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All possible baryon currents consisting of trilinear local products of anticommuting nucleon fields are con-
structed and classified with respect to SU(2) SU(2). In contrast to the quark-model baryon currents
investigated by Hwa and Nuyts, the Fermi-Yang model (nucleon field) baryon currents may be isospin
—,
' as well as ~. Commutators of the baryon currents with axial charges are investigated, as well as anticom-
mutators of baryon currents with the Hermitian conjugates of their own divergences. Although isospin mix-
ing does occur for some of the axial-charge —baryon-current commutators, it is found that those terms in the
commutators carrying the appropriate isospin are always proportional to the baryon current being com-
muted. For an isospin-sr baryon current B&(x), it is found that S(xo—yo) (B&(x), 8"B„t(y)}=S(x—y) e(p, x)
+(Schwinger term), where (0~ e(p,x) ~0)=0. This property of e(y, x) is equivalent to a spectral-function
sum rule, the single-particle approximation of which relates the positive- and negative-parity spin-~, isospin-
—,
' nucleon resonances.

I. INTRODUCTION

' " "SEFUL results have been obtained from the
current-algebra commutation relations under the

assumption that the vector and axial-vector currents,
along with their divergences, serve as interpolating
fields for all mesons having the appropriate quantum
numbers. A possible extension of this scheme consists of
postulating that baryons as well may be directly in-
corporated into current algebra via the existence of
underlying "baryon currents" or fields, each of which
couples to all eligible baryons. Algebraic relationships in
the form of equal-time commutators and anticommu-
tators of these new objects with themselves and with the
more esta, blished quantities of conventional current
algebra may then be examined for their verihable
consequences. Investigations along these lines have
been carried out by a number of authors. ' ' One such
approach, proposed by Hwa and Nuyts, ' is to define a
baryon current, denoted by 8&(x), which transforms
relativistically as the direct product of a four-vector and
Dirac spinor. In addition, 8"(x) is to have definite
isospin and strangeness. Hence we have a situation in
which 8"(x) and B„B"(x)serve as interpolating fields for
all spin-~ and spin-~ baryons having the proper internal
quantum numbers, establishing to some extent an
analogy with the axial-vector current.

Clearly the analogy is far from complete. For
example the charges associated with 8"(x) cannot be
group generators, since as fermionlike quantities they
do not obey commutation relations. Likewise, there is
nothing to indicate that 81'(x) could be put to use as an
ingredient of a Hamiltonian. It is precisely this lack of
interpretation for 8&(x), other than that of interpolating
field, which makes it more difficult to work with than
the vector and axial-vector currents.

*Based in part on a Ph. D. thesis submitted by the author at
the University of Wisconsin.

f Supported in part by the National Science Foundation.
' R. C. Hwa and J. Xuyts, Phys. Rev. 151, 1215 (1966).
2 T. K. Kuo, Phys. Rev. 165, 1708 (1968).
3 M. Sugawara, Phys. Rev. 172, 1423 (1968).
4 J. Rothleitner, Nucl. Phys. B3, 89 (1967).' M. Sugawara and J. W. Meyer, Phys. Rev. 174, 1709 (1968).

A natural place to begin in the investigation of baryon
currents is to construct them, using basic constituents
about which something is known or assumed. In this
way it may be possible to establish algebraic properties
of the baryon currents which are of more general
significance than the specific model used in the
construction.

This paper is primarily concerned with carrying out
such a program for nonstrange baryon currents, using
as constituents nucleon 6elds obeying canonical anti-
commutation relations. A corresponding construction
using anticommuting quark fields has been performed
by Hwa and Nuyts. ' As will be seen, the results for the
quark and Fermi-Yang models are a good deal diferent
in many respects. On the other hand, generalizations
that are satisfied in both models have that much more
chance of being valid.

To get an idea of how the construction should
proceed, it is of interest to consider the meson currents.
It is well known' that commutators of vector and axial-
vector densities constructed from bilinear products of
the 0' and X quark fields reproduce the SU(2) SU(2)
algebra of currents when canonical anticommutation
relations are assumed. These densities are given by

I' .(*)=e(x)sr'v. V(x)

A „(x)=g(x)-', r'p„ps'(x) . (2)

If the quark fields are simply replaced by nucleon fields
in these expressions and canonical anticommutation
relations are assumed for nucleon fields, the resultant
quantities also clearly satisfy SU(2)SU(2). We re-
quire that the baryon currents as well be constructed in
terms of local products of the nucleon fields, enabling all
equal-time commutators of baryon and meson currents
to be calculable from the canonical anticommutation
relations.

