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A quantum electrodynamics for vector mesons with arbitrary magnetic dipole and electric quadrupole
moments is constructed in which the vector meson is described by a six-component column matrix satisfying
a single equation of motion with no auxiliary condition. To avoid an interaction Hamiltonian which has an
infinite number of surface terms, the S matrix is derived directly from Green-function solutions of the equa-
tions of motion. In the reduction of the S matrix, terms appear which do not correspond to Feynman-type
terms but which vanish if only regularized integrals are used. The Feynman rules are then identical in form
to the rules for scalar electrodynamics. A distinct calculational advantage of this theory is that all compo-
nents of the Fock-space operators are treated on an equal footing and create and destroy particles in definite
energy and helicity states. Trace theorems for the covariantly defined spin-1 matrices are given to further
facilitate calculations. The same techniques are applied to the electrodynamics of arbitrary-spin particles.
A discussion of the renormalization is given: All of the theories are found to be nonrenormalizable.

I. INTRODUCTION

HE discovery of vector mesons in high-energy
particle collisions has prompted increasing in-

terest in the theory of vector mesons interacting with
the electromagnetic 6eld. To date no satisfactory theory
analogous to either spin-~ or scalar electrodynamics
exists. This paper represents another attempt to con-
struct a renormalizable spin-1 electrodynamics. Al-
though the theory developed is nonrenormalizable, it
has the following advantages over other formalism. (1)
The vector meson is described by a six-component
column matrix satisfying a single equation of motion
with no auxihary condition. Therefore all components
of Fock-space operators are treated on an equal footing
and create and destroy particles in de6nite energy and
helicity states. (2) The perturbation expansion contains
no surface terms. (3) Trace theorems for the covariantly
defined spin-1 matrices are developed which are analogs
to the trace theorems for spin-~~ y matrices. Thus all
calculations will be as straightforward as in the spin-~
case.

The vector electrodynamics existing in the literature
has been based primarily on the P formalism (Kemmer
theory') and the canonical formahsm (Proca theory' ).
I'or the vector electrodynamics in the P formalism, the
Feynman rules~ ' are of the same form as spin-~~ electro-
dynamics with 10)&10 P matrices replacing the spin-2
matrices. Kinoshita and Nambu' have investigated the
divergences to second order in the coupling constant for
vector electrodynamics in the P formalism. They found
that charge, wave function, and mass renormalization
did not remove all of the ultraviolet divergences, imply-
ing that the theory was nonrenormalizable.

Lee and Yang' have done a thorough study of the
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Atomic Energy Commission, Contribution No. 2899.' N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939).' A. Proca, Compt. Rend. 202, 1490 (1936).' R. P. Feynman, Phys. Rev. V6, 768 (1949).

4 C. N. Yang and D. Feldman, Phys. Rev. 'V9, 972 (1950).' T. Kinoshita and Y. N. Nambu, Progr. Theoret. Phys.
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5 matrix and its renormalizability for vector electro-
dynamics in the canonical formalism. They found that
the canonical formalism led to a nonrenormalizable
theory, and for a nonzero electric quadrupole moment,
the Feynman rules contained surface terms. Aronson~

has pointed out that these surface terms can be removed

by an in6nite series of counter terms in the original
Lagrangian. Lee and Yang circumvented the problem
by introducing one extra term with dimensionless co-
efFicient f in the equations of motion. In addition, this
led to a renormalizable theory. However it also intro-
duced scalar mesons with negative energy. This new
problem had to be remedied by the use of an inde6nite
metl1c.

Sheinblatt and Arnowitts have discussed the inter-
action of a quantized vector meson field in the canonica, l

formalism with an external electromagnetic 6eld. They
also found that the theory could be renormalized if a
small spacelike distance was introduced in the current
operator to separate the points at which the 6eld
operators act.

Formulations for a free, massive spin-1 particle which
use a six-component column matrix have been given by
several authors. ' '2 The six components are sufhcient
to describe the three spin states of a massive spin-1
particle and antiparticle which puts the description on
the same footing as the Dirac theory for spin-~ particles.
The equation found by Hammer et al."is of particular
interest since this equation is manifestly covariant and
requires no auxiliary conditions.

The wave equation for a massive spin-1 particle found

by Hammer et u/. 12 was originally found by Shay and
Good. "Shay and Good studied the unquantized spin-1
6eld coupled to an external electromagnetic 6eld and
also added magnetic-dipole and electric-quadrupole

7 H. Aronson, Phys. Rev. 186, 1434 (1969).
8 M. Sheinblatt and R. Arnowitt, Phys. Rev. D I, 1603 (1970).
9 H. Joos, Fortschr. Physik. 10, 65 (1962).IS. %einberg, Phys. Rev. 133, 81318 (1964).
"D. L. %eaver, C. L. Hammer, and R. H. Good, Jr., Phys.

Rev. 135, 8241 (1964).' C. L. Hammer, S. C. McDonald, and D. L. Pursey, Phys.
Rev. 17'1, 1349 (1968)."D. Shay g,nd R, 8, Cblood, Jr. , Phys. Rev. 179, 1410 (1969).
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terms with arbitrary coefIicients to the equation of
motion. They found that the six-component description
of a spin-1. particle in an electromagnetic Geld differs
from the other formalisms in the way in which the
dipole and quadrupole terms appear. Hence it may be
said that although the various free-particle descriptions
are all equivalent, in the presence of an electromagnetic
Geld each formalism leads to a diRerent prediction about
the behavior of vector mesons. Since at present there is
no experimental evidence to single out the correct
theory, the authors feel that a study of vector electro-
dynamics in the six-component formalism deserves
attention.

