
PHYSICAI RETIE%' 0 VOLUME 3, NUMBER $0 15 MAY $97i

Dispersion of the Veneziano Representation in Trajectory Parameters,
Regge Cuts, and Unitarity Corrections

KAsHYAP V. VASAVADA

(Received 1 October 1970)

It is suggested that the high-energy unitarity condition and Regge cuts can be built into the Veneziano

model by dispersing the representation in trajectory parameters. In particular, a model of the Amati-Fubini-
Stanghellini type and the optical model are considered in order to obtain the spectral functions of the integral
representations.

to generate a series which contains automatically some
of the Regge-cut contributions. ~ %e use this method to
determine the spectral function in Sec. III.

For simplicity we have considered the case of x+x
scattering. The method can be extended to the other
cases. Also, initially we ignore the Pomeranchuk tra-
jectory and consider it only in the latter part. Results
are discussed in Sec. IV and concluding remarks are
made.

I. INTRODUCTIOÃ

Y now it has become well known that the Veneziano

representation, ' which incorporates resonance pole
structure, crossing symmetry, and Regge behavior in

an elegant manner, has several shortcomings which are
related. It violates unitarity, the resonances have

vanishing total widths, and the model does not have

Regge cuts, ' which are known to be present on both
theoretical and experimental grounds. It also violates

the Cerulus-Martin bound' at high energies and large

momentum transfers.
Several attempts have been made to remove these

difhculties. 4 Some of these deal with the calculations of

loop diagrams with Veneziano Born terms, and others

use E-matrix or E/D methods. The former lead to
hitherto unresolved divergence difficulties, whereas the

latter destroy to some extent the crossing symmetry

which is the main elegant feature of the Veneziano

model. On the other hand, it has been proposed that
dispersing the representation in the trajectory param-

eters may be useful in this context. ' The spectral func-

tions in these treatments, however, have been left

arbitrary. In the present work we start with a similar

dispersed representation and discuss various procedures

to determine the spectral functions.

In Sec. II, we discuss a model of the Amati-Fubini-

Stanghellini (AFS) type which generates the Regge
cuts in a well-known way. The optical model, with

eikonal description of scattering, has been also quite

successful in explaining the large-momentum-transfer

data. ' Several authors have used the idea of iterating a
single-Regge-pole contribution via the eikonal formula

II. AFS-TYPE MODEL

Consider m+x scattering for which the one-term
Veneziano amplitude is given by

Here a(s) =a,+a's is the exchange-degenerate pf-
trajectory. In practice, of course, it may be necessary
to consider several secondary terms. ' Now we write

a, (s) =ca'(ap —1)+1+s/c.
The reason for this particular choice of a, (s) will be
clear later. The generalization of (1) will be given by

&(1- .())&(1- .(t))
dc p(c,s,t), (3)

F(1—a,(s) —a,(t))
F(s,t) =—

where p(c,s,t) is some spectral function to be deter-
mined. For maintaining crossing symmetry, p(c,s, t)
should be symmetric in s and t. In our approximation
the dependence of p(c, s,t) on s and t will turn out to be
quite weak.

%e wish to impose the unitarity constraints on

p(c,s,t). To simplify the treatment we approximate

p(c,s, t) by a sum of a series of 8 functions:

j G. Veneziano, Nuovo Cimento 5'7A, 190 (1968).
2 S. Mandelstam, Nuovo Cimento 30, 1148 (1963); D. Amati,

S. Fubini, and A. Stanghellini, Phys. Letters 1, 29 (1962);V. N.
Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martirosyan,
Phys. Rev. 139, B184 (1965).

g F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).
4 For a list of numerous articles in this field see, e.g., a review

article by D. Sivers and J. Yellin, LRL Report No. UCRL-19418
(unpublished).

5 A Martin, Phys. Letters 298, 431 (1969); K. Huang, Phys.
Rev. Letters 23, 900 (1969);N. F. Bali, D. D. Coon, and J. W.
Dash, ibid. 23, 903 (1969).