We are interested in the case where the spin of 8"(x),
like that of the axial-vector current, may be reduced by

' See, e.g. , S. L. Adler and R. F. Dashen, Current A/gebras and
APP/ications to ParticLe Physics (Benjamin, New York, 1968),
p. 20.
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one unit only by taking the divergence. This is done by
eliminating superQuous components via the condition

q„B~(x)=0. (3)

Equation (3) is also imposed in the quark-field
construction.

In Sec. II we carry out in detail, up to arbitrary
constants, the construction of all baryon currents in the
Fermi-Vang model. In Sec. III these constants are
speci6ed so that the resulting baryon currents transform
according to definite representations of SU(2)SSU(2).
Section IV is devoted. to a comparison with the quark-
model results, while in Sec. V equal-time anticommu-
tators are considered. Finally, in Sec. VI the main
results are discussed and a possible application involving
an equal-time anticommutator is described.

II. CONSTRUCTION OF BARYON CURRENTS

Our object is to construct the most general baryon
currents having certain speci6ed properties, the 6rst of
which is that they consist of sums of local products of
nucleon fields. %e con6ne out attention to trilinear local
products, this being the simplest possibility in view of
(3). The currents are to carry unit baryon number, so

they must equal sums of products of two nucleon and
one antinucleon 6eld. The constituent nucleon 6elds
are denoted by P,„(x),with c the isospin and I the Dirac
index. An isospin-~ baryon current is similarly denoted
by B~..(x).

Consider first the most general isospin-~ baryon
current. It may be written in the form

B". =E'(br; cs; dt; eN) 8,(pk„p„po,), (4)

where repeated indices are summed over, The symbol 8
signifies that the product fk,p„po, is totally antisym-
metrized, this being done to eliminate ambiguity in the
ordering of the 6eld operators. From {4) it is seen that
there is no loss in generality caused. by requiring

K"(br; cs; dt; cu) = K&(br; dt; cs—; eu) . (5)

Since they form complete sets in their respective spaces,
the Pauli spin matrices plus the identity matrix and the
16 Dirac I' matrices may be used in an expansion of EI'
according to

El'(br;cs;dt;eu) =Al' S, krr k,rS.,P~„P~.t, , (6)

where the indices of the Pauli matrices, n and P, each
range from 0 through 3 with ~~—= 1. In keeping with the
usual convention, Latin superscripts on the Pauli
matrices assume only the values 1, 2, or 3. To simplify
matters, an exterior-product notation is used in which

(6), for example, would become

K~=A~.
&,»(r Srs)(P~QI'~). .

Upon surveying the available tensors, it is easy to show
that BI' is an isospin-~ object if and only if

A"~s gr(r Sro) =CI'kr(181)+D"kpi(r Sr ) ~ (8)

Pk4(io„pSo "~y")=p', S4o"" y„y484o"—"pk

Equation (5) implies that

(20)

A'-s;krt:Pk4(r r') jLP24(1'8 P') j
=-A .s,-("8 s)(P'QP ) (»)

All conventions are identical with those used in J. D. Bjorken
and S. D. Drell, RelutkisHc Qguwtlrl Iiields (McGraw-Hill, New
York, 1965).

8 Equations (15) and (M) follow directly from the orthog-
onality property of irreducible unitary group representations.
See, e.g., M. Hamermesh, Grog p Theory (Addison-'|A'esley,
Reading, Mass. , j.962), p. 102.

where CI'~g and DI"~p are arbitrary constants. That
there are two such constants simply reAects the fact
that isospin —,

' occurs twice in the Kronecker product
2 ~ 8~. We require that BI'(x) transform with respect
to parity according to~

(PBI'(x t)(P '=y'B„(—x, t). (9)

The condition that 8& transform relativistically as the
direct product of a spinor and four-vector along with
our other space-time requirements as expressed by (1)
and (9) may be shown to be equivalent to the relation

3"~p gpI' I"

=f.sv S~""+& sv.v'8 ~""v'+h.sa..So"'v" (10)

with f s, tt s, and b s arbitrary constants, and where

&o"~=3ig—""+o""

Combining (8) and (10), we may express AN&p; krp ln
terms of six arbitrary constants as

A"s,-('8 s)(P"P )
=(181)(cry.84o""+cd,y'8 &o""y'+icko"'8 o„y").