In this paper we will primarily be interested in study-
ing a quantized. spin-1 field satisfying a manifestly
covariant equation'2 i3 when the radiation field is intro-
duced through minimal electromagnetic coupling. The
vector meson described in this manner has an intrinsic
dipole moment of e/4M and an intrinsic quadrupole
moment of —e/2M . However the results are later
extended. to a vector meson with arbitrary dipole and
quadrupole moments (Appendix 3).

In Sec. II a free-GeM theory is constructed for
particles with arbitrary spin satisfying manifestly
covariant equations with no auxiliary conditions. "
Since these equations all have essentially the same form,
it is just as easy to discuss the arbitrary-spin case as the
spin-1 case alone. The equations for the electrodynamics
of arbitrary-spin particles are then introduced. In Sec.
III we discuss the difficulties associated with the usual
5-matrix treatment in the interaction representation.
For spins greater than or equal to I, it is seen that the
interaction Hamiltonian in the interaction representa-
tion has an infinite series of noncovariant terms. In Sec.
IV we specialize to spin 1 and derive the 5 matrix
directly from Green-function solutions of the equations
of motion thereby bypassing the diN. culties associated
with interaction Hamiltonians. In Sec. V we return to
the equations for an electrodynamics of arbitrary spin
and. discuss their renormalizability. All equations are
found to be nonrenormalizable except for the spin- —,

'
case. In Sec. VI there is a general discussion of the
results and suggestions for further study. Appendix A
contains properties of the covariantly defined spin-1
matrices and trace theorems. In Appendix 8 the
Feynman rules for a vector meson with arbitrary dipole
and quadrupole moments are given.

II. FREE-FIELD THEORY AND EQUATIONS FOR
QUANTUM ELECTRODYNAMICS OF

ARBITRARY SPIN

This section begins with a discussion of quantized
fields for arbitrary spin and. (nonzero) mass. The field

commutators, Fock-space operators, and the com-
mutators between the Gelds and the Fock.-space
operators are given. Although equivalent discussions
have been given by Keinberg" and by Nelson and

Good, "the treatment given here is of interest since it is
based entirely on conserved currents derived from the
Geld equations. Thus a Lagrangian can be specihcally
avoided and a detailed discussion of plane-wave ex-
pansions in not found necessary.

The equations to be considered are those found by
Hammer et al. '~ The integral- and half-integral-spin
cases are treated separately, For integral spin, the
equation used is Kq. (98) of Ref. 12:

b f.]pl. ]+(p')' '(p"+2~') ]it "(*)=o
s = 1, 2, 3, . . . (2.1)

where y[„]=y»...», are generalized 2(2s+1)-dimen-
sional Dirac matrices and p[„]=p» .p», . The four-
vectol pv, has components

p„=( i8/—Bx;, 8/Bt)—.
The adjoint ]P['](x) of ]P['](x) is defined by

~"]( ) =Lv[]a"(*)7
and it can be shown that ]t ['](x) satis]ies

p[.]0"(x)V[.]+(p')' '(p'+2~')0" (*)=o (2 2)

An important property of y t„~ is

"r [p]p[iv]V [vtp["] (p ) (2.3)

Thjs means that solutions of Kq. (2.1) have the correct
relativistic dispersion, since by Kq. (2.3)

b[]p[ l (p')' '(p'+2~')&
Xt:...,p...+(p) -(p+2~» (*)

= —43P(p')"-'(p'+ M')]t[ ](x)=0 . (2.4)

Thus the 2(2s+1) independent solutions of Kq. (2.1)
are sufhcient to describe all of the possible spin-s, free-
particle and -antiparticle states with no auxiliary con-
ditions needed.

A convenient method for quantizing Gelds satisfying
equations like Kq. (2.1) has been given by Hammer and
Tucker. " From Kq. (2.1) one constructs a conserved
current, j„(][i['],]p2']),

p.j.(A"(x)A"(*))
=0i"(x)LV [p]P lv]+(P')' '(P'+2~') jA"(x)

—&i"'(x)L&[.]P [ ]+(p')' '(P'+2iII') jA"(x) (2 5)

for any solutions ]Pi and ]P~ of Kq. (2.1).The arrow indi-
cates the direction of differential operation. Fock-space
creation and annihilation operators are then deGned:

~""(p)= d~ (x)j (]t"(x)»"(p x)) (2 6a)

"(p)= d .( )j.( "(p*)0 "(*)) (26b)

4T. J. Nelson and R. H. Good, Jr., Rev. Mod. Phys. 40, 508
{1968)."C. I.. Hammer and R. H. Tucker, J. Math. Phys. {to be
published).
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«.(x)J.(~tt'&(x) PA "(*)) (2 16)

satisfies the Heisenberg equation of motion(2.7a)[« "(p),«"(q)] =0,

respectively, where 0. is a spacelike hypersurface with Thus the operator
unit normal », i.e., do„=»„de; uj, t'(p, x) is any e-number
solution of Eq. (2.1) with discrete eigenvalue k and
continuous eigenvalue y. The basic quantization postu-
late is

[«t'&(p), «'&t(q)]-

d.(*U.(."(p, ), "(q, )) (2.7b)

It can be shown" from Eqs. (2.5)—(2.7) that the com-
mutation relations for the fields are

8 t'&(*)»."]-=P.kt'&(*) (2 17)

and is identified as the four-momentum operator in
Fock space.