'R. J. Glauber, in Lectures in Theoretical Physics, edited
%. E. Britten et al. (Interscience, New York, 1959), Vol
M. M. Islam, in Lectures in Theoretical Physics, edited by A

Barut and %. E. Britten (Gordon and Breach, New York, 19
Vol. XB.

p(c,s t) = Z p-(s, t)~(c—c.).
n= 1

(4)
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The integral (3) now becomes the sum where (2 2(0) = (2.„((0),etc. On integration this gives

p and c are arbitrary at this point. Now the unitarity
condition on the amplitude F(s,t) is given by So ln(S/So)

PL' ( (o)- -(0))5r(1- -(o))
327r2

S ) anl(0) f S an2(0)

Xr(1—.,(o)) —
~c.,i Ec„,

S ) anl (0)+an2 (0)—1+(I (cnl+cn2)'+ I 02x
&n(+&ne SO~

ImF(s, t) = dt'
642r2(gs)k

8(E)F(s,t') F*(s,t")
dt" +ImF(ne(antic 2

QE{t,t', t",s)
where

E(t,t', t",s) = t2 t"—t'—"+2—tt'+2tl" +2t't"
+tt't"/f02 (7) (2 (0) —ni(20 'nl+ 1

(6) Now we notice that, if we choose c„=n/n', the power
behavior of the term is precisely that given by the cut
due to the exchange of (nl+n2) p trajectories. This
occurs because

and t'(=-', (s—4ns ')'".
For large s, it can be seen that most of the contri-

bution to the integral comes from the region t'=t"=0.
Thus, as a good 6rst approximation we can neglect the
last term under the square root in E(t,t', t",s) and
evaluate all other factors except the powers of s occur-
ring inside the double integral at t'=t" =0. Then

The term x=1 gives the p-trajectory contribution. All
the higher terms are due to the various cuts. The
particular choice of (2,(s) in (2) was made with this
fact in mind. The eth term contains a product of all
the terms with nl, n2 such that n=ni+no. Then

(2 {t)=n(20 —n+1 +('2t /n.

E(t,t', t",s) = (u —t")(t"—f)), (g) Taking the imaginary part of (9), we have

The double integral can then be readily evaluated in
the high-energy limit.

For large s, {5)becomes

p (st) ( )a ( 1 a,
ImF(s, t) =2r p

n=l r((2,„(t))(SO) n

Now, within the spirit of the high-energy approxi-
mations made above, we can equate (6) and (12) near
t =0 and obtain the coeKcients p„. We 6nd, after some
rearrangement,

(t/dt PeIPn2dt
32K' s J

Xexp(( i2ra„,(0)+ii—ro(„,(0)5r(1 —n„,(0))
~~I(0)+~n2(0)+~'I.~I+~"j.~2

xra —~-.(0))I—
&S0

l(0) s y
2(o) 1Xj-

kc„, c„,)

xexpL —iir(2,„(t)5r(1—(((,„(t)), (9)

where so is the usual scale parameter. In the Veneziano
model, it is naturally chosen to be 1/0('

It should be noted that in deriving Eq. (9) we have
assumed, as usual, that the s —+ ~ limit is taken along
a wedge slightly oft the real s axis. (2 (s) is taken as a real
function. The effective trajectory will devdop an
imaginary part when we replace the 1) (c—c„)factor by a
Breit-signer form. As in the ordinary dispersion rela-
tions, the spectral function p„(s,t) will be real for real
s and t. We shaB return to these points later.

A typical term on the right-hand side of (6) is of the
form

p. (s,t) = g (—1)"cosir(n —2nl)(20
322ro ln(s/so) nl=l

ussI (0)-l
XI'{1—(2„,(0))r(1—(2. „,(0))—

~os-st I (o)—j

x r(~-(0))(n) "'"' 'p. p.—. {13)
S

Since we matched the coefFicients near t=0, ln(s/so)
can be readily replaced by lnL(s+t)/s05 which wiQ
maintain the crossing symmetry. This is consistent
since, if we had considered t-channel unitarity for large
t and s near zero, we would have found the factor
1/ln(t/so). Thus, only s or t dependence in p„comes
from the logarithmic factor. This factor, if strictly
interpreted, would give rise to logarithmic singularities
and nonpolynomial behavior of the Regge residues.
However, note that the 6rst term (pl) which represents
the contribution of a single Regge pole does not have
this factor. The Regge cuts are presumably related to
the continuum effects. Hence, nonpolynomial residues
are not unexpected. Logarithmic singularities may be
pushed into the unphysical sheet, if one wishes, by
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modifying this factor suitably such that the above
expression is reproduced asymptotically. %e shall
return to this question in Sec. IV.

