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A quantum electrodynamics for vector mesons with arbitrary magnetic dipole and electric quadrupole
moments is constructed in which the vector meson is described by a six-component column matrix satisfying
a single equation of motion with no auxiliary condition. To avoid an interaction Hamiltonian which has an
infinite number of surface terms, the S matrix is derived directly from Green-function solutions of the equa-
tions of motion. In the reduction of the .S matrix, terms appear which do not correspond to Feynman-type
terms but which vanish if only regularized integrals are used. The Feynman rules are then identical in form
to the rules for scalar electrodynamics. A distinct calculational advantage of this theory is that all compo-
nents of the Fock-space operators are treated on an equal footing and create and destroy particles in definite
energy and helicity states. Trace theorems for the covariantly defined spin-1 matrices are given to further
facilitate calculations. The same techniques are applied to the electrodynamics of arbitrary-spin particles.
A discussion of the renormalization is given: All of the theories are found to be nonrenormalizable.

I. INTRODUCTION

HE discovery of vector mesons in high-energy
particle collisions has prompted increasing in-
terest in the theory of vector mesons interacting with
the electromagnetic field. To date no satisfactory theory
analogous to either spin-3 or scalar electrodynamics
exists. This paper represents another attempt to con-
struct a renormalizable spin-1 electrodynamics. Al-
though the theory developed is nonrenormalizable, it
has the following advantages over other formalism. (1)
The vector meson is described by a six-component
column matrix satisfying a single equation of motion
with no auxiliary condition. Therefore all components
of Fock-space operators are treated on an equal footing
and create and destroy particles in definite energy and
helicity states. (2) The perturbation expansion contains
no surface terms. (3) Trace theorems for the covariantly
defined spin-1 matrices are developed which are analogs
to the trace theorems for spin-} y matrices. Thus all
calculations will be as straightforward as in the spin-§
case.

The vector electrodynamics existing in the literature
has been based primarily on the 8 formalism (Kemmer
theory?!) and the canonical formalism (Proca theory?).
For the vector electrodynamics in the @ formalism, the
Feynman rules®* are of the same form as spin-§ electro-
dynamics with 10X 10 8 matrices replacing the spin-%
matrices. Kinoshita and Nambu® have investigated the
divergences to second order in the coupling constant for
vector electrodynamics in the 8 formalism. They found
that charge, wave function, and mass renormalization
did not remove all of the ultraviolet divergences, imply-
ing that the theory was nonrenormalizable.

Lee and Yang® have done a thorough study of the
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S matrix and its renormalizability for vector electro-
dynamics in the canonical formalism. They found that
the canonical formalism led to a nonrenormalizable
theory, and for a nonzero electric quadrupole moment,
the Feynman rules contained surface terms. Aronson’
has pointed out that these surface terms can be removed
by an infinite series of counter terms in the original
Lagrangian. Lee and Yang circumvented the problem
by introducing one extra term with dimensionless co-
efficient £ in the equations of motion. In addition, this
led to a renormalizable theory. However it also intro-
duced scalar mesons with negative energy. This new
problem had to be remedied by the use of an indefinite
metric.

Sheinblatt and Arnowitt® have discussed the inter-
action of a quantized vector meson field in the canonical
formalism with an external electromagnetic field. They
also found that the theory could be renormalized if a
small spacelike distance was introduced in the current
operator to separate the points at which the field
operators act.

Formulations for a free, massive spin-1 particle which
use a six-component column matrix have been given by
several authors.~!2 The six components are sufficient
to describe the three spin states of a massive spin-1
particle and antiparticle which puts the description on
the same footing as the Dirac theory for spin-% particles.
The equation found by Hammer ef al.!? is of particular
interest since this equation is manifestly covariant and
requires no auxiliary conditions.

The wave equation for a massive spin-1 particle found
by Hammer et al.!? was originally found by Shay and
Good.3 Shay and Good studied the unquantized spin-1
field coupled to an external electromagnetic field and
also added magnetic-dipole and electric-quadrupole
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terms with arbitrary coefficients to the equation of
motion. They found that the six-component description
of a spin-1 particle in an electromagnetic field differs
from the other formalisms in the way in which the
dipole and quadrupole terms appear. Hence it may be
said that although the various free-particle descriptions
are all equivalent, in the presence of an electromagnetic
field each formalism leads to a different prediction about
the behavior of vector mesons. Since at present there is
no experimental evidence to single out the correct
theory, the authors feel that a study of vector electro-
" dynamics in the six-component formalism deserves
attention.

In this paper we will primarily be interested in study-
ing a quantized spin-1 field satisfying a manifestly
covariant equation!?!? when the radiation field is intro-
duced through minimal electromagnetic coupling. The
vector meson described in this manner has an intrinsic
dipole moment of ¢/4M and an intrinsic quadrupole
moment of —e/2M? However the results are later
extended to a vector meson with arbitrary dipole and
quadrupole moments (Appendix B).

In Sec. II a free-field theory is constructed for
particles with arbitrary spin satisfying manifestly
covariant equations with no auxiliary conditions.!?
Since these equations all have essentially the same form,
it is just as easy to discuss the arbitrary-spin case as the
spin-1 case alone. The equations for the electrodynamics
of arbitrary-spin particles are then introduced. In Sec.
III we discuss the difficulties associated with the usual
S-matrix treatment in the interaction representation.
For spins greater than or equal to 1, it is seen that the
interaction Hamiltonian in the interaction representa-
tion has an infinite series of noncovariant terms. In Sec.
IV we specialize to spin 1 and derive the S matrix
directly from Green-function solutions of the equations
of motion thereby bypassing the difficulties associated
with interaction Hamiltonians. In Sec. V we return to
the equations for an electrodynamics of arbitrary spin
and discuss their renormalizability. All equations are
found to be nonrenormalizable except for the spin-3
case. In Sec. VI there is a general discussion of the
results and suggestions for further study. Appendix A
contains properties of the covariantly defined spin-1
matrices and trace theorems. In Appendix B the
Feynman rules for a vector meson with arbitrary dipole
and quadrupole moments are given.

II. FREE-FIELD THEORY AND EQUATIONS FOR
QUANTUM ELECTRODYNAMICS OF
ARBITRARY SPIN

This section begins with a discussion of quantized
fields for arbitrary spin and (nonzero) mass. The field
commutators, Fock-space operators, and the com-
mutators between the fields and the Fock-space
operators are given. Although equivalent discussions
have been given by Weinberg!® and by Nelson and
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Good,™ the treatment given here is of interest since it is
based entirely on conserved currents derived from the
field equations. Thus a Lagrangian can be specifically
avoided and a detailed discussion of plane-wave ex-
pansions in not found necessary.