For half-integral spin, the equation to be considered
is Eq. (66) of Ref. 12:

[~yt.&pt.&+~(p')""]it "(*)=0, e=2, l, . . . . (2.18)

[tt t'&(x)4 "(y)]-=0, (2 8a) The conserved current is defined here by

tt' t'&(*)= de, (x)J.(~Gt'&(x —y), ~t (y)). (2 9)

This Green function can be constructed from advanced
and retarded Green functions

Gt &(x)=G '&(x) —G t'(x) (2.10)
where

G. .t &(x) =(-1/4~ )[yt.»t,&-(p') -'(P'+2'')]
de pike

(2.11)
„,ee (2s.)'(k')" '(k'+M')

The contours Cg and 6~ run parallel to the real ko axis
at a distance —~ and +e from the real ko axis, respec-
tively. "Clearly G~ "(x) [G~t'(x)] vanishes for xo) 0
[xo(0], and also

ht. &pt.&+(P')' '(P'+2~')]G~, ~t'&(*) =&(x). (2 12)

A second consequence of Eqs. (2.6) and (2.'7) is the
commutation relations between the field and the Fock-
space operator «,(p).

[tP t'&(x),«t'&(p)]-=o, (2.13a)

[&P'&(x),cut't(p)] =N&t'(p, x) . (2.13b)

One can also show from Eqs. (2.6) and (2.7) that the
Fock-space operators

where 6&(f&) is a e-number tensor operator of rank /,

satisfy
[g "(x) 0&"]-=&&(~)tt "(x) (2.15)

"S.Schweber, Ae Introduction to Relet'vistic Quantum Field
Theory (Harper and Row, New York, I962), Chap. 13, Sec. d.

[tPt'&(x), 0t'&(y)]-=~Gt'&(x —y), (2.8b)

where Gt'&(x) is the homogeneous Green function for
Eq. (2.1), i.e.,

—~i L4 "0"]
=&i"(x) I ~y tv&P tv&+~(P')'+'"]6" (*)
+~'(*)[ y. p. -'(p)'"]~. (*) (2.19)

The quantization procedure parallels that for the
integral-spin case. The advanced and retarded Green
functions for Eq. (2.18) are

G~, ~ t'&(x) =[~st.&P t.&

—~(p')'+'"]
de gikx

x (2.20)
e„,ee (2s.)' (k') "(0'+3P)

so that the anticommutation relations for the fields are

[~t "(*)tt" t'&(y)]+ =o, (2.21a)

[tP"(x),tt "(y)]+=G~"(*—y)
—Gzt'(x —y)=—Gt'&(x —y) . (2.21b)

To consider the interaction of particles with arbitrary
spin with the electromagnetic field, the substitution

pp ~ pp
—eA p is made 111 Eqs. (2.1) and (2.18):

h t~t(pt„& eA t„&)+—(p eA)'—
XL(P—eA)'+~'])0"&(x) =o, e=1, 2, . . . (2.22a)

[ild v t~& (P tI &

—eA tp&)+&(p —eA) "+']&pt'(x) =0,
s=-,', —,', . . . . (2.22b)

The four-potential A„(x) satisfies

B„B„A„(x)= eJ„&&&(x)— (2.23)

The conserved current J„t'&(x) is found by rep}ac
ing P4"(x) by (p —.A )g (*) and ppt&(x) by
(P~+eAI)gt'&(x) in the conserved current j„(p'»(x),
tpt'&(x)) defined by Eqs. (2.5) and (2.19) for the integral-
and half-integral-spin cases, respectively.

In this work we will consider Eqs. (2.22) and (2.23)
in some detail for s=1. These equations are

[b"+4.)(P. eA.)—
)&(p„—eA„)+2M']tp'='&(x) =0 (2.24)

~.~.A p(x) = —
e[4 '="(x)(P.—eA.) (7p.+~")~t '="(x)

—(P.+eA.)tP'="(x)h "+4.)tP'="(x)]. (2 25)
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on the spacelike hypersurface o.. The function

D(8) p(x, o) =0

for every 0 such that x is not on 0.. One can then define
a unitary transformation U(o.) which connects p(x, o)
with the asymptotic field &p;„(x):

Let us now use this method to find Xr'(x, q) for Eqs.
(2.24). and (2.25). Since for the photon field

d(B) =1,
A(x —x') =A(x —x'; m'=0),

Eq. (3.8a) yields

p(x, o) = U'(o) o;.(x) U(o) . (3 6) A„(x) A„(xl o). (3.9)

The central equation for finding the interaction
Hamiltonian as a functional of the y;„(x) according to
Takahashi and Umezawa" is

[~.(x),Xr'(x', n'))
= —id(B)h(x —x') U(o) j(x') U"(o) . (3.7)

Therefore Xr'(x, p) depends on a knowledge of j(x), the
current in the Heisenberg representation, which con-
tains fields and their derivatives. Thus it is still neces-
sary to know how to transform time derivatives of p(x)
out of the Heisenberg representation. This is facilitated
by taking the point x on o in Eq. (3.5) and from it
subtracting Eq. (3.3):

p(x)=p(xlo)

dx'[d(p7), O(x —x')j A(x —x') j(x'), (3.8a)

where (x l o) means that the point x is definitely on o and
O~(x) is the step function

O(x) =1, xp&0
=0, xp(0.

Similarily one can derive

~.V (x) = [~.P(x,o)j*i-

dx'[pj„d(p7), O(x —x')] D(x —x') j(x'), (3.8b)

where [B„io(x,o)j ~, means that the derivative is to be
taken. before evaluating x on 0-. The motivation for
introducing the auxiliary field io(x, o.) is now clear, since
from Eq. (3.6)

U(o) [a„p(x,o)j.i.Ut(o) =a„io;„(x)

and thus some of the difficulty associated with Hamil-
tonians containing time derivatives of the fields has
been removed. The procedure for using Eqs. (3.7) and
(3.8) to find Xr'(x, g) is as follows.

(a) IIse Eqs. (3.8) to find y(x) and its derivatives in
terms of i7(xl o) and its derivatives.

(b) Use (a) to find the current j(x) as a function of
p(xlo) and its derivatives.

