v- (2.12)

Observe that (2.4) and (2.5) guarantee that (2.11) will
be traceless and symmetric, as required. Furthermore,
since (2.12) requires us to go from zero to & in exactly

“k steps, we can replace L,; by L,; in (2.12) if we so

desire.
We also define

Tomaemtes = (L#1e o L) oo o (2.13)

T is symmetric and traceless for the same reasons that T
is, and in (2.13) we may, if desired, replace L#i by L#i
without changing the value of 7. Using (2.9), we can
derive the following relation:

T‘“' ’ '"kfaTur--nk,i’V’ = [(_ 1)k/2k](k !)25#’5”' ) (2~14)

and therefore, defining

(=1)%2%
Sur“uk].a: — Ml"'ﬂkja’ (2‘15)
(k)2
we have
Prjo(2) =SH o 0y (X) (2.16)
From this it follows that
Puree-ur() =Z T st ioS™ " o Pree () (2.17)
jo
so we conclude that
(2.18)

Z Tm-unk'jtrS”' Tk = Opgeeepy’ TR
jo

Here 8,....°0 7% is the unit matrix in the (3k,3k)
representation of the homogeneous Lorentz group. It is
symmetric and traceless separately in its upper and
lower indices; when acting on an arbitrary tensor with
k 4-vector indices, it projects out the symmetric and
traceless part. For example,

—1 1
O =3 (3"1:'15"2»24_5“»23“2” zguwzgym) y

and so forth.
We can now proceed to the task of transforming

(2.1). We multiply (2.1) by T),...,; to obtain
2 Toreeonio (L P+ L, D) =M Tujo wriver
Jjo

Xonjror(x)=0.

(2.19)

(2.20)
From (2.12) we have

2 Tvvuﬂk.fv(Lv(+))kj<r.k+1j’a’ =Toremw.i’a’ s (2~21)
Jjo



3 NEW

while the L&) term can be written

Z Z Tn-uvk.jaau(L" (—))kjv,k-1j’a’

jo j'a’

XS# #6150 ey 1(8) =22 Togevonpio
jo

X B(— 22 SH1 B 0 (%)

which from (2.13) and (2.15) is

—3h20y eI 0 gy () (2.22)
where we have used (2.18).
Since M is a matrix of the form
Myjo ki et =Mibkir 05780 (2.23)

the M term in (2.20) just becomes #7i@y,...,,(%). Thus
(2.1) becomes, in our new basis,

6,¢w1---vk=7nk¢yl...yk

F3828,p0 e 1 0 - (2.24)
For brevity, we shall sometimes write
a- <Pk+1=Mk¢k+‘%k253¢k_1 , (2.24")

which is to be understood as meaning (2.24).

In Ref. 4, it was shown how (2.1) led to a second-
order difference equation that determined the mass
spectrum. The following question arises: Can we see
directly that (2.24) contains the same information,
i.e., does the difference equation follow from (2.24) in
anatural way?

We proceed by considering the effect on (2.24) of a
countable set of gauge transformations of the following
form. Let

Pueeey ™ Cugeemy T VEDOpge?? 78y Ve

j=0,1,2, ..., v@=0 for k<j, (2.25)

where V,,...,; is taken (i) to be symmetric and traceless,
(ii) to be divergenceless,

amvuu‘z"-m':() (7>0), (2.26)

(ili) to satisfy the Klein-Gordon equation with some
mass ;,

(O2H172) Vpgove;=O0. (2.27)
Then the changes in (2.24) are given by

(Change in left-hand side)
= 1 DO By D+ D Voo (2.282)

(Change in right-hand side)
=y 1D 32y 11D Byl HE

XOpsae OV oo+ (2.28b)

We state without proof (the proof depends only on
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careful counting) that
avayl---vkv“l. : ."k+lap,j+1' .. G#HIVM...,,J-
(k—j+1)(k+5+2)
=02 e
2(k+1)2
KOst OV uoy  (229)

for any V that satisfies conditions (i) and (ii). Therefore,
(2.24) will be invariant under (2.25) provided that

=D+
ﬂk_*_l(])
(k+1)?

2m;

= my s D+ 3k . (2.30)

Changing variable to #=~Fk— 7, and letting
[P+ (-2
T(0+2j+2)T(n+1) 2

) =

) D&, (2.31)

Ynts

we have
Dpi D =y ;DD —=3mn(n+25+1)Dp @, (2.32)

This is to be compared with Eq. (3.6) of Ref. 4, with
x=m;2, r,2=1, and A\=2j+1. We see that (2.32), is
in fact, the equation for determining the allowed
masses 77, and that the parameters of the gauge trans-
formations (2.25), i.e., the @, are related to the
eigenvectors that solve (2.32).

The fact that the mass conditions embodied in (2.24)
are most readily expressed as an invariance requirement
under the gauge transformations (2.25) leads us to ex-
plore more fully theories that involve the set of fields
{@u-ms}, =0, 1, 2, ..., and that are invariant under
gauge transformations such as (2.25). An extension of
the Stueckelberg formalism would seem a natural
place to begin.

The Stueckelberg formalism®7 is a way of describing
a massive vector-meson field by five variables 4, and B
satisfying some subsidiary conditions. The formalism
has the nice properties that the vector field 4, has the
same properties under gauge transformations A4,—
A, +3,A(x) as the electromagnetic field, and the re-
normalizability of the interacting theory depends only
on whether the field B can be transformed away by a
gauge transformation.