The equations to be considered are those found by
Hammer et al.!? The integral- and half-integral-spin
cases are treated separately. For integral spin, the
equation used is Eq. (98) of Ref. 12:

Lyt ua+ () (p*+2M) W (x) =0,
s=1,2,3,... (2.1)

where ¥ [u=7Yu.m, are generalized 2(2s+1)-dimen-
sional Dirac matrices and pruj=pu - - Pu,. The four-
vector p, has components

pu=(—10/0x;, —0/01).
The adjoint ¥ (x) of ¥ (x) is defined by
PO () = [y app @ () JF

and it can be shown that ) (x) satisfies

Pl @@y ua+ @) (2P (x)=0.  (2.2)
An important property of vy is
Y wp Y vipm = (7). (2.3)

This means that solutions of Eq. (2.1) have the correct
relativistic dispersion, since by Eq. (2.3)

Dy — @D (p*+2M7) ]
X[y pra+ (D (p*42M%) Jp (x)
=—4M2(p?)* P+ MY (x)=0. (2.4)
Thus the 2(2s41) independent solutions of Eq. (2.1)
are sufficient to describe all of the possible spin-s, free-
particle and -antiparticle states with no auxiliary con-
ditions needed.

A convenient method for quantizing fields satisfying
equations like Eq. (2.1) has been given by Hammer and
Tucker.’® From Eq. (2.1) one constructs a conserved
current, 7,1 ¥2®),

Dudu@r® (@) 92 (%))

=01 @)Dy b+ @) T FHH2M2) W) (%)

— 1O (@) [y P 1+ (BB 22 @) (2) (2.5)
for any solutions ¢ and ¢, of Eq. (2.1). The arrow indi-

cates the direction of differential operation. Fock-space
creation and annihilation operators are then defined:

%“”@»=/?n@an@@x@mwﬂmﬂ» (2.60)

and
aw@w/wmmmwwmwwm,a®>

u T). J. Nelson and R. H. Good, Jr., Rev. Mod. Phys. 40, 508
(1968).

15 C. L. Hammer and R. H. Tucker, J. Math. Phys. (to be
published).
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respectively, where ¢ is a spacelike hypersurface with
unit normal 7, i.e., do,=n,do; u: ) (p,x) is any c-number
solution of Eq. (2.1) with discrete eigenvalue %2 and
continuous eigenvalue p. The basic quantization postu-

late is
La:®(P),a: (@) ]-=0,
[a:® ()0 (@) 1-

(2.7a)

- / doy() 1.0 (p,2) 10 (@) (2.7h)

It can be shown from Egs. (2.5)-(2.7) that the com-
mutation relations for the fields are

@@y 1)]-=0, (2.8a)
WO@P©) =G (x—y), (2.8b)

where G®(x) is the homogeneous Green function for
Eq. (2.1), ie.,

YO()= f 4@ GG (r—3), ¥(3).  (29)

This Green function can be constructed from advanced
and retarded Green functions

GO (x)=G1 P (x)—Gr (%), (2.10)

where

Ga, 2@ () =(—1/4M>) [yt pr — 2 (p*+2M%)]

d4k eikaz
X / . @11
€4,Cx (2m) 4 (k%) 2(k*+M?)

The contours @4 and Cg run parallel to the real &, axis
at a distance —e and ¢ from the real &, axis, respec-
tively.!® Clearly G4 (x) [Gr‘(x)] vanishes for x>0
[%0<07, and also

Dyt i+ @) (2 1G4,z (%) =6(x) . (2.12)

A second consequence of Egs. (2.6) and (2.7) is the
commutation relations between the field and the Fock-

space operator ax(p).
v (®),6: () ]-=0, (2.13a)
W@®),a® @) ]-=u®px).  (2.13b)

One can also show from Egs. (2.6) and (2.7) that the
Fock-space operators

0,0= / 1o, jF O @), ), (2.14)

where ©,(9) is a ¢-number tensor operator of rank I,

satisfy
[ @),009 1= 0,()¢ ) (x). (2.15)
16§, Schweber, An Iniroduction to Relativistic Quantum Field
Theory (Harper and Row, New York, 1962), Chap. 13, Sec. d.
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Thus the operator
Py= / do(%) ju (P @ (@),pp (%)) (2.16)

satisfies the Heisenberg equation of motion

[ (x),Pu 1= pup*) () (2.17)

and is identified as the four-momentum operator in
Fock space.
For half-integral spin, the equation to be considered

‘is Eq. (66) of Ref. 12:

Ly pup i +i(p?) W () =0, s=3,4,.... (2.18)

The conserved current is defined here by
—0uul 1@ W]
=0 @)y ap i +i(p?) 11 (2)
F1 O @) Dy P —i(B) 1 e (@) (2.19)

The quantization procedure parallels that for the
integral-spin case. The advanced and retarded Green
functions for Eq. (2.18) are

Ga, 2@ (%) =[myupra—i(p?)s+1/2]
dk etk

< ,

eaer (2m)* ()7 (k07

so that the anticommutation relations for the fields are

(2.20)

@ @) () 1=0, (2.21a)
WO®POW =64 (x—y)
—Gr@(x—y)=G®(x—y). (2.21b)

To consider the interaction of particles with arbitrary
spin with the electromagnetic field, the substitution
pu— pu—ed, is made in Egs. (2.1) and (2.18):

(v (P —ed )+ (p—ed) 2D

XL(p—eA)+M PO (x) =0, s=1,2, ... (2.22a)
CMy iy (P —eA ) +i(p—ed) > H P (x) =0,
s=1,3%,.... (2.22b)
The four-potential A,(x) satisfies
8,8,4,(x) = —eJ , ) (x) (2.23)

The conserved current J,®(x) is found by replac-
ing j’#‘xl’(S)_(x) by (pu—ed )Y@ (x) and ﬁu‘/’(s)(_x) by
(puted )@ (x) in the conserved current 7, (x),
¥©(x)) defined by Eqs. (2.5) and (2.19) for the integral-
and half-integral-spin cases, respectively.

In this work we will consider Egs. (2.22) and (2.23)
in some detail for s=1. These equations are

[(7uv+5nv)(Pu“eAn)
X (py—edy)+2M* =D (x) =0, (2.24)
avaVAu(x> = —6[517(8:1)(95) (P,,——GA,,) (’Yﬂv+ 6#!!)\0(8:1)(-’”)
— (pteA W 0 (@) (V0w P (x) ] (2.25)
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In what follows the superscript s=1 will be dropped
since it is only the spin-1 field that will be considered.
Also it will be convenient to define

Tw=vw+0ou. (2.26)

It has been shown by Shay and Good!? that a vector
meson described by Eq. (2.24) has an intrinsic magnetic
dipole moment of ¢/4M and an intrinsic electric quad-
rupole moment of —e/2M?2. To study the interaction of
vector mesons with arbitrary dipole and quadrupole
moments, Shay and Good have shown that Eqgs. (2.24)
and (2.25) are to be replaced by

en
[(pu—eA,.) (b= T 204 sl

eq oF
+ “Y6,aB,uv
6M?2

“f<py—eAy>]¢<x>=o, 2.27)

ox
9,0,4 4(x)

- —eﬁ(x) (B —e ) Tt (3)— (pr-te A, () Tt ()
eq _ aFaﬁ 2 28
+ B—A};‘l/(x)%'aﬂww(x):l (2.28)

(see Appendix A for a discussion of the 6)X6 matrices
V5,08 30 YV6,48,4v)- The tensor F,z is the electromagnetic
field tensor. A massive spin-1 particle described by Egs.
(2.27) and (2.28) has'® a magnetic dipole moment of
e(14+)\)/4M and an electric quadrupole moment of
(—14-A+29)/2M2.