(c) Use Eq. (3.7) and the free-field commutation
relations to solve for Xr'(x, g).

On the other hand, for the massive spin-1 field,

d(~) = (I/4~') (v..p.p. p' 2—~')—,
so that

0 (x) =0(xl o)+(~-ne/43'f') (v.e t'.e)—
&([e'A„A,I'„,—el'„„(p„A„+A,p„)]lt(x). (3.10)

It is clear from the stucture of Eq. (3.10) that ip(x) can
be solved for tp(xlo. ) and its derivatives only as an
infinite series in the coupling constant. This in turn
means that Xr (x,g) will be given as an infinite series in
the coupling constant, that is, an infinite number of
surface terms.

It is known that for cases where the interaction
Hamiltonian has a finite number of surface terms,
surface terms appear in the reduction of the S matrix
which exactly cancel those surface terms in Xr'(x, g).ip

The net result is that the rules for writing down the
S matrix to any order in the coupling constant are
identical to those given by Peynman's space-time ap-
proach to scattering processes. ' For the case of fields
coupled to the electromagnetic field by minimal cou-
pling, this suggests that regardless of what Xr'(x, g)
might be, the S matrix is always given by

(ie)"
S=P ——

m=0
dpi ' ' ' dx

IV. REDUCTION OF S MATRIX TO
FEYNMAN DIAGRAMS

A perturbative expansion for the S matrix can be
derived directly from the Heisenberg representation by
means of equations given by Yang and Feldman4
without having to consider an interaction Hamiltonian.

&&6'*(A„(xi)J„(xi) A„(x„)J„(x„)), (3.11)

where J„ is the conserved particle current, and the
symbol (P* is defined by Takahashi and Umezawa' to
mean that all surface terms appearing in the reduction
of the S matrix are to be discarded. It should be em-
phasized that no formal proof that this is true exists, but
rather that it seems to be reasonable. Indeed steinberg'
accepts this point of view in his theory of interacting
fields. The authors therefore believe that if, after re-
ducing the S matrix, Eq. (3.11) applies, then there
ought to be a straightforward way of arriving at
Feynman rules without having to bother with a stagger-
ing number of unphysical terms.
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+ dy{eA.(y) {G.,.(x-y)l', .p.(y)4(y)

—[p.(y)G, ( —y)74(y) I

—e'Gz, ~(x—y)l'-eA-(y)Ae(y)4(y)) (4 «)
(x) A in, out(x)

+ dy D' "„(x—y) [@(y)(p.—eA-) I'-&(y)

—e(p +eA )tP(y)I'„ iP(y)], (4.1b)

where Gz, z(x—y) is the retarded (advanced) Green
function for the spin-1 field [see Kq. (2.11)]and D
is a retarded (advanced) Green function for the photon
field

D" " (x) =b„„hit,g(x; 0) . (4.2)

The operators iP;„,,„t(x) and A„'"'""(x) are free-field

operators and represent the asymptotic behavior of the
Heisenberg fields. The commutation relations satisfied

by the free-field operators are

[4'...t(x),k. ,-t(y)]-=tG(x —y), (4 3a)

in, out(x) A in, out(y)]

=t'D„„(x y) =tb„„—h(x y; 0) . (4.3b)—

All other commutators are zero. Furthermore the
operators tP;„(x) and tP,„t(x), A„'"(x) and A„'""(x) are
related by a unitary transformation S:

The problem of surface terms is circumvented by work-

ing with Green-function solutions in the Heisenberg
representation, so that manifest covariance is always
maintained. It is found that the second-order scattering
processes are consistent with the construction of the
S matrix by the (P* method, Eq. (3.11).The proof that
to all orders Feynman rules can be used to write down
the S matrix relies heavily on the similarity between
the equations of motion for scalar and vector
electrodynamics.

The Yang-Feldman equations4 for the vector electro-
dynamics described by Eqs. (2.24) and (2.25) are

4'(x) =4"-,-t(x)

set, then it follows that Feynman rules of the same form

apply to the other set. This argument circumvents the
necessity of dealing with surface terms because, if one
solved the Yang-Feldman equations for S, where S is
that transformation relating in-operators and out-
operators, covariance would always be maintained and
surface terms would never appear.

Now the equations of motion for scalar electro-
dynamics are

[(P„—eA,)(P„—eA„)+nt']to(x) =0, (4.5)

B„B„A„(x)= esp—t(p„eA—„)y+e(p„+eA„) (p" to (4. .6)

Feynman rules for scalar electrodynamics have been
derived by Rohrlich. "Then since Eqs. (4.5) and (4.6)
and the equations for vector electrodynamics (2.24) and
(2.25) have the same form, by Yang and Feldman's
argument it wouM seem reasonable that rules of the
same form as Rohrlich's rules for scalar electrodynamics
would apply to vector electrodynamics.

However, Yang and Feldman only discussed cases
where the interaction Hamiltonian contained a finite
number of terms and never explicitly showed that
Feynman rules could be derived from their equations.
Their argument is on the same level as that of Takahashi
and Umezawa"; namely, that for theories where the
interaction Hamiltonian has a finite number of terms,
surface terms never appear in the final result and Eq.
(3.11) applies. Thus it seems reasonable that this shouM
be the case for all theories.