The free-field Lagrangian in the Stueckelberg for-
malism is given by

= —1(8,4,944* —m?4,4")

—1(9,Bo*B—m?B?), (2.33)
which leads to the equations of motion
(O+m4,=0, (O24m?)B=0. (2:.34)
We notice that under the transformation
Ay— A, +3,A, B— B+mA, (2.35)

7S. Kamefuchi, “Lectures on the Stueckelberg Formalism,”
Matscience Report No. 14, 1963 (unpublished).
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the above Lagrangian is invariant if A is restricted to

obey
(O24-m?)A=0. (2.36)

The subsidiary conditions (9,4#+mB)=0 make this
theory identical with the usual formalism for massive
spin-1 fields.® The usual Lagrangian for spin 1 is

L= —3Gw(0"¢" — ) +iGuGr+imioue*,  (2.37)
which leads to the field equations
Gu=0,0,—0,0u, 0,G"+m?¢’=0. (2.382)
Taking the derivative of (2.38a) we get
d,¢"=0. (2.38b)

If we now let p#=A#—(1/m)d*B, we notice that ¢,
and G,, are fully gauge invariant under (2.35). We get

024" —39,4*+m?A*—mdB=0, (2.38a")
O2B—md,A#=0. (2.38b")
But the Lagrangian

= —1G,,(0* 4" — P A¥)+1G,,Gw
+im[A+—(1/m)o*B]  (2..7)

is invariant under (2.35). Thus we can always choose a
gauge in which 9,4*+mB=0 ("Lorentz” gauge).
In that gauge, Egs. (2.38) reduce to

(O*m?)B=0, (O*Hm?)A4r=0.

The theory in the “Lorentz” gauge is still invariant
under the restricted gauge transformation with
(O24m?)A(x) =0. One can describe a spin-1 particle
and a spin-0 particle with different masses with a
slight modification of the above formalism. One merely
adds to (2.37) the quantity 3(9.4#+mB)2=3x? to
obtain
= %G"”’(a,‘A,, —a,4 #) +%GHVG'W

+im2 [ A*—(1/m)0*B*+31(8,4#+mB)2.
The last term breaks the total gauge invariance under
A,— Au+8.A, B— B4mA, but leaves the Lagrangian
invariant under the restricted transformation with

(O24m?)A=0. This theory is discussed in detail by
Fuyjii and Kamefuchi.®

(2.39)

(2.40)

III. CONNECTION BETWEEN WAVE EQUATION
AND STUECKELBERG FIELDS

To generalize the Stueckelberg formalism discussed
in Sec. II, we define quantities

Grpeoorg @ =8y Q) ) By A0tk By
ABrd By, k=0,1,2,....

Here the @, are symmetric, traceless fields, which should
not be confused with the ¢ of the previous section.

3.1)

8J. Schwinger, in Leciures on Particles and Field Theory
(Prentice-Hall, Englewood Cliffs, N. J., 1965), pp. 147-288.
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Equation (3.1) can be written, in obvious shorthand, as

G P =00 Br—1+or r+Brd - Prt1- 3.1)
If we make the gauge transformations
Gr— @k'l‘ik(j)a(a)k—j[/j) j=05 17 27 s (32)

then Gx® will remain unchanged provided

k—j+1)(k+j+2)
[ (k—j ( Frpr @O 2—|—ak’)7k(j)+')’~k—1(j)]
2(k+1)?

X8(8)V,;=0. (3.3)
Assuming ([02-+m,;%)V;=0, we have
E (k= j+1) (e++2)
_§mJ2
(k+1)?

()]

KV k1
+ak‘}7k(j)+7k—1(j):| =0. (3.4)

Using these Gy’s written in terms of the fields ¢, we can
construct the Lagrangian density:

LO=1 Y nGrOHp,0,8), (3-5)

k=

o

from which follow the equations of motion (see Sec. IV
for details)

410 - Grpr D 11—18r-100G1—1 P =GV, (3.6)

which are manifestly invariant under the gauge trans-
formations (3.2). These transformations, however, are
really only restricted gauge transformations, because
the gauge functions V; are required to satisfy the Klein-
Gordon equation. We can obtain a fully gauge-invariant
theory by setting all the 8, =0. We then have

G0 =69 g1 taorpr, k=1,2,... 3.7
which are invariant under
@1 — Eut7r6(9)*A 3.8)
for any scalar function A, provided we choose
o= —Ye-1/Tx- (3.9)

However, rather than a series of gauge transformations,
there is now only one that leaves GxID invariant.
Defining the Lagrangian density

LW=} T mG5,0,8),  (3.10)
k=1
we have the equations of motion
0G0 = {4, G D | (3.11)

where {&=nx/Nk41.