For simplicity we will take A=¢=0in the derivations;
at their conclusion it will be clear how to generalize the
Feynman rules to include arbitrary X and gq.

For the interacting fields y(x) and A4,(x), the Fock-
space operator P, will be defined from the conserved
current J,®(x) by

1
Pu f 4o ()T S ), b (3)) — T (P () )]

1
+5/do,K,(Au,puAa), (2.29)

where K,(A1a,424)=A140,4 24— (0,41e)A24 is a con-
served current for the photon field. The Hamiltonian A
is just —iP,4 and can be separated into a free-particle
part and an interacting part. If the hypersurface o is
taken to be flat, then

H= f dx C2MH (a0 ) — p b (@) Tish b )
1
+pp (@) Taapap(x)]— 5 /dx Ky(Aa,pada)

+ f 0% (A, A (8) T (5) — e A [H@) T )
—pab(@)Tup(x) ]} . (2.30)
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III. DIFFICULTIES WITH INTERACTION
REPRESENTATION

The interest here will be in scattering processes
involving vector mesons and photons as described by
Egs. (2.24) and (2.25). A convenient starting point for
deriving elements of the S matrix is to use Dyson’s
equation??

S=f‘, (=o)"

n=0 7!

f Qg - / den @G (1) - 507 (52).
3.1)

Here @ is Dyson’s chronological operator and 3¢/’ (x) is
the interaction Hamiltonian density in the interaction
representation.

The field equations (2.24) and (2.25), and hence the
Hamiltonian coming directly from the field equations,
Eq. (2.30), are in the Heisenberg representation. It is
not trivial to transform the Hamiltonian from the
Heisenberg representation to the interaction representa-
tion because of the time derivatives of the massive
spin-1 field in the Hamiltonian. However, a program for
deriving the interaction Hamiltonian in a free-field
representation given the equations of motion in the
Heisenberg representation has been found by Takahashi
and Umezawa.!8 Some of the difficulty associated with
Hamiltonians containing time derivatives of the fields is
removed by introducing a special set of operators which
are related to free-field operators by a unitary trans-
formation. These special operators are not necessarily
equal to the Heisenberg operators.

Both Egs. (2.24) and (2.25) are of the form

D(9) o(x)=3(x), (3.2a)
where a free-field operator ¢;in(x) satisfies
D(9) pin(x) =0. (3.2b)

A Green-function solution of Eq. (3.2a) is
o) = pu(e)= [ @M=, m)i(), B3)

where Agp(x—a';m?) is the retarded Green function
from Klein-Gordon theory'® and the differential oper-
ator d(9) is defined by

D(9)d(8) =d(3)D(3) = 0,d,—m?.

It is convenient to define an operator

(3.4)

#(5,9)= o) — f (D) A m2) (&), (3.5)

where the notation (x,0) means that the point « is not

17 F, J. Dyson, Phys. Rev. 75, 486 (1949).
18y, Takahashi and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 9, 14 (1953).
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on the spacelike hypersurface ¢. The function
D(9) ¢(x,0) =0

for every o such that « is not on o. One can then define
a unitary transformation U(s) which connects @(x,0)
with the asymptotic field @in(x):

#(x0,0) =U"(0) in(x) U (o) -

The central equation for finding the interaction
Hamiltonian as a functional of the ¢i,(x) according to
Takahashi and Umezawa'® is

I:‘Pin(x)fc‘cll (xl>7]’):|—
= Zid(0) A=) U(0) (@) U (o).

Therefore 3¢’ (x,n) depends on a knowledge of j(x), the
current in the Heisenberg representation, which con-
tains fields and their derivatives. Thus it is still neces-
sary to know how to transform time derivatives of ¢(x)
out of the Heisenberg representation. This is facilitated
by taking the point x on ¢ in Eq. (3.5) and from it
subtracting Eq. (3.3):

(3.6)

3.7

o(8)= 3(x] )
- / dTd(9), O —)]-AGw—1)j(), (3.80)

where (x| o) means that the point « is definitely on o and
©(x) is the step function

O)=1,

=0 s

.’)C()ZO
x0<0 .

Similarily one can derive

8,,<p(x) =[6M¢(x;0)]xlv
- / 0 T0,(3), O(r—r')]A(—a) (), (3.8b)

where [0,&(x,0) Js;» means that the derivative is to be
taken before evaluating « on ¢. The motivation for
introducing the auxiliary field @(x,0) is now clear, since
from Eq. (3.6)

U(o) [0, 3(,0) Lo U1 (0) =0upin(w)

and thus some of the difficulty associated with Hamil-
tonians containing time derivatives of the fields has
been removed. The procedure for using Egs. (3.7) and
(3.8) to find 3¢ (x,n) is as follows.

(a) Use Eqgs. (3.8) to find ¢(x) and its derivatives in
terms of @(x|¢) and its derivatives.

(b) Use (a) to find the current j(x) as a function of
(x| o) and its derivatives.

(c) Use Eq. (3.7) and the free-field commutation
relations to solve for 3¢r'(x,n).

R. H. TUCKER AND C. L.
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Let us now use this method to find 3¢;’(x,) for Egs.
(2.24) and (2.25). Since for the photon field
d9) =1,
Alx—x)=A(x—a'; m2=0),
Eq. (3.8a) yields

Au(x) =4 ,(x|0). (3.9)
On the other hand, for the massive spin-1 field,
d(0) = (1/4M?) (v wpupr— p*—2M?)
so that
Y(@) =9(x| o)+ (nans/4AM>) (v ap—bap)
X[62A yAquv—ePuv(pMAv+AMpv):"p(x) . (310)

It is clear from the stucture of Eq. (3.10) that ¢(x) can
be solved for J(x|s) and its derivatives only as an
infinite series in the coupling constant. This in turn
means that 3¢;'(x,n) will be given as an infinite series in
the coupling constant, that is, an infinite number of
surface terms.

It is known that for cases where the interaction
Hamiltonian has a finite number of surface terms,
surface terms appear in the reduction of the S matrix
which exactly cancel those surface terms in 3¢;(x,5).'8
The net result is that the rules for writing down the
S matrix to any order in the coupling constant are
identical to those given by Feynman’s space-time ap-
proach to scattering processes.® For the case of fields
coupled to the electromagnetic field by minimal cou-
pling, this suggests that regardless of what 3¢/ (x,n)
might be, the S matrix is always given by

» (ie)"
S=> ————/dxl-»-/dxn
n=0 7!