It was decided that the problem could be settled if
Feynman rules could be derived directly from Eqs. (4.1)
and (4.4). Before the derivation is begun, however, the
notation will be simplified. I et F„be defined by

(*)F„P(x)=P(x) r„„P„P(x)—[P„y(x)]1'„„P(

Whenever F„appears it operates only on adjacent
functions. The coordinate dependence of A„(x) will be
suppressed whenever it is obvious from the context of
the equations what the dependence should be. Hence,
for example, Eq. (4.1) would be written

4(x) =4 .,-t+ d»[eA. tG~, ~(x —xi)F„P(»)

ip.„t=Sip;„S,

g Ou~ Sty inS

(4.4a)

(4.4b)
' eG~it( xxi)A ApI' pit(xt)7. (4.8)

Yang and FeMman4 have shown that the transforma-
tion S is identical to Dyson's S matrix, Kq. (3.1), for
cases in which the interaction Hamiltonian in a free-
field representation has a 6nite number of terms. This
leads them to the following conclusion. If one has two
sets of field equations which have the same form, then
their Green-function solutions have the same form, and
hence the S matrix to any order in the coupling constant
for the sets must have the same form. In other words, if
it is known that certain Feynman rules apply for one

A method for finding S from the Yang-FeMman
equations has been suggested by Rayski. '0 Note that an
equivalent way of writing Kq. (4.8) is

tP(x) =Pi'&(x)+ dxt[eA„,G(x —xr)F„,P(xt)

—e'G(x —xi) I' eA A et'(xt) 7 (4.9a)

' F. Rohrlich, Phys. Rev. 80, 666 {1950).
'0 J. Rayski, Phil. Mag, 42, 1289 {1951).
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s. Rev. 82, 428 (1951)."F.$. Dyson, Phys. Rev.

whcrc

—=G &'&(x) —2iG(x)

L "'(*)— ' (*)j
4M'

(v" 4.)P.P. -„—23f2

4M'
(4.28)
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Here Gr(x) is interpreted as the propagator for the
massive spin-1 6eld. It agrees with what Takahashi and
Umezawa" say should be the form for propagators, but
differs from steinberg's" propagator by the term

1
C' VSES2 dxidx2D ylp2(xl »)

1
X:y(xi)F„,G (x —x,)F„,P(x ):——

2
ds j.dx2

—(1/4M') (p'+ M') a, (x) =iS(x)/2M'.

So far the derivations have been straightforward and
there has been nothing too surprising. It will be seen
however, that the self-energy parts of S2 introduce new
difFiculties. "

3. Self Energy -of the Vector Meson

1
S vsE

2

X:{iLA„„A„,]„g(xi)F„P(xi—»)F„,iP(x2)

+LzD„„,(xi—x2) —A '„,A '„,]
XLy(xi)F„,y'(xi)y'(xg)F„, y(»)

+4"(xi)F.A(xi)4(»)F, A"(»)]): (4 29)

and
D+G++D G = ,'(DG D"&G"&)-—

DG =4DG 2(DoGg+D~—Gri) .

(4.30a)

(4.30b)

The final result is

One would like to express Eq. (4.29) in terms of the
I"eynman Green functions D~ and G~. To this end, the
last two terms in Eq. (4.29) can be rewritten using the
following relations for products of Green functions:

X:LD~„,„,(xi—x,)g(xi)F„„Gg(xi—xg)F„,P(»)

+D yyp2(xi x2)$(xi)Fp&GB(xi x2)Fp24'(»)] ~ (4 31)

The first term in Eq. (4.31) is the usual type of expres-
sion for the self-energy. The second term, which would
vanish automatically if the derivation were for scalar
electrodynamics, appears to be a new type of self-energy
term. This type of term is analogous to a term found by
I.ee and Yang' in their discussion of vector electro-
dynamics in the canonical formalism. They found that
in the reduction of the S matrix, the cancellation
between surface terms coming from the interaction
Hamiltonian and those coming from the time-ordered
products of operators was not complete.

Note that in the second term in Eq. (4.31) the
integrands vanish everywhere except at the origin,
where they are singular. On the other hand, the inte-
grand of the first term in Eq. (4.31) is also singular a,t
the origin, which simply means that the self-energy is
divergent. Divergent self-energies are common to S
matrix theory and can be dealt with in a standard way
known as the Pauli-pillars regularization. " Auxiliary
masses are introduced into the integrals in a special way
which makes the integrals finite. The degree of diver-
gence of an integral is recovered by letting the auxiliary
masses tend to zero at the end of the calculation. Ke
now consider the second term in Eq. (4.31) when it is
regularized.

Let l pi) and
l p2) be states of one vector meson of

four-momenta pi and p~, respectively:

(pil dxidx2D pzuz(xl ») P(xl)FWGA(xl »)FpA'(») ~
l p2)

8(P,—P,)u(p, ) d4k r„.(p+k).Lknk —2M2](p+k), r,„u(P,)
(4.32)

(2~)'2p, L(p —k)2 —i&(po —ko)]4M2l k +M +i&ko]

Q c,=O, P c M,2=0, P c M,'=0.
Making explicit use of these conditions and then writing
the denominator of the integrand in Eq. (4.33) as a
function of k' only, '4 it can be shown that the integrand

(4.33) is analytic in the upper ko plane. Then since the integral
along the kp axis can be closed in the upper half kp plane,
the integral vanishes by the Cauchy theorem,

Wii —— d'k I'„(p+k) (p+k)el'p„
k'+M'+irk p

Xp c;l (p —k)'+rnid —ie(po —ko)] ',

"The bubble diagrams which result from contracting two opera-
tors with the same argument are omitted as they could be taken
care of initially by normal-ordering the currents in Eqs. (2.24)
and (2.25)."W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).

(4.34)

' S. Schweber, Ref. 16, Chap. 15, p. 520.

where k&k—=k„(y„„—8„„)k„.The regularized integral of with the conditions
Eq. (4.32) is defined by



NEW QUANTUM ELECTRODYNAMICS FOR VECTOR MESONS

In a similar manner, the term with

D (xg x2)Gg(x] x2)

will vanish. The effect of the Pauli-Villars regularization
method is to remove singularities at the origin. Since in
the integrand in Eq. (4.31) the only nonvanishing part
is for xi ——x2, after removal of this singularity by
regularization the integral is expected to vanish.