Equation (13) determines all P„'s in terms of Pi which

is the coefFicient of a single Veneziano term. Defining

pn=
(n) "&P& 'I'(n„(0))

we find that (13) becomes

Leos~(tl 2Bi)np jPnyPn —nl
P„=X +-

~1=i sinil"Binp sinai(s —Bi)np
where

X=1/32 1nt (s+t)/spj.

(15)

This recursion relation is straightforward to solve term

by term, although it is quite complicated to get an
explicit solution.

Now if, instead of taking the full amplitude on the
right-hand side of the unitarity relation, we just sub-
stitute the imaginary parts, we get the relation

n—1

pn ~ ~ pnIpn —n] ~

n1=1
(16)

a= P X"p„.

This relation is much simpler than (15) and, in fact,
it is quite similar to the one obtained by Amati, Cini,
and Stanghellini. ' These authors discuss diffraction
scattering in the multiperipheral model by using the
unitarity relation

ImT, i = (T;„tT;„+T,it T,i), (17)

with the ansatz that the inelastic contribution T;„T;„
is given by the imaginary part of a single Regge-pole
term (Pomeranchuk term in their case). On neglecting
the real parts of the Pomeranchuk term in iteration,
they get the AFS cuts. ' Applying their method to our
case, we recognize that the recusion relation (16) would
arise when the second-degree equation

Xa' —a+Xpi ——0

is solved as a power series in X,

really use the more complicated recursion relation (15).
Except for this fact., our model is similar in spirit to
the model of Ref. 9 used within the context of the
Veneziano representation.

Thus, all the p 's are determined in terms of pq and
the unitarity is satisfied at high energies in the sense
of Ref. 9. This means that the single Veneziano term
(Impi ) becomes the overlap function containing all
the contributions of the inelastic states to the imaginary
part of the elastic amplitude in the unitarity relation.
Regge cuts, which are absent in the original Veneziano
representation but are known to be present on both
theoretical and experimental grounds, are automatically
introduced.

It is encouraging that the entire modified Veneziano
series can be built up by the application of the elastic
unitarity in the high-energy limit. There are no left-over
terms. Each succeeding term gives unitarity corrections
to the previous terms.

It should be noted that our "elastic unitary" term
itself contains many terms which would normally arise
from multiparticle states. The reason is that at each
vertex in the integral term, we have used a Veneziano-
type Regge term. More contact with the inelastic-
multiparticle unitarity can be made, when the
Pomeranchuk terms are included in the present
scheme.

Finally, we mention that, in principle, the approxi-
mations made here can be improved. For example, in
evaluating the integrals in (6) one can make Taylor
expansions of various terms around t' =t"=0 and
consider higher-order terms.

In Sec. III we consider the optical-model approach.

III. OPTICAL-MODEL APPROACH

In the optical-model approach, the eikonal repre-
sentation for the scattering amplitude is given by

F(s,t) = 16irik(gs) bdb Jp(bq) (1—e"'&' "). (21)

Here b is the impact parameter and q = (—t)'t'. b(s, b) is
the eikonal function.

The Born approximation is obtained by taking
1—e"'&' P&= —2ib(s, b) and equating the amplitude to
the single Regge-pole amplitude. Then

Solving Eq. (18) and expanding the solution in powers
of P, we can easily read off pn as coeKcients of P ".This
gives

Fa(s, t)Jp(bq)qdq (22).b(s, b) =
32irkgs

PiP(~ p)—
P.= — — (4PiX)" '

(g~) P(~+1)
(20) Here Fe(s,t) for a P Regge pole is given by

iP(t) s
F,(s,t)= —e

—* "
cos-,'~n(t) sp

(23)In our case of the p trajectory, however, neglect of
real parts in iteration is not justified. Hence, we should

9D. Amati, M. mini, any A. stanghe]mini, Nuovo cimento 30 Since only values of t near zero make dominant con-
193 (1963). tributions, we shall take p(t)/cospimn(t) as approxi-