We now wish to establish a precise connection be-
tween the equations of motion (2.1) and (3.6), and to
express (3.11) in difference-equation form.
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We turn first to the expression (3.1) for G, and let
@r=AXx, where Ay is to be chosen. We have

Apa
GeD =B A 111 00X 51
kA ki1
ardy
Xk+a'xk+1) . (3.12)
oA o1
Choosing 4, to satisfy
Ar1/Brd py1=—3%k2 (3.13)
and defining diagonal matrices 4, 4, and 8 by
A = Abrr
A =App1drrr (3.14)
B =Brdri
we see that (3.12) can be rewritten
GV =BA(d-L—M)A'3, (3.15)
with
(M) =—(orAr/BrAks1)drs . (3.16)

Now in (3.6) we let 7:Gr® =BXy, with By to be ap-
propriately chosen. Then (3.6) becomes

Br—1Br—1 arBr
9 K1+ ORj—1— Xr=0. (3.17)
By B
We let B;, satisfy
(Be—1Bi—1/Bry1) = —1k2 (3.18)
and (3.17) is therefore
[8-L—M,]B-1nG™ =0, (3.19)
with
By =Bibirr, ke =n1kr
and (3.20)
(M3)wrr = (2xBi/Bry1) Surr -
Putting (3.19) and (3.15) together, we write
(0-L—M)D@-L—M)A—13=0,  (3.21)
where D is the diagonal matrix
D=B-1gA. (3.22)

Thus (3.21) looks like the product of two first-order
wave operators of the form (2.1). At first sight, it
might appear that two different mass spectra are
allowed by (3.21); we can either choose A~ to satisfy

(8- L—M)A-13=0

or we can pick D[8-L—M,]A~1@=y to be a nonzero
solution of
(6'L—M2)¢=0.

However, we show that the two procedures are equiv-
alent, in the sense that the same mass spectrum is
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obtained either way. This is most easily done by
remembering from, e.g., Eq. (3.8) of Ref. 4, that the
allowed masses are determined by the combination
mymir—1. We calculate from (3.16), (3.13), (3.20), and
(3.18)

(M) (M) p—1=— (arei—1/Br—1) 3k
=(M2)i(Ms)p-1. (3.23)

We add a final remark about (3.21). The presence of
(A~1@) suggests that for the purposes of applying the
gauge transformation (3.2), we identify 4@ with the
¢ of Sec. II. Here 4 is given by (3.13). In fact, making
the replacement ¥ =A4yx® in (3.4), and putting
mr=—arA/BrA 1, we recover (2.30).

The same general procedure can be applied to theory
I1, where now we make the correspondences

0 By, <> (3L )kjo 15000 Bt or
and

112 ~
3R gt KOy Buger oy, <

(3 : L(—))kia.k’j’ o Prrjrat y (3-24)
as deduced in Sec. II.
In (3.11) we let
G0 =B, %, (3.25)
and choose _
Bk+1=g“‘(ak$°k)3k ’ (3.26)
so that (3.11) becomes
[0- L) —glx=0. (3.27)

Here g is a constant inserted for dimensional reasons.
The mass spectrum will of course be independent of the
value of g. In (3.7), we let 3=AX, and choose 4 so that

(g/ik-—l/ak;ilc) = —3k?, (3.28)
which yields
G =(ad/g)[8-LO+g]X. (3.29)
Combining (3.27) and (3.29) gives
[6-Le—g)(B~1ad/g)[3-L+¢]A~1p=0. (3.30)

The advantage of having proceeded in this particular
way is that we have shown, in (3.30), that the properties
of the system are governed by a single function of %,
namely,

with 4 and B determined by (3.28) and (3.26). To
reduce (3.30) further, we use the standard technique of
considering Xi(p), the Fourier transform of (4~1@)x,
and using the manifest covariance of (3.30) to go to the
rest frame. Then 8-L® — —ipL,*, and we have
the explicit expressions

(Lo prr = — 01118k kg1,

(Lo rwr =arDrrry1, (3.32)
with

@D =3[ (k) (k5 + 1) .
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Using this in (3.30) gives

[p0%ak11 Py — g2k I P - ipogarridryaXpia @

+ipogar PdiXp_1P=0. (3.33)

We make the following changes in (3.33): We let

gho\* _ * ) i
ch—_'(_) [T a@PG®, (and De=Xy) (3.34)

1 1=j+1

and define
ev=g%n/dr11, (3.35)
to obtain the equation
Diy1=[po*ar19?—er JDi+po*erarP?Dy—y,  (3.36)

which is the analog for theory II of the difference
equation (2.32) in the theory determined by (2.1).
In a succeeding paper we shall study the solutions of
(3.36) and elaborate on the physical properties of the
system it describes.

IV. QUANTIZATION OF FIELD THEORY
A. Derivation of Equations of Motion

Let us now consider the field-theoretic aspects of the
foregoing theories. The most elegant formalism for
discussing both the equations of motion and the
canonical commutation relations is Schwinger’s quan-
tum action principle.® By varying the action with fixed
end points, one obtains the Euler-Lagrange equations
of motion. Quantization follows by identifying the
generator G, associated with the boundary variation,
with the infinitesimal generator of unitary transforma-
tions on a quantum-mechanical system.

We modify the action (3.5) to yield not only the
equation of motion for G******* but also its definition in
terms of ¢y. That is,

W=./d4x 2 (G 5B #*0 e Pure i

k=0
+ak‘Pv1-- 'vk+ﬁkap§0vv1- -avk)

—%nkGl‘l"'Van_“vk]. (4.1)

(In this section for simplicity we replace @ everywhere
by ¢.) Leaving the end points fixed, we obtain from
W =0 the usual Euler-Lagrange equations:

6L 8L 8L
=O, =0
OPy1eeenys

(4.2)

M
3Gk 304 Prreeem

We thus find for the equations of motion

Gyevery = 0ppeeeny™ PR Qv Py,

+Bk6v¢vv1---vk 3

nkakGVl'“Vk = N1e—1B—10py- "t '“kauka---uk_l

+ﬁk6”Gwl...,k.