The point to make is that if one wished to display the
order of divergence and extract any finite parts from

Eq. (4.31), the usual procedure of regularizing such an
expression 6rst and then letting the auxiliary masses
tend to zero after doing the integration wouM be
followed. But as has been shown, the second term in

Eq. (4.31) vanishes identically after regularization;
hence it is concluded that such terms make no contribu-
tion to the self-energy.

It is also straightforward to show that the photon
self-energy consists of an integral with Feynman Green
functions G~(x) plus terms with integrals over products
of G~(x) and G~(x). Again, if only regularized expres-
sions are used in calculating radiative corrections, the
photon self-energy is calculated only from an integral
with Feynman Green functions.

It is now clear why the (P* method will apply to this
vector electrodynamics to all orders. %hen 5„ is found
from the Yang-Feldman equations, it can be expanded
in terms of normal-ordered products. Each type of
scattering terms will be given by an integral whose

integrand is a functional of the fields and various Green
functions. These Green functions can be manipulated
into a form such that the integral consists of a Feynrnan
amphtude part plus some other terms. Since the equa-
tions of motion for scalar electrodynamics, Eqs. (4.5)
and (4.6), have the same form as for vector electro-
dynamics, Eqs. (2.24) and (2.25), S„will have the same

form as for vector electrodynamics. But Feynman rules

do applv to scalar electrodynamics"; hence any extra
terms appearing in the derivation of 5„ for scalar
electrodynamics using the Yang-Feldman equations
must be products of advanced and retarded Green
functions since it is only these terms which vanish
identically. For vector electrodynamics, inte grands
with products of advanced and retarded Green functions
vanish everywhere except at the origin, where they are
singular. As was indicated for the second. -order photon
and vector-meson self-energies, it is the regularized
expressions which are meaningful in doing calculations.
Since the process of regularization removes the singu-

larity at the origin, the regularized integrals of products
of advanced and retarded Green functions vanish.
Hence the 5 matrix for vector electrodynamics consists
entirely of Feynman-graph amplitudes.

V. RENORMALIZABILITY OF ELECTRO-
DYNAMICS OF ARBITRARY-SPIN

PARTICLES

One could in principle follow Sec. IV to derive the
5 matrix for the electrodynamics of arbitrary-spin
particles starting from Eqs. (2.22) and (2.23). It is clear
from the structure of these equations that in addition
to. one-photon and two-photon vertices there can be
3, 4, . . . , 2s-photon vertices for the processes involving
integral-spin and 3, 4, . . . , (2s+1)-photon vertices for
the processes involving half-integral spin. By the argu-
ments of Sec. IV, Feynman rules of the same form as
scalar electrodynamics must apply to the one-photon
and two-photon vertices for the electrodynamics of
particles with arbitrary spin. For the higher-order
photon vertices, we can at this time only assume that
there are no additional di%culties.

The role of the propagator is played by

Gp'&(x) =it G„&'&(x)—G "(x)j
—iLG~"(x)+Gag" (x)]. (5.1)

Note that for large k t see Eqs. (2.11) and (2.20)J
Gp" (k) 1/(0')' ' s=1, 2, . . . (5.2a)

-1/(&')'"'" ~=5 l, " (5.2b)

A discussion of the renormalizability of Eqs. (2.22)
and (2.23) can be made by using Dyson's method of
poweI' counting, * to find the dimension of an
integral for an arbitrary graph. For the integral-spin
case, an m-photon vertex will have a (2s+1—m)-order-
derivative coupling. Let 8&' stand for a boson (of spin
s) hne, F~' stand for a fermion (of spin s) line, P stand
for a photon line, and C stand for the number of vertices
in a diagram. The dimension D of an integral is defined
as the diRerence between the number of powers of
moment@ in the numerator and the denominator. The
contributions to D are as follows.

(i) There is a 8 function in momentum space from
each coordinate space integral; however, one 5 function
expresses over-all conservation of four-momentum.
Thus the contribution to D is —4(C—1).

(ii) There is a momentum-space integral for each
internal line. The contribution to D is 4(B,&'&+8;) for
boson electrodynamics and 4(F;&'~+P,) for fermion
electrodynamics. (The subscript i denotes internal
lines. )

(iii) The contribution from the photon propagator is
—2P;, the contribution from the massive boson prop-
agator is —2(s—1)B *', and the contribution from the
massive fermion propagator is —(2s+1)F,".

(iv) The derivative coupling from an m-photon
vertex contributes (2s—m)C for boson electrodynamics
and (2s+1—m)C for fermion electrodynamics. Hence

2' F. J. Dyson, Phys. Rev. '75, 1736 (1949).
'6 S. Schweber, Ref. 16, Chap 16, Sec. a.
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mC=2P, +P, . (5.4c)

Thus in terms of external lines

D~'~ =4+2C—(3—s)8,~'~ —P„s=1,2, 3, . . . (5.5a)

= 4+ (s——,')F.'& —P. , s=-', , 2, . . . (5.5b)

independent of m in each case. Consider first the
integral-spin case (5.5a). The dependence of D&'~ on C
implies that there are an infinite number of primitive
divergences; hence all of the integral-spin equations
(2.1) are nonrenormalizable in the presence of minimal
electromagnetic coupling. For the half-integral-spin
case, D'') is not dependent on the number of vertices in
a diagram. For s=2, Eq. (5.5b) is D&'~'&=4 —2F,—P„
which implies that there are a finite number of primative
divergences. Thus the spin-2 electrodynamics described
by the equations

[my„(p„eA„)+i—(p„eA„)(p„—eA„)]p(—g) =0, (5.6a)

B,B.A „(x)=iemtpy, tp

erk(p. eA.)4—4(p.+—eA.)4 j—(5 6b)

is renormalizable. Hammer and Moroi'~ have studied
Eqs. (5.6) in some detail.