D ISPERS ION OF THE VENEZ IANO REPRESENTATION

mately constant. This assumption makes the sub-
sequent integrations simple. On integration, we find

ip e~oo &'/«—'r

bo(s, b) =
64~k(gs) n'p cos-', ~n

p= Iln(s/so) ——',ixIe—'o,

/=tan '
2 )n(s/s ))

(24)

(25)

As ln Rcf. 7) %'c cRn no% cxpRnd 8 ~ ln R po%'cl

series, substitute (24), carry out the integrations, and
obtain the following series in the large-s limit:

( 1)n—1 p n—'i

F(s,t) = Q
ee~ cos—,xn 16m p, nsocos&mn

p~(t) ( s ~p(&)

Fr(s, t) = —
I
—o-' /'

sin-', xn p(t) (so
Taking

nz(t) = 1+np't,

(29)

(30)

diRraction CGccts which may not be simply understood
in the complex l plane. Hence, iteration of the
Pomeranchuk contributions may not be very meaning-
ful. It is quite dificult to build it into a Veneziano-type
1cpI'cscntRtloI1. However~ lf lt ls tI'cRtcd llkc Rn OI'dlnRI'y

Regge trajectory with nonzero slope, it is possible to
build up contributions of the cuts arising from ex-
changes of p+mI' into the above optical-model ap-
proach. We brieQy indicate this in the following,
Rlthough Rs mentioned above such cuts may 11ot have
a simple manifestation.

I.et the I'-exchange amplitude be given by

we have

~i8
8~(s,b) =—p &o bo/4a—p'p

64~k(gs)n/ 'p
(31)

tt= (/o 1)y,'—~(nn, 1+n't/—e)

The 6rst term of the series corresponds to the p
contribution and the eth term corresponds to the
Regge-cut contribution due to the np exchanges. The
power behavior (in s) of the various terms in (26) is

exactly the same as that of (9). This suggests that we

can determine the coefficients p„(s,t) by equating the
imaginary parts of the two series. Clearly, the two
series cannot be equated at arbitrary values of f, since
the functional dependence on t is different. However, the
fact that the various functions are peaked near 3=0
suggests that we can approximately equate the co-
efIicients of s" (') for /=0 We follow this procedure
because the idea here is not to construct just an eikonal
series but to construct a dispersive Veneziano repre-
sentation, while taking the optical model as a guide.
Then we have

( 1)n—116/(n (O))(N)~nw) pr

~~!I ln(s/so) j" ' 16K(no) cosomno

Now we take

Rnd find
b(s, b) =bP(s, b)+b, (s,b)

p~ " p
F(s,t)=i P (—1)

m=o 16mnp sop 8$t cos2xno

aots (t)

e—~a/2 (34)
Inn +np so

fn2& (8, &) —f Ps&Z (~, 5) &2s5~ (s, b}2g
&'*"' "—

I 2'.(s,b)7/2!+ (33)

The first two terms give rise to the cuts due to the
exchange of a number of P's. The third term gives the
contribution from the p and the cuts due to exchange
of the p, and a number of I"s. Further terms can be
associated with exchanges of a number of p's and I"s.
Here we will consider only the third term which gives
Regge-cut corrections to the p-pole term. Following the
procedure outlined above, we And this term to be

Xcos
/npn

mno ( where n (t) is the branch point due to p+/)/tI' exchange—(/'o —1) tan 'I (2&) and is given by
2 k2 ln'(s/so)

Here we have expressed all the p„'s in terms of pj.. py

and P are related by
=no+t/c~~x. (35)

p~
——pl" (no)/m . (2g)

As discussed in Sec. pl, ln(s/so) should be replaced by If we write an equation similar to (5) for these cor-

1nL(s+ t)/soj. rections, we have

So far we have ignored the Pomeranchuk (E) tra-
jectory. In recent years it has become increasingly clear
that it has a very subtle nature. Indeed, it may be R 1'(1—n-(s) —n-(t))
fixed pole, a fixed cut, a collective CReet of a number of

moving cuts, or some complicated manifestation of Comparing the imaginary parts of (36) and (34) in, the
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s~ ~, t~O limit, we obtain obtained above at high energies to low and intermediate
energies, it will be necessary to modify the logarithmic
factors. This can be done in a number of ways. For
example, 1nI (s+t)/so] can be replaced by

COS 2 7MO

cosPm. no —(e—1)&7. (37)

—
s+&y 'i2 — — 4m. ' —u~ 'i'

2ln
I

+X =2ln
I

+li
So/ — — Sp )

Thus we have obtained different spectral functions
in different models. In Sec. IV we discuss various
properties of these and also make concluding remarks.