(4.3)
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Displaying the first three cases, we have

G =Qop +Boav¢v )
Gr= a“‘P"I‘“I‘P"""Blav(PW )

(4.4a)
Gr=5(0""+ 0" pr—3g" 0 )
+arp+Baore,
110,G" =G s
a v avG= v
120,G* 11080 amG, (4.4b)

N N C G R FE NeD)

=agnG* .

As stated before, the Lagrangian is invariant under the
following set of gauge transformations of the second

kind:

ugeevy = PogeeenytYiOugee Pt H60, - + - A A(2),  (4.5)
provided that A(x) is constrained to satisfy
(O24m)A(x) =0
and (4.6)
Byl (k+2)/2(k+1) In*=7yi1+tarye.
If we consider a particular £* with
Lr= 3G (@) Gy (0) (4.7)

then it is invariant under a gauge transformation on the
¢’s of the first kind. For example,

L9=%no(aoe+B09,¢")?

is invariant under

¢ oA, (48)
with A” a constant. However, the entire Lagrangian is
not invariant under (4.8) since G* contains ¢*. But we
can use the Gell-Mann-Lévy equation® to determine
the current that generates this gauge transformation,
and its divergence.

Specifically, we consider the single transformation

‘pyl...yk___) <P,‘1...yk+A”“.,,k’ (4())

where A’k is an arbitrary symmetric and traceless
tensor. The Gell-Mann-Lévy equations are

0L

—_— (4.10a)
89,471 vk(x)

=jv1'--Vk”(x) ’

where S ju,..,(%)d% is the generator of the above
transformation and

88
(4.10b)

=0uJ e eerpe

BA,;I. vk

These equations yield

A IR() = 3B 1B e GG

FnppaGPre e (4.11)
9 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960),
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and
au]‘u“. o — nkakGyl. vk,

(4.12)

These generalized partially conserved current equations
are identical to the equations of motion for the G"t****
[Eq. (4.3)]. Thus we see that the G’s play the role of
the gauge currents, while the ¢’s are the gauge fields.

B. Canonical Quantization

If we allow the boundary to be varied, we obtain
from the Schwinger action principle

o2

W=y /da,.,mk T Y PN
%

ol

o2

+2 /dovnkBkG””wk&‘[’vl---wav
k

ol

N /d«"x{ DO TR o VY. TRPY ORI S
&

t2

X gr-0GE k)50, YL (4.13)

2%

Thus if all the ¢,,...,,, are independent (aside from
being symmetric and traceless) we have the identifica-
tion that

G[‘pvl"‘l’k—l]= /dgx("]kG”'"”k~10+77k—208k—2

K Ougeeeupot’t” -vk—xguk—me- . 'Mk—2)5¢”"wk_l s

(4.14)

where G is the generator of the displacement §¢. This
implies the commutation relations
Lot o1(x), aGugeron_10(8") F10—2Bk—28pyenpp_y " M
X gn_10Gn - np o () Jog—sy’
=00pgeepy_y L 103 — )
LoV (), (@) Jogmzor =0;
[WN(x)77rM(xl)]$o=1o' =0,

where ¢ is any of the canonical fields ¢”***# and ¥
is any of the canonical momenta,

(4.15)

TV = NGy 10 IN—2BN 20 gy, L
Xg)\N_l‘]GM“')\N_2 . (4 16)

We can derive these commutation rules again from the
gauge invariance properties of the theory. The charge

is the generator of the constant gauge transformations.
That is,

exp(iQ™ " kA ) Quyoeiy (87) €XP(—3Q7 " 7RA, .,
= Qupeey (&) FApperny,.  (4.18)
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This tells us that

i/[j““"""C(x),<p,u...,,,,(x’):|d3x Avpeery=Appeen,  (4.19)

or

1:[]'0»1- L CHRTRN D) :|10=Io'
=Bppeeeiy”t O — o)

which is equivalent to (4.15) and (4.11).

(4.20)

C. Gauge-Invariant Theory

The previous theory becomes invariant under gauge
transformations of the second kind if we set 8;=0 and
leave out the term with £©. The equations of motion
(4.4) now become equations of motion and equations of
constraint:

771("),,Gv=0, G"=a"§0+a1cp“ ‘

720,G* =armG’, G*=31(3*e"+ pr—3g" py) (4.21)
Fage®.

At first glance it looks like G° G», ..., ¢, ¢, ... all

obey equations of motion, whereas G*, G*, ... obey
equations of constraint. However, the Lagrangian is
invariant under the gauge transformations

Pugeeomiy ™ Pugermy TV kOpgeropyt 740,y + - 3y A(%) (4.222)
provided
Yi—1taryr=0. (4.22b)
In particular we can choose a gauge where
8
> 3ip?=0 (radiation gauge). (4.23)

=0

For if 9,;¢%0, we can make a gauge transformation

o =pi+v10A. (4.24)
Choosing
Y1V2A = —3;¢° (4.25)
or )
1 6,- "d3x
A= — [ 22
47y, I x—x I

ensures that ¢;” is divergenceless. Thus ¢;=¢,T. Con-
sider G, We can always break a vector into its trans-
verse and longitudinal components:

GO = GOT - GOKL (4.26)
The longitudinal piece can be written in the form

GUL=Vkg(x)
with

G*=V2g(x).
Thus

1 NG (& )d*!
GOkL(g) = — _Vlc/ _— (4.27)
4r |x —x|
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But

G =1(30pk 43k o) +ap 0% . (4.28)

If we now take the 3-divergence in the radiation gauge,

we find

9GO =3V200+-aydp 0" (4.29)

This is an equation of constraint hidden in the equations
of motion which suggests that the independent variables
are ¢;f and GoT. This alters the canonical commuta-
tion rules from the previous case. In this gauge-invariant
theory the term obtained by varying the boundary is

t2

W = / 5 Y 9y 1G T8 Gy (4.30)
k

i1

Considering the k=1 term, we have
/ a3x 1sG"% ¢, = / @3 172G po

+ / @3 na(GRTHGHIY5HT . (4.31)

Now

/dax NeGRL§ T =0, (4.32)

since G¥Z=v*g. Thus only G%*T enters as a generator
of the ¢ variation. This leads to the equal-time com-
mutation relation

Lo®(x),m:Goi” (¢') ]=16:6%(x—a')T
=1(0;F—9%9;/V) 8 (x—x'), (4.33)
which is consistent with d5¢*=0.
To find the commutation relations satisfied by
GoxZ, one must use the fact that
§ 3G (x") .

7

Go%L(x) = — —V X

4r [x—x|

-1 V20 (x")d%’
= —V*k / — (4.34)

8 [x—x']

(where = here means that we have dropped the asd5¢"*
term in (4.29) since it will commute with G®) and the
known commutation relations of ¢°

Le(x),7:G*(x") Jogmay =18%(x—2") (4.35)
to obtain
; V263 —
[GH0),0) Jomm= . [ VIO
87!'112 IX—-X,I
1
= —V*§3(x—y). (4.36)
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This can be rewritten as
Lok (%), 70°(3) Jegmso =31m2V*03(x—y) , T (4.37)
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where, following (4.11) with 8,=0,

jwl...yk(x)=nk+le1..'yk (4111)

and the [/ j%d3x are the generators of the constant
gauge transformations. Thus the ‘“‘currents” in this
theory seem to have ¢-number Schwinger terms. Since
9u7*(x) =0 with j#=mG*, it is tempting to identify j»
as the field containing the p° and all the 1~ satellites
of the p° trajectory (and eventually with the entire
isotopic triplet of p mesons when we introduce non-
Abelian gauge transformations). Using the constraint
quation G*=9d%¢p+a1o* and

Lo(®),mG () ]=i8*(x—x"),

we indeed find
1
[Gw(%),Go(") Jupmay =1—0rd3(x—2’)  (4.38a)
N1
or
Cr(®), jo(&") Japmae =im1018%(x—2") . (4.38D)

These commutation relations are reminiscent of the
algebra of fields, the main difference being that G* (j#)
describes the p meson and all the 1~ satellites of the p
trajectory. It thus seems that this gauge-invariant
theory might be the appropriate vehicle for approxi-
mating the vector current.

D. Comparison with First-Order Lagrangian

It is of some interest to compare the field theory we
have generated from an extension of the Stueckelberg
formalism with the theory we would have obtained had
we postulated the Lagrangian density

£(x) =W§j,a, Yio (X)L OuLF —M Jijotrsa"
Xnjror (). (4.39)
Here ¥ =¢!Q, where
Okjo,iriror = (—1) 8118558500 (4.40)

is a matrix inserted to ensure the Lorentz invariance of
£(x). Notice that Q has the property
QLH: - (LM)TQ )

as it must if £(x) is to be Hermitian. By treating ¢(x)
and J(x) as independent fields, we obtain, in the
standard way, the equation of motion

(4.41)

(0, Lr—M)y=0 (2.1)
and the canonical commutation rules
[(‘/;Lo)kjrr(x)y Yirjror (xl):lzo=xo’
== —i63(x—x')8k;c/6j]-/5,,/ . (44:2)

We have, of course, chosen £(x) to give equation (2.1).
What interests us here is the commutation relation
(4.42). We multiply (4.42) by T;jeTw o and sum on
(jo) and (j'¢’). Employing essentially the same tech-
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niques used in Sec. IT to convert (2.1) into (2.24), we
arrive at the following commutation rule:

[‘/’m--'ukO(x)
=GR g P () 7 (&) Jeg=ao’

=363 — )DL ()Y 25 o (4.43)

Here we have dropped the distinction between y,,....;

and Y,,...,," in order to compare (4.15) with (4.42). By

looking at (2.1") and (3.19), we conclude that the

simplest correspondence we can make is
Y(@) & BG D (x).