For s&~, however, there are an infinite number of
primitive divergences, since given any number of ex-
ternal fermion lines F„a number of external photon
lines I', can be chosen to make D&'&0. Thus for s& ~,
Eqs. (2.22b) and (2.23) are nonrenormalizable.

VI. DISCUSSION AND CONCLUSIONS

There are some distinct advantages to the theory
presented here both from a formal and practical stand-
point. Since there is a single wave equation with no
auxiliary conditions, each component of the field is
treated on an equal footing throughout derivations and
calculations. The Fock-space operators create and

' C. L. Hammer and D. S. Moroi, USAEC Report No. IS-2085,
1968 {unpublished).

the dimension of an integrand for a diagram with
m photon vertices is

D ~'(m) = (2s —m —4)C+4+ (6—2s)8;&'~+2P, ,
s=1, 2, . . . (5.3a)

= (2s —3—m) C+4+ (3—2s)F &+2P;,
s =-', , -'„.. . . (5.3b)

It is convenient to express Eqs. (5.3) in terms of ex-
ternal lines. Each vertex has two massive boson or
fermion line endings; thus

2C=28 &+8,'&, s=1, 2, . . . (5.4a)
or

2C=2F "+F&' s=-' —' . . . . (&.4b)

(The subscript e denotes external lines. ) An m-photon
vertex means that

destroy particles or antiparticles in definite spin or
helicity states. The calculations are therefore as
straightforward as in the spin-2 case. All of the ma-
chinery needed for any calculation is written down in

Appendices A and 3.
This should be contrasted with the canonical forma-

lism and the formalism in which one must always take
the dependent components of the field into account.
Note that in the canonical formalism the Fock-space
operators create and destroy particles or antiparticles
in transverse or longitudinal states.

The conventional method of deriving the 5 matrix
from Dyson's equation was abandonded to avoid the
problems of surfaces terms. Although the use of Yang-
Feldman equations to find the 5 matrix is tedious,
nevertheless this has the advantage of maintaining
manifest covariance throughout the derivation. Once
one is certain of the Feynman rules, the (P* method can
be used with confidence.

The extra terms in the radiative corrections found by
Lee and Yang' in the canonical formalism appear in this
theory as integrals over products of advanced and
retarded Green functions. If one takes the point of view
that it is only regularized expressions which are niean-
ingful in doing calculations, then none of the extra
terms contribute.

The various formalisms have different predictions
about the exact behavior of vector mesons in an
electromagnetic field. However, since all known vector
mesons interact strongly, one cannot experimentally
test for the correct theory. But if the photon field is
replaced by the nucleon current ifNy„g~, a calculation
can be done of the scattering of a vector meson by an
external nucleon field. There may be a possibility of dis-
tinguishing among the different vector-meson theories
if such a calculation is incorporated into a calculation
of vrp scattering, where in an intermediate state one
expects pp scattering to occur. This will be the subject
of future investigations.

As is the case for the other formalisms, this theory is
nonrenormalizable. A way of obtaining a renormalizable
theory would be to modify the advanced and retarded
Green functions and the free-field commutation rela-
tions such that the massive spin-1 propagator in
momentum space had a 1/k2 behavior in the asymptotic
region. This would be analogous to the $-limiting
formalism of Lee and Yang. One would effectively be
replacing a theory with a single cutoff parameter. Then,
because the equations for arbitrary spin given by
Hammer et al." all have the same general structure,
after learning what sort of modifications lead to a
renormalizable theory for spin 1, the same techniques
can be applied to arbitrary-spin theories.
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APPENDIX A: COVARIANTLY DEFINED
SPIN-1 MATMCES

The 6&6 matrices y„„have been studied in detail by
Sankaranarayanan and Good." A complete set of
covariantly defined 6X6 matrices is the unit matrix

Q5, uv =5(vulVvi PvQ'u1) ) (A1e)

7,,„,„.=L~„.,~,.],+2b„.s,„—L~...~„.],—2s„s„.. (Alf)

The product of two y„„matrices can be expanded in
terms of the complete set (A1), as"

ruvVap 5tiuv~ap+5 (~uapvp+~up'4a)

125(75,uapvp+75, vapup+75, uppva+'Y5, vpeua)

+5{'Ypua v,p+75vau, p) , {A2)

and the traceless matrices

72 Y5y

V~)IPV VljfV 7

+4,PV ~Pg PV y

(Ala) Traces of products of any number of the y matrices
PEqs. (A1)] depend only on traces of products with yu„
and. y5. The trace of two y„„matrices follows from Eq.

(Alb) (A2) as

Trh'"& p) =4(4 &.p+t'lup&-) 24—.&-p

(A1d) The trace of four yu„matrices is found to be

Tr(ruv&aA'uv trav) 64v~ap4v~&v+~uv ap, uv, ~vL. (I5u)n»fl~)o'r)+(nP)55P)u~)or)+(Pu)f5n)ul))P'r)

+(&r,55n, up, P&) (pu, nP,—p&,o r) (I5u, km,—np, Po) {po,km,—55n, uP)

(nP)po)~p) 7'u) (pu) per)n~~P'r) {nP)~r)pp)uo)+4(pn)uP) p~) o'r)
+4(Imp r,nP, Po)+4(I5p, uo, n), ,Pr) 2(py, n7—.,pu, hu) 2(I5o,nr, pP, kv—)], (A4)

where, for example,

(55u,np, ph, o r) =Su„8 Poult'1„

~uv ap. uv. &v{I5u)nP)P~)O'r)

=Qu, 8 P(8u18.,+b 8.u),), (ASb)

i.e., the operator 5„„,p, „„)„means to symmetrize
independently wltll lespec't fo fhe pall's au, np, Po' ancl
X7. As in the Dirac case,

Tr(odd number of y„'s) =0. (A6)

Traces of higher numbers of y matrices can be re-
duced to traces of four y„„matrices by the following
theorem.