IV. DISCUSSION AND CONCLUDING REMARKS

In Secs. II and III we discussed mainly the two
models, (1) AFS and (2) optical, which can give some
idea of the nature of the spectral function p„(s,r). The
first one, the AFS-type rescattering model, is clearly
more satisfying on theoretical grounds. The main defect
is, of course, that only the elastic-unitarity part is
considered explicitly. (See, however, the remarks
towards the end of Sec. II.) The second model, the
optical or absorption model, was chosen for (ad hoc)
comparison because of its success in explaining large-
momentum-transfer data and the ease with which the
Regge cuts can be introduced. The two models give
spectral functions differing in some detail. In particular,
the factor (—1)" ' is absent in the first model. Par-
ticularly for the P exchanges, this factor makes the
signs of the cut contributions different in the two cases
because of the absence of other obscuring phase factors,
This change of sign may indeed come out when the
inelastic unitarity terms are properly taken into
account. This fact has been well discussed in the
literature. "In the case of the cuts due to the exchange
of a number of p trajectories, the difference between
the two cases is obscured by other phase factors.
However, note that our cuts" contain a factor
1/r(a (t)). It can be seen that the relative sign between
the p contribution and the cut contribution (pp or pI"
in an exchange-degenerate case) is indeed negative for
0&—t&te, ' in the first model but positive in the
second model. Thus, it is quite likely that one will not
have to rely on the (—1)" ' factor for this negative
relative sign, which seems to be consistent with the
presently known experimental results.

The role of iteration of the Pomeranchuk trajectory
is not clear at present. Yet, in view of its possible
relevance, we have given a brief discussion of its in-
clusion in the optical model. We have, however, not
included it in the elastic-unitarity iteration in Sec. II,
although it is quite possible to do this.

Now, if we do want to continue the expressions

I J. Finkelstein and M. Jacob, Nuovo Cimento 56A, 681
(1968); L. Caneschi, Phys. Rev. Letters 23, 254 (1969).

"In a recent work we have suggested that this fact could
explain recurring minima and polarizations in various reactions.
See K. V. Vasavada, Phys. Letters 34B, 214 (1971').

s;= (j—1)ctb+ca /4m, (3g)

s,= (j——',)cg„j=1, 2, 3, . . . .

The values of c&i, (c&i,) can be determined by requiring
that the first branch point occurs at sr= 4m 2 (8i= 4m ').
This gives c~i, =4m m, and cg, =8m '. To enforce the
square-root behavior at the branch point, it will be
necessary to multiply the spectral functions by a factor

» Here and in the following we have taken no = -', and n' = 1/2es, '.
The bars refer to the integral representations with Pomeranchuk
modifIcations.

where X is an arbitrary cutoff. It can be chosen to be
at some reasonable energy (X=3 to 4, so=1 GeU')
which separates the usual low-energy resonant region
from the high-energy Regge region. Actually, because of
the logarithmic factor, the results will change very
little by reasonable variations of P. Also, in the low-

energy region, the correction terms to the original
Veneziano amplitude will not show any logarithmic
variation with respect to s or t, and hence the difhculty
of an unwanted infinity of "ancestor" trajectories will

be removed. For very large values of s, t, or I, cuts will

introduce logarithmic factors as they should. Further-
more, for A, &0, the logarithmic branch points will occur
only on unphysical sheets.

Now a possible difficulty is that our spectral func-
tions seem to blow up in some special cases when a„(0)
are negative integers or zero. This happens, for example,
when n(0) is exactly —,. This di%culty is superficial,
however, and it arises because of the approximations
made in equating (12) for t=0 to various series ob-
tained in different cases. For a smooth p„(s,t) the term
in question has a zero at t=O. Then, within the spirit
of the approximations made, this difticulty can be
overcome by equating the series at t= t instead of t=0,
where f (a number) is the location of the maximum of

(&)»( I 0)/
I

I'(& (t)) I

For large s this will be close to zero. p„(s,t) will then be
proportional to I'(a (I)) and there will not be any
divergence.