If this is true, then (4.43) becomes

[41G ure v pi0 D () F 11818 pgev 70710

XGprevrpia @ ()G 74 D Ty

(k")? BxBrt1
ok

(4.44)

=083 — 2" )Spupewep? S, (4.45a)

Nk

where we have used (3.18); i.e.,

[7!’,‘1..,“,,(96),6"1' ’ 'Vk'(xl)]xo-:xo’

X (k ')2 Bchk+1
=303 —&")Opgrepy’t VR~

(4.45b)

One might wonder if this is possibly a consequence of
the commutation rules already derived, viz.,

(e (), 0 (%) Jagmag

=i63(x—x')5m...uk”1'"”kBkk/ , (415’3,)
Ly (), 770 7% (27) Jagmay =0, (4.15'b)
Couserm(®), 07 (2") Jagmayr =0. (4.15'c)

Although (4.45b) has certain similarities with (4.15a),
it turns out that one can derive a contradiction between
(4.45b) and (4.15'b). The momentum =(x) conjugate
to the scalar field ¢(x) is just G°(x), and therefore from

(4.15'b)
[ (8,6 Jagmsy =O0.
Choosing £=1 and u;=0, we have
Lro(),G(%) Jegme =0
But (4.45b) tells us that
[ro(%),GO(«) Jogmay =16*(x—2") (5) B1Bs/ 1.

Since the B’s are assumed not to vanish, we have arrived
at a contradiction. This means that, assuming the con-
sistency of Egs. (4.15'a)-(4.15'c), the Lagrangian (3.5)
and (4.39) generate canonically inequivalent theories,
even though the fields obey the same equations of
motion. The fact that functions obeying the same equa-
tions of motion can have different canonical commuta-
tion relations is known even on the classical level in
terms of Poisson brackets.!?

(4.46)

0 H. Primakoff (private communication).
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E. Relativistic Invariance

Schwinger has shown?® that the necessary and suf-
ficient conditions for a system to be local and have
Lorentz invariance is that the equal-time commutation
relation

(/)T (), T (=) ]
= —0;03(x—a ) [T (x) + T (x")] (4.47)

is obeyed with just a gradient of a & function. He finds
spin 0, %, and 1 have this property, whereas higher
spins have extra terms that do not contribute to the
commutation relations between P, and J,, where
Pr= [ Toed3, etc. We find that 79 (x) does obey this
condition, and the 790 commutation relation contains
extra terms which are not local (in the Schwinger sense,
since they are third derivatives of § functions).

The stress tensor 7# is defined as the measure of the
response of the system to the space-time displacement
ak—> xF-0xk

W = / % 3,0%,T% (x). (4.48)
We find
0L
Tw=3 ———6”<p,,l...,,,,>—gl"’£. (4.49)
k N0y Pureeep
Using

L=1 3 nG Gy =2 £F
k k
we have for the spin-1 piece of the stress tensor

o
Fo—grew,

Tw= (4.50)
00,0
Thus for the gauge-invariant theory,
7900 =, [6%900 —3(G*)*+3(GH)]
=n[3(G")*+3(G")*—a1pG’],  (4.51)
wher
THM =2,G*%. (4.52)
Usiny
[Gk(@),Go(a') 1= (i/m) 0sd*(x—2")  (4.53)
and
0x8*(x—a) [ f(2)g(+")+ f(x")g(x) ]
=0i0*(x—a")[f(0)g(x)+ f(x)g(x") ],  (4.54)
we find
(A/DLTOD (), TOD (&”) Jegmay’
= —938%(x—a)[TO*D (2) +T*MD(x)]. (4.55)

Thus the spin-one piece is local.
We can rewrite 790 in terms of the independent
variables. In the radiation gauge ¢*= ¢*7, and thus

7900 =3[ (GY)*+ (340 +art(¢1)7]

— 190G+ (3-dimensional divergence). (4.56)
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In calculating [79°®(x),79°®(x")7], one needs the
commutator

(64, Gur 1=~ 305 = = Jote—)

N2
1

+%ak(5,~l— %)53(90—3)):! . (4.57)

Thus at the spin-2 level we obtain nonlocal terms,
which are third derivatives of § functions. We have not
attempted to verify the commutation relations to all
orders owing to the increasing difficulty of the task.

To obtain the stress tensor in the theory with 8520,
we first have to reexpress doe* in terms of ¢, dxp?,
and 7. The problem is soluble in principle, but we have
not found a simple expression for the solution. Briefly
we shall sketch how to make the inversion.

Suppose we want to find dop=f(7™,0M,d,p™). One
needs to look at m, 7%, w0000 etc.:

7 =1G°=91(d00+B1000"+a10°+B10, ")
w00 = 13GO004-290181G° =3[ 3 9o+ B39 000

85000 — 301 %+ as ™ 4 30r.  (458)

In general we get the infinite set of equations

B0 +B1000% = fo(m,dr0™, M),
5260¢00+6330¢0000 =f2(7r77r0070k¢M; ‘pM) ’

endog? 0 (Nindices)+‘3N+16;¢,0-n0 (N2 indices)
= fy(r,...,0¥,...).

(4.59)

So we can solve in principle for all the d¢p¥. Since we
have not found any simple way of expressing these
equations we have as yet not been able to verify that
T is positive definite, and that (1/2)[7°(x),7°°(x") ]
= —0;,0%(x—a') [T (x)+ To%(x') J4+terms not contrib-
uting to the [J#,J*] commutation rules.

It has come to our attention!! that it has never been
shown even for a massive spin-2 field that, when one
turns on interactions, 7% is positive definite or satisfies
simple commutation relations, because of the over-
whelming amount of work involved. Thus it seems a suf-
ficient achievement to have been able to verify the
stress-tensor relations for the spin-1 part of the gauge-
invariant theory.