+("8")(dv.S "+d.v.v'8 " v'
+idka"&8 a„yl'). (12)

Let M and X be two nxn matrices; define a transposi-
tion operator /24 by

(Pk4(MSN)). k,o= (MQN). o,k„,
where

(MSN). k.o=M.kN, g. (14)

Now the completeness relations' for the Pauli matrices
and the Dirac I' matrices are given respectively by

2Pk4(181) =181+r"Sr" (15)
and

4P24(181)=181+vpSv"
+ ',.„8""-v,~-'Sv"v'+v'Sv'. («)

From (15) and («) it follows that

P (&kS &k) —k(181) 4(rkSrk)

Pk4(7 4o ")=27 84o "+27.7 4o "'r

+,'io„pSo"&y&, (18)-
P. b,~'8 "v')= ;v,S "+,'~,v'8 "v'--

,'ia„,So"~q~, (19—)-
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From (21) we find that

c» = 2d3

c2=2d3 —d

cp =(fp —di+dp. (24)

where 8"I' and Bl" are particular linear combinations of
the derived currents given in terms of arbitrary con-
stants k» and k2 as

(22) v'[Q p(xp)»" (*)]= p r'B"(x)+(44/3&i)B "(*) (33)

Hence there are three linearly independent isospin--',

baryon currents. By adding terms whose coeKcients are
symmetric with respect to I'p4 (that is, terms that make
no contribution to the baryon current), these three
currents may be expressed much more simply in terms
of a different set of constants as

B'~( x)=kiip'"{V (x) ~"~r'P(x)}
—2ki{V'.(x),pi"&g (x)}, (34)

B~(x)=k&{V'„(x),M"~r P(x)}
—&p{~ (x) ~""y'~V(x)} (35)

Here

A +~p; @p(r 8 rp) (r 8r )
=(r'8 ~')(pn 8~""+ppv.v'8M""v'

+ip,~„,8~"~y~) . (25)

V-,(*)=y(x)-,'r ~,P(x)

~'.(x) =0(x)p r'V.VV(x).

(36)

(37)

We denote possible isospin-~ baryon currents by

B"~(x), d = 1, 2, 3. (26)

In obtaining (34) and (35) we have used the identity

~(4' ( )4" ( )0 (*))=-'{tt(4' ( )6 (*))0 ( )} (3g)

This current is taken to transform under rotations in
isospin space as the direct product of an isovector and
isospinor. Hence its commutator with an isospin
generator is given by

For the two linearly independent currents that remain
it may be shown that

LQ p(xp)»'"(x)] = —
p r'v'B'"(x),

where
[Q,B" ]=(ip'" ', r fd )B-~-.

Suppose also that the subsidiary condition

(»)
B'~(x) =k,{V „(x),~"~r g(x)}

+&4{2.(x),pi"&y'r f(x)}
(») +i(k —k,){T'„p(x),r'~'Pf(x) } (40)

is satisfied. Using (27) and (28) it is straightforward to
verify that

[Q,[Q'»""]]= p (5+1)B"".

Hence 8"I' is a pure isospin-~3 object.
It may be shown that 8"f" is determined up to a con-

stant. A possible representation is

A".p.„(r.8 rP) (rs8 r~)
=p(ip" r'8 r' 2r'81)(y —8pi"&) (30)

III. SU(2)8SU(2) TRANSFORMATION
PROPERTIES

Four linearly independent baryon currents have been
derived. We now further specify the arbitrary constants
that appear in the construction in such a way that each
baryon current belongs to a de6nite representation
(Ii,Ip)$(Ip, Ii) of SU(2)8SU(2). From the canonical
anticommutation relations it follows that the commu-
tator of an axial charge with a constituent 6eld is given

by
[Q'6(xp) 4'(x) ]= —

2 r'V V(x) (31)

i.e., P belongs to a (ip, 0) g3 (0, ip) representation of
SU(2)8SU(2). By commuting an arbitrary axial charge
6rst with 8"& and then with the resulting expression,
it is straightforward using (31) to verify that

y'[Q', (xp),B' (x)]= ', (ip "' 'r'8"')B'—(x-)—-
+(ki/3k&)(26 "+ip' r')B~(x) (32)

ol

7. ANTICOMMUTATION RELATIONS

Equal-time anticommutators such as

8(xp —yp) {B&(x),B"t(y)} (42)