X (P*(Au(xl)]n(xl) c Av(xn)JV(xn)) ’

where J, is the conserved particle current, and the
symbol ¢* is defined by Takahashi and Umezawa'® to
mean that all surface terms appearing in the reduction
of the S matrix are to be discarded. It should be em-
phasized that no formal proof that this is true exists, but
rather that it seems to be reasonable. Indeed Weinberg!0
accepts this point of view in his theory of interacting
fields. The authors therefore believe that if, after re-
ducing the .S matrix, Eq. (3.11) applies, then there
ought to be a straightforward way of arriving at
Feynman rules without having to bother with a stagger-
ing number of unphysical terms.

(3.11)

IV. REDUCTION OF S MATRIX TO
FEYNMAN DIAGRAMS

A perturbative expansion for the .S matrix can be
derived directly from the Heisenberg representation by
means of equations given by Yang and Feldman*
without having to consider an interaction Hamiltonian.
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The problem of surface terms is circumvented by work-
ing with Green-function solutions in the Heisenberg
representation, so that manifest covariance is always
maintained. It is found that the second-order scattering
processes are consistent with the construction of the
S matrix by the ®* method, Eq. (3.11). The proof that
to all orders Feynman rules can be used to write down
the S matrix relies heavily on the similarity between
the equations of motion for scalar and vector
electrodynamics.

The Yang-Feldman equations? for the vector electro-
dynamics described by Egs. (2.24) and (2.25) are

$) =Vimon ()
+ f d3(eAu(3) (G aE—3)TuuprGI()

—[p()Gr,alc—y) W)}
—e’Gr,a(x—y)Tapda(y) AW},
Au(x) = 4, imoub(x)

(4.1a)

+ / dy DP A ()LD (5) (pa—e A Ty (3)
—e(pated JIOTb ()], (@1D)

where Gg,a(x—7y) is the retarded (advanced) Green
function for the spin-1 field [see Eq. (2.11)] and D®:4,,
is a retarded (advanced) Green function for the photon
field

DR.A () =08,AR,4(x;0). (4.2)

The operators in,out(®) and A,meut(x) are free-field
operators and represent the asymptotic behavior of the
Heisenberg fields. The commutation relations satisfied
by the free-field operators are

[\bin,out(x)ﬂ;in,out(y) ]——‘_‘iG(x_y) ) (4.3&)
[A “in ,out(x) ,A yin,out(y) ]_
=iDy(x—y) =18,A(x—y;0). (4.3b)

All other commutators are zero. Furthermore the

operators Yin(x) and You(x), 4,(x) and A,(x) are

related by a unitary transformation S:
‘//out = Sf\l/ins )
A“outstAMinS'

(4.4a)
(4.4b)

Yang and Feldman* have shown that the transforma-
tion .S is identical to Dyson’s S matrix, Eq. (3.1), for
cases in which the interaction Hamiltonian in a free-
field representation has a finite number of terms. This
leads them to the following conclusion. If one has two
sets of field equations which have the same form, then
their Green-function solutions have the same form, and
hence the S matrix to any order in the coupling constant
for the sets must have the same form. In other words, if
it is known that certain Feynman rules apply for one
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set, then it follows that Feynman rules of the same form
apply to the other set. This argument circumvents the
necessity of dealing with surface terms because, if one
solved the Yang-Feldman equations for S, where .S is
that transformation relating in-operators and out-
operators, covariance would always be maintained and
surface terms would never appear.

Now the equations of motion for scalar electro-
dynamics are

[(Pu_eAu) (Pu_eAu)+m2]€9(x) =0, 4.5)
8,0,4 (%) = —e¢" (pu—ed,) ote(puted,) oo, (4.6)

Feynman rules for scalar electrodynamics have been
derived by Rohrlich.!® Then since Egs. (4.5) and (4.6)
and the equations for vector electrodynamics (2.24) and
(2.25) have the same form, by Yang and Feldman’s
argument it would seem reasonable that rules of the
same form as Rohrlich’s rules for scalar electrodynamics
would apply to vector electrodynamics.

However, Yang and Feldman only discussed cases
where the interaction Hamiltonian contained a finite
number of terms and never explicitly showed that
Feynman rules could be derived from their equations.
Their argument is on the same level as that of Takahashi
and Umezawa!®; namely, that for theories where the
interaction Hamiltonian has a finite number of terms,
surface terms never appear in the final result and Eq.
(3.11) applies. Thus it seems reasonable that this should
be the case for all theories.

It was decided that the problem could be settled if
Feynman rules could be derived directly from Eqs. (4.1)
and (4.4). Before the derivation is begun, however, the
notation will be simplified. Let /7, be defined by

YO F () =9(0) Tupip (%) — Lo (0) T () . (4.7)

Whenever F, appears it operates only on adjacent
functions. The coordinate dependence of A ,(x) will be
suppressed whenever it is obvious from the context of
the equations what the dependence should be. Hence,
for example, Eq. (4.1) would be written

Y(%) =¢in,ous+ /dx{eA wGrA(—2)Fup(x1)

—EZGR,A(QC -—x1)A aA ﬁraﬂ[/({m)] . (4-8)

A method for finding S from the Yang-Feldman
equations has been suggested by Rayski.? Note that an
equivalent way of writing Eq. (4.8) is

&) =y O @)+ / ds oA G — ) F i)

- e%?(x - xl) I‘a,gA oA gll/(xl):l (4 .9a)

19 . Rohrlich, Phys. Rev. 80, 666 (1950).
0 J. Rayski, Phil. Mag. 42, 1289 (1951).
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and

Yout—¥in= _/dxll:eAmG(x_xl)Fm‘/’(xl)

—e2G(x—x1)Tapdadpb(x1)], (4.9b)
YO @) =3[ Yin (%) +our(x) ]

G(x) =3[Gr(x)+Ga(x)].

Parallel equations can be written for A ,(x):

where

and

A1) = A4,0(0) + / 0D [ () b ()

—2e%4 a‘;(xl) I‘vxa‘l/(xl)] , (4.10a)
4,004 () = A, () = — f desD [ ) P (1)
—2e?A P (x)Tyap (1) ].  (4.10b)

Rayski?® showed that Egs. (4.4), (4.9b), and (4.10b)
can be used to give

YO (x),S]-=— —;— / dwi[eA G —x1) Fu(%1)

- eZG(x —xl) Pa,gA oA p\&(ﬁh),S].‘_ (41 1)
and

1
[A,0),5] =~ f Gs[ Dy — )b (1) Py (1)

—2e%4 alz(xl) I‘alll'l’(xl)]’s:h .