V. SPECULATIONS AND CONCLUSIONS

In the previous sections of this paper, we developed
a Lagrangian formalism for fields obeying an infinite-
component wave equation. The fields in the theory, say,
o* or G*, had the interesting property of having an
infinite number of particles associated with them. The
theory which was gauge invariant (8=0) contained a

11 Tung-Mow Yan (private communication).
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conserved gauge current G,, whereas the theory with
the @’s contained a partially conserved current
9,G*=¢G. We would like to point out in this section
that the conserved G* suggests itself as a generalized
p field, whereas the partially conserved G* suggests
itself as a generalized axial-vector field, the divergence
being the generalized = field with an infinite number of
pseudoscalar mesons. Thus we have the skeletal be-
ginnings of a connection with current algebra. In this
section we will explore this connection and also briefly
discuss how to introduce interactions so as to reproduce
Veneziano-type scattering amplitudes. In the gauge-
invariant theory, 9,G*=0 and

[G°(«),G*(y) 1= —(i/11) 9:8*(x—Y) , (5.1)
Gr=a1pt+d%e. '

These two equations are identical to those obeyed by
the usual free p° fields, except here G* contains an
infinite number of vector mesons, with the masses de-
termined by the eigenvalues of the infinite-component
wave equation. The G* suggests itself as the generalized
p field (and therefore the “free” gauge-invariant
Lagrangian as the Lagrangian for the p trajectory). We
can therefore use field-current-identity methods!? to
obtain nucleon form factors which will be infinite-pole
dominated at the first order of perturbation theory. The
current then will also have finite ¢-number Schwinger
terms. In what follows we will introduce a naive field-
current identity (which is not gauge invariant) which
is suggestive of models which we eventually hope to
produce.

We introduce the following free Maxwell Lagrangian
with an interaction with G*= (a1¢*—+9d*¢):

glem = —1Fw(9,4,—3,A,)+1FwF,,

—yieA¥ (a1, +9u0) . (5.2)
This leads to the following equations:
Fw=9rg’—Ax, B
(5.3)

auFw =me(ae’+9¢),
which implies

9,Gr=0=9,J Cem)
Jemu=ry,Gr.

This interaction is not gauge invariant with respect to
the electromagnetic field, since under

Ar(x) — A#(x)+9*A(x)

5.4
8L =—71G*0,A=0. (5-4)

12T, D. Lee, in Theory and Phenomenology in Particle Physics,
edited by A. Zichichi (Academic, New York, 1969), Part A.

18See J. J. Sakurai [Currents and Mesons (Chicago U. P.,
Chicago, 1969)] for a discussion of this point.
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This causes problems!® with the maintenance of the
zero mass of the photon under renormalization. Ignor-
ing this problem for the moment, (we have not yet
found an appropriate gauge-invariant interaction), let
us see what such an identity implies.

We can introduce an interaction with nucleons via
the replacenient

9, — 0,—1gG, (5.5)
in the free-nucleon Lagrangian. That is,
goucleom) =iy, (4 —igGW—mbp.  (56)

The total Lagrangian then becomes

£=£(p)+£(em)+£(nuc]eon)‘ (5.7)

We find that the interactions maintain the commuta-
tion relation Eq. (5.1). Thus the electromagnetic current
has finite c-number Schwinger terms

[J(em)o(x)aj(em)k(y)]: - (iyl/ﬂl)akas(x_y) .

The full Lagrangian [Eq. (5.7)] leads to a Born term
for the nucleon form factor as illustrated in Fig. 1. As
is well known, a sum of an infinite number of spin-1
poles leads to form factors which are hypergeometric
functions, and can lead to any asymptotic power be-
havior for large negative ¢2 that one desires. For ex-
ample, in the Veneziano model, form factors have
infinite pole dominance and turn out to be ratios of I'
functions, for example,!*

(1 —a,(0))
TGy —a,(0)’

which behaves like ¢=7/2+1,

It is tempting to consider the theory with 8540 as the
infinite-component field corresponding to the =-A:
trajectory. One is then led to postulate a field-current
identity for the axial-vector current

(5.8)

a,(t)=t+% (the p trajectory)

Ak =cGr=c(d"p+arot+B1d, o) . (5.9)

Consider, for example, the Lagrangian

L=y 0"+yabyiysw(9* o+a10h+B13,0")

+&(r—Ay system). (5.10)

Now if we let ¢ — ¢?758y, with A constant, £— £ and

thus Vs*=yvysys¢ obeys 9,Vs#=0. With this inter-

action we find the equation for G* from
68/60=0,(6£/80,0).

We get

oG =119,G"+v20,Vs*=109,G" . (5.11)

14}, Cooper, Phys. Rev. D 1, 1140 (1970).
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Fi1c. 1. Nucleon electromagnetic form factor
which follows from the Lagrangian (5.7).

Thus with the identification of G as the field containing
the pion and all the pion satellites, and with the full-
current identity postulate, we find the generalized
PCAC (partial conservation of axial-vector current)
condition

uAr=cd,, (5.12)
where now both 4* and ¢, contain an infinite number
of particles.

We do not advocate taking the above Lagrangians
too seriously. We are merely suggesting that once one
has an ordinary Lagrangian formalism for describing
infinite towers of particles, one can start using the
techniques of Gell-Mann and Lévy and hopefully find
the correct “‘o” model. The new “o”” model (if found)
will automatically be Regge behaved and hopefully
will be free from the infinities inherent in ordinary field
theories.