So far we have dealt with only the discrete approxi-
mations p„(s,t) to a continuous function p(c,s,t) But.
once we obtain p„(s,t), we can invoke Carlson's theorem
to obtain the continuous function p(c,s,t) as in the
usual Regge theory. Then we can obtain the integral
representation (3). This has a branch point at c=ctb
(c= cubi, ) which gives rise to branch points at"
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[(c—cpi,)/c]"' ([(c—cpi,)/c]"'). This is a permissible
modification, since c (c)))cti, for the discrete values
from which the representation was obtained. In par-
ticular, we have c„=2m,'e and c =c when n~' ——n'.

Now, by duality the above branch points at s; (s;)
give rise to Regge cuts at J=n„„(t), n„„(t) 1, —
In fact, for the zero-mass pions we can identify the
6.rst branch point with the Pomeranchuk trajectory.
The vacuum quantum numbers will not come out
automatically and some canceling terms will be re-
quired to prevent its exchange in channels not having
these quantum numbers.

For unitarization at low energy, it is desirable to
have second sheet resonance poles corresponding to
particles on the p trajectory. This can be done by
replacing the ii(c—ci) by the Breit-Wigner form

'y/[(c —ci)p+yp] which becomes a 8 function in the
limit p —+ 0. Thus, we can multiply the spectral func-
tions obtained above by this factor as reasonable
extensions of the zero width expressions. This factor
will give rise to unphysical-sheet poles at c=ci&iy
and corresPondingly at s,"=2mpP( j—ip) &i&(j—pi),

j= 1, 2, 3, . . . . Thus, as s" increases, the corresponding
widths of the resonances will increase as gsa. It is
interesting to note that similar results for the widths
have been derived by some authors when they attempt
to unitarize the Veneziano model by adding imaginary
parts to n."One difFiculty, of course, is that all the
degenerate poles have the same total widths. However,
there is still some improvement over the original
Veneziano model which gave zero total widths. Finally,
because of the &iy factor, the Regge behavior will be
obtained as s —+ ~ along the real axis arid not just
along a slightly complex direction, as required in the
original Veneziano formula.

An interesting property of the original Venezia, no
amplitude for the x-x scattering is the satisfaction of
the Adler's self-consistency condition. ' This requires
the amplitude to vanish at s=t=l=m '. U n(m ') =~p

the one-term Veneziano amplitude automatically satis-
fies the condition because of the blowing up of the F
function in the denominator. Our modification also
satisles this condition approximately, since

n„(0)= 1+ n (ppp —1)= 1——',n

"See, e.g., R. Z. Roskies, Phys. Rev. Letters 21, 1851 (1968);
22, 265(E) (1969).

and

and the point t =m ' is quite close to t =0.
One more point that needs to be mentioned here is

the satisfaction of the Cerulus-Martin bound. As in
Ref. 7, we can readily find by using the saddle-point
method that the series or integral form of F(s,i) has
the bound

P(s t, - e
—f (cosmos) &) t]

a-+no;coses fixed

instead of e f(""&~'~ as in the case of the original
Veneziano formula. This is true for both the models
discussed in Secs. II and III. The Cerulus-Martin
bound has been established on general theoretical
grounds and is supported to a certain extent by large-
angle proton-proton scattering data. In this respect
also, the modified representation proposed here
seems to be preferable to the original Veneziano
representation.

In conclusion, we note that the unitarization pro-
cedures discussed here seem to have many interesting
and encouraging properties. In particular, the Regge
cuts and the high-energy unitarity condition are auto-'

matically built in without destroying the crossing
symmetry. As mentioned before, Z-matrix and N/D
unitarizations do destroy some crossing symmetry.
Because of the weak dependence of the spectral func-
tions on s and t, the double spectral functions would
not be quite correct. However, hopefully, the spectral
functions obtained here may be some reasonable
approximations to a more complete theory. Remem-
bering that the Regge cuts arise from diagrams con-
taining multiparticle intermediate states or from
analysis of multiparticle unitarity conditions, it seems
particularly appealing that they play a role in uni-
tarization of the Veneziano model.
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