Equations (4.11) and (4.12) can be solved by expanding
S in a power series in the coupling constant and using
Eqgs. (4.9a) and (4.10a) to expand the Heisenberg fields
in terms of the free fields. However an alteration of the
form of Egs. (4.9)—(4.12) is needed to carry this program

4.12)

n—k—j—1

WO@),S]=—32 2

7=0 k=0  r=0

PO

7=0 k=0 m=0

+
and

[4,@(x),Sn]-=—3%

7=0 k=0 r=0

n—k—j—1

n—j—k—m—2

+2 X X X

7=0 k=0 m=0 r=0

dxl[DMm(x_xl)%[[Au (m),il; ) (xl) | 1 @ (xl) ]+>Sr]+] .
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through consistently. Although the order of the oper-
ators is not important in these equations [4,(x) and
Y(¥) commute at the same point], nevertheless in
expanding these equations in terms of free fields,
inaividual terms in the expansion of A4,(x) will not
commute with those in the expansion for y(x). Thus,
for example, it is necessary to write

AuGa—x)Fup(w1) =3[ Ay, Gla—x1)Fup (1) 4.

Now let S and the fields 4, and ¢ be expanded in
power series in the coupling constant, substituted into
Egs. (4.11) and (4.12), and the coefficients of e” equated:

S=14+> e»S,, (4.13a)
Y(E)=2 ey ™ (x), (4.13b)
n=0
and
Au(x)=2" e"4,™(x). (4.13c)
n=0

The coefficients of ¢ in Egs. (4.11) and (4.12) are
O @),

= —fdxlA,.<‘”G(x—x1)14‘,,1\//(°)(x1), (4.14a)
[4.9),5:1]-
=— / do1D s (=2 )P O (2) F oy @ (1) . (4.14b)

Since ¢ and A4, (x) satisfy free-field commutation
relations, it follows from Eqs. (4.14) that

Sl=i/dx Ay OYO(x)Fp @ (). (4.15)

For n>2, S, can be found from

dus[[4u®, Gx—x1)Fup @ (21) 11,85 1+

n—k—j—m—2

2 dxs[[3[Aa®,459 T ™ (x1) 14,5 ]+  (4.16a)

r=(0

doi[ D (=2l ® (@) F o @ (1), 1 ¢

(4.16b)

To solve Egs. (4.16) for .Sy, it is necessary to know all of the S,, for »<%. However, since .S;, 4,%*, and ¢V can be
written in terms of 4, and ¢ ©, it follows that .S, will be a function of free fields alone.
Next consider Ss. Since it will be expressed entirely in terms of free fields, the superscript (0) will be dropped
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with the understanding that all fields seen henceforth will be free fields. Thus S, will be found from

1 1
EENE f 526 5= ) oAb ()~ / / Gtsdeof [ o — ) () P ), G e) ()]

'H:AMl:Au2]+G(x_'xl)Fmé(xl’—x2)Fn2‘lb(x2)+i[AulG(x—'xl)Fm‘//(xl); Auz‘p(x2)Fﬂ2¢(x2)]+} , (417)

and a similar expression for [4,,Ss]_. The solution for .S, is

1 _
So= "“i/dxlAaABEZ(xl)Paﬁ‘p(xl)'l" 5 //dxldxz{[iDuluz(xl—xz)—AmAua]

X‘I—’(xl)Fm‘//(xl)‘p(x?)kab(%)+i|:A wyd u2]+‘;(x1)FmG(x1"x2)Fu2‘p(x2)} . (418)

The final step is to expand the products of field
operators in terms of normal-ordered products. This is
facilitated by making use of a theorem given by
Dyson.?

A contraction symbol, denoted by superior heavy
dots, will be defined by

A*(%)B*(x) =(0| A(x)B(x) | 0), (4.19)

i.e., the vacuum expectation of the two operators. The
normal-ordered product of operators AB---YZ will be
denoted :AB---YZ:, i.e., a colon on either side of the
product. The decomposition theorem of Dyson states
that

AB---XYZ=:AB---XYZ:
+:4*B*---XYZ:4:4*B---X'YZ:
o (4B (XYY Zi A, (4.20)
where the sum on the right-hand side of Eq. (4.20)

includes all possible sets of contractions between pairs
of factors. It is then convenient to define

Y (%) (x2) =1GH(x1—12) , (4.21a)
P ()Y (v2) = —iG~ (x1—x2) (4.21b)
and
Ay (1) Ay (02) = 0Dy (X1 —202)
= -—'iD‘,.,,,z(xg—xl) 5 (421C)

where the superscript 4+ (—) indicates the positive-
(negative-)frequency part of the homogeneous Green
function. Dyson’s theorem will now be applied to Eq.
(4.18). As usual S; will consist of a sum of different
types of scattering processes. Emphasis will be placed
on the connected diagrams.

1. Meson-Meson Scattering

1 _
Sy MM = "2‘ //dxldx2[iDn1nz(xl—x2) —A A ]

X (1) Fu (1) (22) F st (02 -
2 F, J. Dyson, Phys. Rev. 82, 428 (1951).

(4.22)

In the standard notation,

DDy =3(D* =D pys) (4.23)
and it is well known that
DFsz’_‘D(l)nwz_Zianz ’ (4-24)

where DT, ,, is the Feynman photon Green function.®
Thus Eq. (4.22) becomes

S, MM 1// Dquz(xl—xz)
* 2 2

X () F ()P (ac2) Fub(x2): . (4.25)

This expression corresponds exactly to what would be
obtained from the ®* method, Eq. (3.11), and to using
Feynman rules of the same form as those for scalar
electrodynamics.?

2. Photon-Meson Scattering, Pair Production,
Pair Annihilation

1
SpPM = —-ifdxlAaAal;(xl)Faﬂ‘//(xl)‘i‘ 5 //dxldx?

X {+2i4 A (2)F G (21— 29) F o (x2)
+4 u1A ,_;2[1;(xl)F“t,V(xl)!p'(xl)szlﬁ(x‘z)
FP (@) P ()P (00) F ™ (x2) T} . (4.26)

Using Egs. (4.21) and the symmetry properties of the
integrand, this can be written

SoPM=—j / dx14 oA P (%1) Tap (¥1) — f / dwrdees

X A Al (61 F 3G r(ts—x2) Fugp(w2) 1, (4.27)
where
G (%) =GO (x) — 2iG (x)
,'—6 vV, V_2M2 A
_ (Y —0uw)pup [AD(x)—25A(x) ]
43
y—Ou) pupy—2M?
_ )Pub An(x). (4.28)
4M?
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Here Gr(x) is interpreted as the propagator for the
massive spin-1 field. It agrees with what Takahashi and
Umezawa!® say should be the form for propagators, but
differs from Weinberg’s!® propagator by the term

— (1/4M?)(p*+M?) Ap (x) =1id(x) /2.

So far the derivations have been straightforward and
there has been nothing too surprising. It will be seen
however, that the self-energy parts of .S introduce new
difficulties.??