&(xp —yp) {B(x),&,B"'(y)} (43)

are also of interest. The anticommutator (42) has been
studied» in the quark model. By using the canonical
anticommutation relations to evaluate it, one obtains a
lengthy sum of products of two meson current densities.
Results of a generally similar nature follow from the
baryon currents found ln this paper. Meaningful con-

T'„p(x)=g (x)-,'r'o„pg (x) . .

IV. QUARK-MODEL BARYON CURRENTS

As mentioned previously, an analogous construction
of baryon currents in which trilinear local products of
anticommuting quarks are utilized has already been
performed by Hwa and Nuyts. » Since there are no g's
involved in these currents, the limits imposed by
statistics are much more severe than in the Fermi-jL ang
model, with the result that only a single nonstrange
baryon current can be produced. It is of isospin 2. Since
it is unique, it follows immediately that its commutator
with axial charges is identical (up to a possible sign
difference) with (39).
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sequences of this anticommutator have not been found,
and it will not be discussed further.

For the isospin-2 baryon currents of the Fermi-Yang
model it is possible to get some idea of the form the
anticommutator (43) may take. In this situation ft(x)
and it„B"t(x)have the same quantum numbers. Of
course, the form of B„B"t(x)cannot be determined
without knowing the field equations; however, we make
the assumption that, for purposes of calculating this
anticommutator, B„B"t(x)may be replaced with i'.
Upon doing this and applying the canonical anticommu-
tation relations, one sees that the anticommutator is
linear in meson currents.

If B&(x) is chosen as in (35), one obtains

b(xo —yo) {B&(x),B„B"t(y) )
=2k2b(x —y)[V~„(x)rgio» —A~„(x)r~io»~~

+,'i T'„(—x) r'o"'y" 'i T.„—(x-)o"&71']+ST (44).

On the other hand, if the form (40) is used for B&(x) the
result is

b(xo —yo) {B&(x),B,B"t(y))

,'b (x y) ti-(kg+—k 4) V „(x)r'oi" &

+(kq+k4)A, (x) r'co""y'+i (k4 ka) T „(x)—r o "~y&]

+2b(x —y)L(ka —3k4) V, (x)oo""+(k4—3k3)A„(x)~o"&y'

yi(k4 —k,) T„,(x) o"&~]+ST, (45)

where A„(x), V„(x),and T„,(x) are isoscalar analogs
of A', (x), V', (x), and T „p(x):

A.(*)=ILL(x) V.vV(x)], (46)

(47)

T.,(x) = le(x),o.A (x)]. (48)

Possible Schwinger terms have been allowed for in (44)
and (45). The anticommutators (44) and. (45) have an
interesting feature in common:

b(x, —y,)&OI{B (x),a„B'(y)}IO&=&OISTiO). (49)

VI. DISCUSSION AND APPLICATIONS

An item of obvious interest in working with baryon
interpolating fields within the framework of current
algebra is the way in which they commute with axial
charges. The simplest assumption, and one commonly
made in the literature, ' is that a baryon current or field

B(x) of isospin Io yields itself when commuted with an
axial charge, i.e.,

l Q'~(xo), B(x)]=At'y'B(x) . (51)

Here t is the (2Is+1)X(2Io+1) matrix representative
of the ath isospin generator. Equation (51) is satisfied
for the two constructed isospin-2 baryon currents
represented by (40) independently of the values of ka

and k4, as well as by the baryon current constructed in
the quark model. On the other hand, (51) must be
modified slightly to accommodate the remaining two
baryon currents, as evidenced by (32) and (33). This is
to be expected, since there is nothing to prevent the
construction of representations of SU(2) SU(2) other
than those of the form (Iii,o) 63 (O,Iii). Nevertheless, the
commutators (32) and (33) still have the property that
those parts diagonal in isospin are proportional to the
particular baryon current being commuted. In the
absence of any principle which tells us which current(s)
to keep and which to discard, we seek a generalization
which is valid for all of them. For any of the constructed
currents in either the quark or Fermi- Yang models it is
true that

t LQ, («),B~(x)]=r&7'B~(x), (52)

with re a numerical constant. Some applications of (52)
will be discussed elsewhere. "