If G Rnd H cRch consist of R pI'oduct of Rn odd number
of y inatrices, then, as shown below,

TrGH = 55Tr(Gyu. ) Tr(yu„H)

+8 Tr(G757u. )»(vu.v5H) (A7)
Thus, for example,

Tr(by's) =3 Tr(3'r'sou„) Tr(yu„3y's)

+s Tr(3'Y s757uv) Tr(7uv7537 s) (Ag)

The first term on the right-hand side of Eq. (AS) can be
calculated using Eq. (A4). The second term can. be
calculated using

Tr{'rA'uv rapVuv'r5v)

=~",-P,u. ,l -ou(u~1P~-+&-~.p ~-&P ) (A9)

28 A. Sankaranarayanan and R. H. Good, Jr., Nuovo Cimento
36, 1303 (1965)."R.H. Good, Jr. (private eommunieation).

APPENDIX 8: FEYNMAN RULES FOR
VECTOR ELECTRODYNAMICS

The Feynman rules for this vector electrodynamics
are identical in form to Rohrlich's rules for scalar
electrodynamics. The rules can be derived from an
CEcctive interaction Hamiltonian

X»'(x) = —eA„+(x)F„+(x)+e'A„A„%(x)I'„„+(x) (81)
ls OnC uSCS

s=p
~=0 gg!

dxI dS

XCP*(zap'{xi) . Xap'(x )), (82)

where. ~„,), is the permutation symbol with four indices.
The proof of the theorem. proceeds as follows.

If G Rnd H cRch consist of R pI)oduct of Rn odd number
of y matrices, then in a representation in which y„„ is
off-diagonal, G and. H must be OB-diagonal. Of the 36
linearly independent 6&&6 matrices, Eqs. (A3), only
Jpv Rnd +5+@v RI'c 06-diagonal. Hcncc

G =Giu "7u.+Guu"V u.V 5 ) (A10a)

H =Hiu"7„,+H,u"q„.q5, (A10b)

where G~I'", G2~", H~I'", and H~I'" are expansion coHB-
cients. One notes then that Tr(yu, y pq5) =0, so that,
with the help of Eq. (A8),

Tr(GV") Tr(V "H)+Tr(GV5V u.) Trh "V5H)
=8GjI""Hg &Try„„y p

—SG2I'"H2 ~ Try„,y p

=8 Trg(G&u"q„, +G,u"q„,75)
&(Hi'v-p+H5'v py5)]=8 Tr(GH)
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i.e., the 6'~ method of Takahashi and Umezawa. The
results can be extended to vector mesons with arbitrary
QlRgnctlc dlpolc Rnd clcctl lc quadrupole lrlonMnts by
using Eqs. (2.27) and (2.28). The effective interaction
Hamiltonian is

seEF'(x) = —eA„%(x)F„%(x)+e'A„A,+(x)I'„,4 (x)

+,',A4—(x)y5, q+(x)I'.s

4(x) =Q
a=1

dp
L'(v)~. (P)~'"*

(2n.)"'2pa
+d.'(u)'(v)~ '"'j, (~«)

dp
L~ '(P)~ (v)e '"'

(2~)"'2Po
+d.(p)~.(u)~"*j (Ii4h)

(Ps+—~~~)+(*h 6,",-~+(~)j (&3)

ELEMENT

INTERNAL PHOTON LINE

GRAPH VALUE

F . 2.
Dp.v(k) =-I8pz/(k -Ie)

The momentum-space Feynman rules, for this inter-
action Hamiltonian are summarized in Fig. 1. Anal-

ogously to spin- —,'electrodynamics, for closed meson

loops tlM tlRcc of tlM 6+6 DlatIlx cxpIcsslon shoUM bc
taken. Comparable rules for vector electrodynamics in
the canonical formalism have been given by Aronson. '

The plane-wave expansions for the vector-meson

01

—(~/2PO)i~(~. (u)~ '"',I"(u)~'"') =~-,
(/~P—o)~~.(u) i'"P.~"(u) =~-,

Z ~.(I) (u) =2'(I)'(u)
=(4M') '(M' —y„sp ptt). (35h)

An explicit form for the u's and v's is

N. (u) =~.(V) =(2~'V') '(~' —v-sp-P~)
&&(1'—~ '~ P'P:r& —(~/&)3 .(o) (&6)

p, =(p'+M')'~', where u, (p) and s,{p) are six-com-

poIlcnt colUQln matrices fol posltlvc- Rnd ncgRtlvc-

energy vector mesons with polarization s. The N, (p)
and r.(p) have orthogonality and completeness relations
of the form

INTERNAL MESON LINE

ONE-PHOTON VERTEX

-i!~M'-p„p„(r„„s„„)]
( )„gL -T/ P.v- P v

4M~(p +M -ie)

-e Pap(P+P')p 6 &5 ap "p
with p, the solution of

eq
'ev&~6 ~P~~ "P"~"' '~

TWO-PHOTON VERTEX

FIG. j.. Feynman rules for vector electrodynamics.

8 P
pe=&&8 ~

Ixl

The matrices 8 are the 3&3 spin-1 matrices:

L~ (u),~ '(q) j-=E~.(I),«'(a) 3-=2Po~. ~(p —ci), (»a)
L~.(P),~ (a)j-= IX(v),~ (a) 3-=o. (a7h)