3. Self-Energy of the Vector Meson

1
SzVSE= 5//dx1dx2

X:{i[4 ul;Au2]+‘;(x1)Fmé(x1‘"xz)Fuz‘p(xZ)
+ [iD—Mlm(xl - xﬁ) —A ';uA 'm]
X [‘;(xl)pul‘/’ .(xl)KZ '(x2)Fu2¢(x2)

+P (@) Fup ()P (o) Py (w2) T} . (4.29)
One would like to express Eq. (4.29) in terms of the
Feynman Green functions Dy and Gz. To this end, the
last two terms in Eq. (4.29) can be rewritten using the
following relations for products of Green functions:

DtGt4+D-G~=3(DG—DWVGW) (4.30a)
and

DG=4D@—2(DsGa+D4Gr).  (4.30b)

The final result is
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1
SZVSE=-—;//dxldngF,Lm(xl—xz)
B 1
X PG ia =) (): = ~ / / dradn

X [DR,ng(xl — xz)\Z(xOFMGA (xl - x2)Fu2‘//(x2)
+D4 (1 — 22 )P (20 F G r(21— %) F o (x2) ]2 . (4.31)

The first term in Eq. (4.31) is the usual type of expres-
sion for the self-energy. The second term, which would
vanish automatically if the derivation were for scalar
electrodynamics, appears to be a new type of self-energy
term. This type of term is analogous to a term found by
Lee and Yang® in their discussion of vector electro-
dynamics in the canonical formalism. They found that
in the reduction of the S matrix, the cancellation
between surface terms coming from the interaction
Hamiltonian and those coming from the time-ordered
products of operators was not complete.

Note that in the second term in Eq. (4.31) the
integrands vanish everywhere except at the origin,
where they are singular. On the other hand, the inte-
grand of the first term in Eq. (4.31) is also singular at
the origin, which simply means that the self-energy is
divergent. Divergent self-energies are common to S
matrix theory and can be dealt with in a standard way
known as the Pauli-Villars regularization.?® Auxiliary
masses are introduced into the integrals in a special way
which makes the integrals finite. The degree of diver-
gence of an integral is recovered by letting the auxiliary
masses tend to zero at the end of the calculation. We
now consider the second term in Eq. (4.31) when it is
regularized.

Let [p1) and |ps) be states of one vector meson of
four-momenta p; and ps,, respectively:

<P1] //dxldeDRmuz(xl_x2):‘p(xl)FulGA(xl_x2)Fu2¢(x2)5 ]P2> .

_ S(pr—po)u(py)

, (4.32)

(2m)324

where kQk=~F (v —0)k,. The regularized integral’ of
Eq. (4.32) is defined by

kQk—2M2

W= [ % Tya(ptk) (- R)sT
i / AT A

Xé el (p—k)2+mi—ie(po—ko) T, (4.33)

22 The bubble diagrams which result from contracting two opera-
_tors with the same argument are omitted as they could be taken
care of initially by normal-ordering the currents in Eqgs. (2.24)
and (2.25).

% W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).

/ @*%k Tyua(p+k)a[ k% —2M*](p+k)sTsu0(p2)
[(p—E)2—ie(po—ko) AM2[E2+M 2+ ieko]

with the conditions

Z Ci=07

Making explicit use of these conditions and then writing
the denominator of the integrand in Eq. (4.33) as a
function of k2 only,?* it can be shown that the integrand
is analytic in the upper &, plane. Then since the integral
along the &, axis can be closed in the upper half ko plane,
the integral vanishes by the Cauchy theorem,

Wgr=0.

Z Cq;Mi2=0, Z CiMi4=0.

(4.34)

%S, Schweber, Ref. 16, Chap. 15, p. 520.
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In a similar manner, the term with
DA (xl —_ xg)GR(xl _— xz)

will vanish. The effect of the Pauli-Villars regularization
method is to remove singularities at the origin. Since in
the integrand in Eq. (4.31) the only nonvanishing part
is for xy=ux,, after removal of this singularity by
regularization the integral is expected to vanish.

The point to make is that if one wished to display the
order of divergence and extract any finite parts from
Eq. (4.31), the usual procedure of regularizing such an
expression first and then letting the auxiliary masses
tend to zero after doing the integration would be
followed. But as has been shown, the second term in
Eq. (4.31) vanishes identically after regularization;
hence it is concluded that such terms make no contribu-
tion to the self-energy.

It is also straightforward to show that the photon
self-energy consists of an integral with Feynman Green
functions Gr(x) plus terms with integrals over products
of Ga(x) and Gg(x). Again, if only regularized expres-
sions are used in calculating radiative corrections, the
photon self-energy is calculated only from an integral
with Feynman Green functions.

It is now clear why the ®* method will apply to this
vector electrodynamics to all orders. When .S, is found
from the Yang-Feldman equations, it can be expanded
in terms of normal-ordered products. Each type of
scattering terms will be given by an integral whose
integrand is a functional of the fields and various Green
functions. These Green functions can be manipulated
into a form such that the integral consists of a Feynman
amplitude part plus some other terms. Since the equa-
tions of motion for scalar electrodynamics, Eqgs. (4.5)
and (4.6), have the same form as for vector electro-
dynamics, Egs. (2.24) and (2.25), S, will have the same
form as for vector electrodynamics. But Feynman rules
do apply to scalar electrodynamics!®; hence any extra
terms appearing in the derivation of S, for scalar
electrodynamics using the Yang-Feldman equations
must be products of advanced and retarded Green
functions since it is only these terms which vanish
identically. For vector electrodynamics, integrands
with products of advanced and retarded Green functions
vanish everywhere except at the origin, where they are
singular. As was indicated for the second-order photon
and vector-meson self-energies, it is the regularized
expressions which are meaningful in doing calculations.
Since the process of regularization removes the singu-
larity at the origin, the regularized integrals of products
of advanced and retarded Green functions vanish.
Hence the S matrix for vector electrodynamics consists
entirely of Feynman-graph amplitudes.
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V. RENORMALIZABILITY OF ELECTRO-
DYNAMICS OF ARBITRARY-SPIN
PARTICLES

One could in principle follow Sec. IV to derive the
S matrix for the electrodynamics of arbitrary-spin
particles starting from Egs. (2.22) and (2.23). It is clear
from the structure of these equations that in addition
to.one-photon and two-photon vertices there can be
3,4, ..., 2s-photon vertices for the processes involving
integral-spin and 3, 4, ..., (2s+1)-photon vertices for
the processes involving half-integral spin. By the argu-
ments of Sec. IV, Feynman rules of the same form as
scalar electrodynamics must apply to the one-photon
and two-photon vertices for the electrodynamics of
particles with arbitrary spin. For the higher-order
photon vertices, we can at this time only assume that
there are no additional difficulties.

The role of the propagator is played by

Gr@(x) =i G (x) —G-(x) ]
—i[Ga®(*)+Gr™ (x)].
Note that for large & [see Egs. (2.11) and (2.20)]
Gr®k)~1/(R2)*1,  s=1,2,... (5.2a)
~1/ (k%) 12, (5.2b)

A discussion of the renormalizability of Egs. (2.22)
and (2.23) can be made by using Dyson’s method of
power counting,?% to find the ‘“dimension” of an
integral for an arbitrary graph. For the integral-spin
case, an m-photon vertex will have a (2s+1—m)-order-
derivative coupling. Let B stand for a boson (of spin
s) line, F stand for a fermion (of spin s) line, P stand
for a photon line, and C stand for the number of vertices
in a diagram. The dimension D of an integral is defined
as the difference between the number of powers of
momenta in the numerator and the denominator. The
contributions to D are as follows.