The problem of introducing general vertices in this
type of theory has already been considered by Abar-
banel.’® He studied two possible trilinear couplings
of fields

Hy(x)= 2 gl(LMN)[A#l"‘ML(x)BuL+1~--uL+N
LMN

X(anL+N+x' . anM)C“' ’ '“M] (5-133«)

(where the derivatives will go on C, 4, or B depending
on whether M>L+N, L>M++N, or N>L+M, re-
spectively). The second coupling we considered was

H(x) =L§N 32(LMN)|:A ul--'MN(x>BﬂL+1---nL+N(x)
X (Fppawar: - - Buag)CH1#4(x) ], (5.13b)

where S
9=%(0—9).

With trilinear couplings of this type he was able to re-
produce the Veneziano amplitude (with or without odd
daughters). However, Abarbanel dealt only with the
interaction Lagrangian in the spirit of Weinberg.16
Here we have instead a complete Lagrangian formula-
tion of the problem.

5 H. D. I. Abarbanel, Ann. Phys. (N.Y.) 57, 525 (1970),
16 S, Weinberg, Phys. Rev. 133, B1318 (1964).
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Most of the hard work remains to be done. Can one
succeed in finding the equivalent ‘“o” model for these
fields, so that one can once again try to solve the
current-algebra problem? What are the correct inter-
actions to use? Are the perturbation sums for the
interacting case finite? We hope that this formalism
will be a help in answering some of these questions.
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Some Constraints on Partial Waves of Helicity Amplitudes which Follow from
Analyticity, Unitarity, and Crossing Symmetry*
WirrLiam Case

Physics Department, Syracuse University, Syracuse, New York 13210
(Received 16 December 1970)

Some inequalities involving finite numbers of partial-wave helicity amplitudes are derived for the elastic
scattering process ab — ab (arbitrary spins and masses). One set of inequalities involves algebraic combina-
tions of ¢-channel (e — bb) partial-wave helicity amplitudes and holds for any value of ¢ between 0 and
4p? (p is the lesser mass of the two particles involved in the scattering). A second set places restrictions on
integrals over s-channel (ab — ab) partial-wave helicity amplitudes. Finally, the above relations are applied
to the particular case of w°-nucleon elastic scattering, where inequalities among partial-wave helicity ampli-

tudes are obtained.

I. INTRODUCTION

N recent years there has been a rebirth of interest in
finding constraints on amplitudes which follow
purely from analyticity and unitarity.! The present
paper is an effort to bring together some? of these re-
sults with the work of Balachandran and co-workers?
on crossing properties of partial waves and in particular
the work by Balachandran, Modjtehedzadeh, and
myself?* on constraints on partial waves of helicity
amplitudes which follow from crossing symmetry. For
the elastic scattering process ab— ab (s channel),
inequalities are found for algebraic combinations of
partial waves of ¢-channel helicity amplitudes for
0<t<4u. This is done in Sec. IT and the inequalities
are given in Egs. (6) and (10). In Sec. III inequalities
for integrals over partial waves of s-channel helicity

* Supported by the U. S. Atomic Energy Commission.

1(a) Y. S. Jin and A. Martin, Phys. Rev. 135, B1369 (1964);
135, B1375 (1964); (b) A. Martin, Nuovo Cimento 47A, 265
(1967); (c) 63A, 167 (1969).

2 Similar approaches have been used for various processes:
S. M. Roy, Phys. Rev. Letters 20, 1016 (1968); A. P. Bala-
chandran and Maurice L. Blackmon, Phys. Letters 31B, 655
(1970); F. J. Yndurain, zbid. 31B, 368 (1970); A. K. Common
CERN Report No. 1145, 1970 (unpublished) ; A. K. Common and
F. J. Yndurain, CERN Report No. 1185, 1970 (unpublished).

3 (a) A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821
(1968); (b) A. P. Balachandran, W. J. Meggs, and P. Ramond,
sbid. 175, 1974 (1968); (c) A. P. Balachandran, W. J. Meggs,
J. Nuyts, and P. Ramond, 4bid. 176, 1700 (1968); (d) 187,
2080 (1969); (e) A. P. Balachandran, W. Case, and M. Modjte-
hedzadeh, Phys. Rev. D 1, 1773 (1970); (f) A. P. Balachandran
and M. Blackmon, Syracuse University Report No. 223, 1970
(unpublished).

amplitudes are found for the same process [result given
in Egs. (13), (17), and (18)]. The main features of
these constraints are as follows: (1) They follow from
analyticity, unitarity, and crossing symmetry; (2) they
involve only a finite number of partial waves in each
inequality: and (3) they are constraints in the unphys-
ical region.

In Sec. IV the results of Secs. IT and III are applied
to the special case of w%nucleon elastic scattering.

II. t-CHANNEL CONSTRAINTS

We begin by introducing various definitions and
conventions. For the scattering process 1, 2— 3, 4, we
define

§= (?1+P2) 2 ’

I= (PI*P3)2 )
u=(p1—ps)*.

We will be considering the elastic scattering ab— ab
where both particle ¢ and & may have spin. Particles 1
and 3 are taken to be of type ¢ with spin o and mass m
while particles 2 and 4 are of type b with spin ¢’ and
mass u. We also assume, without losing generality, that
m2> u. Physical processes in the various channels are

s channel, ab— ab,
{ channel, ad— bb,
u channel, ab— ab.

We express, for the case of elastic scattering, the Kibble