(5.1)

=13
S=%,3,....

(i) There is a 6 function in momentum space from
each coordinate space integral; however, one 6 function
expresses over-all conservation of four-momentum.
Thus the contribution to D is —4(C—1).

(ii) There is a momentum-space integral for each
internal line. The contribution to D is 4(B;+P;) for
boson electrodynamics and 4(F;®+P;) for fermion
electrodynamics. (The subscript ¢ denotes internal
lines.)

(ili) The contribution from the photon propagator is
—2P;, the contribution from the massive boson prop-
agator is —2(s—1)B;®, and the contribution from the
massive fermion propagator is — (2s41)F;(®.

(iv) The derivative coupling from an m-photon
vertex contributes (2s—m)C for boson electrodynamics
and (2s+1—m)C for fermion electrodynamics. Hence

2 F. J. Dyson, Phys. Rev. 75, 1736 (1949).
26 S. Schweber, Ref. 16, Chap 16, Sec. a.
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the dimension of an integrand for a diagram with
m photon vertices is

D (m) = (25 —m—4)C+4+(6—25)B;®+2P;,

s=1,2,... (5.3a)
=(25—3—m)C+4+@—25)F;®+2P;,
s=%%,.... (5.3b)

It is convenient to express Egs. (5.3) in terms of ex-
ternal lines. Each vertex has two massive boson or
fermion line endings; thus

2C=2B;"+B,®, (5.4a)

s=1,2, ...
or
2C=2F1;(8)+Fe(s), (54b)

(The subscript e denotes external lines.) An m-photon
vertex means that

=13
S=gy 5y n.s

mC=2P;+P,. (5.4¢)

Thus in terms of external lines
D®=442C—3—s5)B,®—P,, s=1,2,3,... (5.5a)
=44 (s—3)F,®—P,, s=5% ... (5.5b)

independent of # in each case. Consider first the
integral-spin case (5.5a). The dependence of D® on C
implies that there are an infinite number of primitive
divergences; hence all of the integral-spin equations
(2.1) are nonrenormalizable in the presence of minimal
electromagnetic coupling. For the half-integral-spin
case, D is not dependent on the number of vertices in
a diagram. For s=1%, Eq. (5.5b) is D/ =4—1F ,—P,,
which implies that there are a finite number of primative
divergences. Thus the spin-} electrodynamics described
by the equations

[:m'Y#(Pu_eA wi(pu—ed ) (pu—ed,) W(x)=0, (5.6a)
8,0,4 u(x) =iemdy W
— ¥ (pu—eA W —F(puted W] (5.6b)

is renormalizable. Hammer and Moroi¥ have studied
Egs. (5.6) in some detail.

For s>$%, however, there are an infinite number of
primitive divergences, since given any number of ex-
ternal fermion lines F,, a number of external photon
lines P, can be chosen to make D®>0. Thus for s>$,
Eqgs. (2.22b) and (2.23) are nonrenormalizable.

VI. DISCUSSION AND CONCLUSIONS

There are some distinct advantages to the theory
presented here both from a formal and practical stand-
point. Since there is a single wave equation with no
auxiliary conditions, each component of the field is
treated on an equal footing throughout derivations and
calculations. The Fock-space operators create and

?7 C. L. Hammer and D. S. Moroi, USAEC Report No. IS-2085,
1968 (unpublished).
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destroy particles or antiparticles in definite spin or
helicity states. The calculations are therefore as
straightforward as in the spin-} case. All of the ma-
chinery needed for any calculation is written down in
Appendices A and B.

This should be contrasted with the canonical forma-
lism and the formalism in which one must always take
the dependent components of the field into account.
Note that in the canonical formalism the Fock-space
operators create and destroy particles or antiparticles
in transverse or longitudinal states.

The conventional method of deriving the S matrix
from Dyson’s equation was abandonded to avoid the
problems of surfaces terms. Although the use of Yang-
Feldman equations to find the S matrix is tedious,
nevertheless this has the advantage of maintaining
manifest covariance throughout the derivation. Once
one is certain of the Feynman rules, the ®* method can
be used with confidence.

The extra terms in the radiative corrections found by
Lee and Yang® in the canonical formalism appear in this
theory as integrals over products of advanced and
retarded Green functions. If one takes the point of view
that it is only regularized expressions which are mean-
ingful in doing calculations, then none of the extra
terms contribute.

The various formalisms have different predictions
about the exact behavior of vector mesons in an
electromagnetic field. However, since all known vector
mesons interact strongly, one cannot experimentally
test for the correct theory. But if the photon field is
replaced by the nucleon current #Wyy¥w, a calculation
can be done of the scattering of a vector meson by an
external nucleon field. There may be a possibility of dis-
tinguishing among the different vector-meson theories
if such a calculation is incorporated into a calculation
of mp scattering, where in an intermediate state one
expects pp scattering to occur. This will be the subject
of future investigations.

As is the case for the other formalisms, this theory is
nonrenormalizable. A way of obtaining a renormalizable
theory would be to modify the advanced and retarded
Green functions and the free-field commutation rela-
tions such that the massive spin-1 propagator in
momentum space had a 1/k2 behavior in the asymptotic
region. This would be analogous to the &-limiting
formalism of Lee and Yang. One would effectively be
replacing a theory with a single cutoff parameter. Then,
because the equations for arbitrary spin given by
Hammer et al.'? all have the same general structure,
after learning what sort of modifications lead to a
renormalizable theory for spin 1, the same techniques
can be applied to arbitrary-spin theories.
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APPENDIX A: COVARIANTLY DEFINED
SPIN-1 MATRICES

The 6X6 matrices v,, have been studied in detail by
Sankaranarayanan and Good.?® A complete set of
covariantly defined 6X6 matrices is the unit matrix

71=1, (Ala)
and the traceless matrices
Y2=7s5, (A1b)
V3. =Y, (Alc)
Y 4, =YY v » (A1d)
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Y5, = i(’Yn)\'Yv)\ —'YV)\'Y;A)\) y (A1e)
Y6,up v = [7#">7P0:|++26FV6PV - ['va:7u0]+ —268p0uq- (Alf)

The product of two v, matrices can be expanded in
terms of the complete set (A1), as?
YuwYap= _%auraaﬁ'f'%(&uaavﬂ‘*'auﬂava)
_ﬁi('yﬁ,uaavﬂ'i_'y5,va6u3+75,u/36va+75,w35ua)
+%(76.Ma,vﬂ+76,va,uﬂ)' (AZ)

Traces of products of any number of the ¥ matrices
[Egs. (A1)] depend only on traces of products with 7,
and 5. The trace of two v,, matrices follows from Eq.
(A2) as

Tr(7uv'Yaﬂ) =4(5ua5v3+6m§6va) "zauvaaﬁ .

The trace of four +,, matrices is found to be

(A3)

Tr(Y w asY pe¥rr) =688a83 5000+ Su,ap, oo n e[ (7,00,8M,0 7) 4 (B, 1p,pN 0 7) + (o, uct,w\ B 7)
+(\7ua,p,80) — (uv,08,0\,0 7) — (ur \7,0p,80) — (o7 7,12, 8)
—(aB,p0 s, 7v) — (uv,po,aN,B7) — (B 7, pp,v0) +4(ua,vB,pN0 7)
+4(uNp 7,08,80) +4(up,pa,aNB7) — 2 (uB,ct,ov \v) — 2 (uo,ar,p8 W) ],  (A4)

where, for example,

(MV,(IB,[))\,O’T) =5Mvaaﬂ5p)\6u'r (ASa)

and

S;w,aﬁ.pu’,)\r(l‘w)aﬁrp)\;o”r)
=46uv6aﬁ(6p)\6ar+5p76a)\) ’ (ASb)

i.e., the operator Su,«s,,02 Means to symmetrize
independently with respect to the pairs w, o, po, and
A7. As in the Dirac case,

Tr(odd number of v,,’s) =0. (A6)

Traces of higher numbers of ¥ matrices can be re-
duced to traces of four vy, matrices by the following
theorem.

If G and H each consist of a product of an odd number
of ¥ matrices, then, as shown below,

TrGH =% Tr(Gyw) TrlywH)

+% TY(G‘Y5'YW) Tr(’Yuv‘YES[]) . (A7)
Thus, for example,
Tr(6y’s) =% Tr(3y’syw) Tr(ywdy’s)
+3 Tr3y’sysvw) Trlywys3y’s). (A8)

The first term on the right-hand side of Eq. (A8) can be
calculated using Eq. (A4). The second term can be
calculated using

Tr(’Y57W’Y aﬁTpGVRr)

=Suv,o:B,pﬂ,)\reuap)\(avﬁaar'*'6v76vﬁ - 61!0537) ’ (Ag)

28 A. Sankaranarayanan and R. H. Good, Jr., Nuovo Cimento
36, 1303 (1965).
BR.H. Good, Jr. (private communication).

where €,q,) is the permutation symbol with four indices.
The proof of the theorem proceeds as follows.

If G and H each consist of a product of an odd number
of ¥ matrices, then in a representation in which v, is
off-diagonal, G and H must be off-diagonal. Of the 36
linearly independent 6X6 matrices, Egs. (A3), only
Yw and vy, are off-diagonal. Hence

G= Gl“”'YMv+G2W'YMV'y 5 (Al()a)
H=H1"Yu+Ho"yuys, (AlOb)

where G1#, Go*, H*, and H,* are expansion coeffi-
cients. One notes then that Tr(y.7Y.sys) =0, so that,
with the help of Eq. (A8),

Tr(Gyw) TrlywH)+Tr(Gysyw) TrlywysH)
= SGI‘WH laﬁ Tr’Yﬂv’Yaﬂ - 8G2FVH2aﬁ Tr’Yw’Y af
=8 Tr[(G1"vuw+G2*y uys)
X (Hlaﬁ'yaﬂ—l_H?aﬂ'Yaﬂ'YE)]: 8 TI’(GH) .
APPENDIX B: FEYNMAN RULES FOR
VECTOR ELECTRODYNAMICS

The Feynman rules for this vector electrodynamics
are identical in form to Rohrlich’s rules for scalar
electrodynamics. The rules can be derived from an
effective interaction Hamiltonian

3pr () = —ed ¥ (x)F, ¥ (x)+e24,4,% ()T, ¥(x) (B1)

is one uses

:ﬂ (o /dxl /dxn

X O*(3Crr (1) - -

‘ JCEF/(xn)) ) (BZ)
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i.e., the ®* method of Takahashi and Umezawa. The
results can be extended to vector mesons with arbitrary
magnetic dipole and electric quadrupole moments by
using Eqs. (2.27) and (2.28). The effective interaction
Hamiltonian is

3rr (x) = —ed V(%) F ¥ (x)+e24 , 4,9 (x) T ¥ (x)
+15eNV (%) 75,05¥ (€) F g
eq OF,
12m? 0%

—(ppteds) T () Ye,u,as¥ (x)].

+ [¥(®)v6,ur,ap(ps—eAp) ¥ (x)

(B3)

The momentum-space Feynman rules for this inter-
action Hamiltonian are summarized in Fig. 1. Anal-
ogously to spin-3 electrodynamics, for closed meson
loops the trace of the 6X6 matrix expression should be
taken. Comparable rules for vector electrodynamics in
the canonical formalism have been given by Aronson.”

The plane-wave expansions for the vector-meson

ELEMENT GRAPH VALUE

INTERNAL PHOTON LINE iy D (K) =-i8p/-i€)

P o )=-i[EMz-p“py(nfu-SEu)l
PP MR (p2 M2 —ie)

o
k . .
>—<’ a -el,p(p+p)pg —% Ys,ap kg
()

eq '
‘eneTeaBur Kku PPy

INTERNAL MESON LINE

ONE-PHOTON VERTEX

0 K
TWO-PHOTON VERTEX ><k e2lyg
b 2 "
P a *;_MQ_Z (k# kyehy ky ) Y6, e, vB

Fr1c. 1. Feynman rules for vector electrodynamics.
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field are
3 dp
V(@)=2 | ————[cs(p)us(pei*”
=1 (2m)3122p,
+df(p)os(p)e=72], (Bda)
T(x)= SZ=:1 m[@*(ﬁ)ﬁs(p)e‘“’” |
+ds(p)is(pler=], (B4b)

po=(p2+M2)'2 where u,(p) and v,(p) are six-com-
ponent column matrices for positive- and negative-
energy vector mesons with polarization s. The u.(p)
and z,(p) have orthogonality and completeness relations
of the form

—(i/2p0) ja(ta(R)e™ 7 105 (D)€7*) = b5

or
- (7/P0)7Zs<P) P4vpv%s'(p) = 5ss' ) (BSa)
2= us(p)us(p) =22 v:(P)7s(P)
=(4M*) " (M*—vappaps). (BSb)
An explicit form for the #’s and v’s is
u;(p) =v,(p) = QM) (M*— appaps)
X{p*—y4ivsipip [ 1—(M/E) J}us(0), (B6)
where
L/os
ué(o) = _< >a
2\ps
with ¢, the solution of
s'p
Qs =S5 Ps.
Il
The matrices s are the 3X3 spin-1 matrices:
Ceo(p) ' (@ J-=[d:(@),d (@) ]-=2pobsid(p—q), (B7a)
Leo@) (@) J-=[ds(p),di(@) 1-=0. (B7b)