We now discuss a simple application of the anti-
commutator (49). Writing down a Lehman-Kallen
spectral representation, "it is straightforward to show
that (49) is equivalent to

00

dM pity(M ) l 6+(x,M) —4 (x,M)] =0, (53)
0 8$p zp 0

whereIn addition, it may be noted that for ks=k4 the non-
Schwinger term I=1 part of the anticommutator (45)
assumes the model-independent form

d'p"'"*0(po) b(p' M'). (54)—

By model independent we mean that the relation in
question includes only baryon currents and the
SU(2) @SU(2) currents.

It is important to note that (49) does not depend
critically on B„B"tbeing set equal to Pt for purposes of
calculating anticommutators. All that is required is
that those parts of b(xo —yo){B"(x),B„B"t(y))propor-
tional to b(x —y) contain no noncovariant factors of the
form g&'. Equation (3) will then guarantee that (49)
is true.

f dM'p&t2(M') =0
0

(56)

P See, e.g., A. M. Gleeson, Phys. Rev. 14'9, 1242 (1966);
K. Bardakci, ibid. 155, 1788 (1967); and Ref. 5.

'P D. P. Vasholz (unpublished). .
"G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann,

Nuovo Cimento 11, 342 (1954).

6+(x,M) =
(2x)'

b(« —yo) {B"(x) ~.B"'(y))r=i Here pit2(M') is the spin-2 spectral function defined by

=3kab(x —y)l V'~(x)r'or&+A „(x)roo»y']. (50) g(p')e(po)pit2(p') =(g/3)(2~)'Q b(p —p )(p p/p')

x h „&olB (o)l ~)&~IB (0)lo)}. (55)

Equation (53) yields the spectral function sum rule
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Assuming that pt~s(3E ) is saturated by single-particle tained the sum rule
states, (56) becomes Z esca'~s=O

k

Here e& and Sf' are respectively the intrinsic parity and
mass of the kth isospin-~, spin-2 nucleon resonance. The
Cl, are real coupling constants, defined by

(0~a (O) ) e„m„p,s)
=i[(2 ) EMsj ' 'Csrs(4p"/3Ms ——y")u(p, s), (58)

where j-1=~ fo«I =~, and I'l, =y5 for e~= —1. Taking
viewpoints difFerent from but compatible with ours,
Sugawara' and Rothleitner" have independently ob-

"J.Rothleitner, Nucl. Phys. 33, 89 (1967).

Given the existence of the four nudeon resonances
Ett(940), Ptt(1470), Stt(1535), and Sti(1700), Gens's

has given a very simple argument that a pair of sum
rules differing by two powers of the mass as in (57)
and (59) imply the existence of a Pit (3f&~ 1470 MeV)
resonance, which may be identihed with the observed
Ett(1780).
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To second order in a gluon model, the longitudinal electroproduction function respects scaling and thus
provides a laboratory for the study of various light-cone theorems recently derived in the literature. In
particular, the operator-Schwinger-term sum rule is upheld by a hitherto unsuspected singularity at cy

(=——gmj2y) =0 which may obliterate any direct connection between light-cone singularities and electro-
production experiments. We also discuss the use of causal representations in the literature of deep inelastic
processes emphasizing the delicacy of popular techniques.

I. INTRODUCTION

A GREAT deal of theoretical discussion has
recently been focused on the electroproduction'

and neutrino-production experiments. These experi-
ments, in contrast to on-shell hadron-hadron scattering
experiments, o8er us information on the far-o8-shell
deep-inelastic region and thus provide a natural probe
into the small-distance structure of the theory. Bjorken'
has noted that the functions f7;(&d,q') approach finite
limits F,(a&) in the deep-inelastic region (q -+eo,
r —+eo, so= —g'/2i finite) if the Callan-Gross integraP
limes „J'deEs(ro,q ) exists and if certain well-studied
pathologies are barred. ' (Our notation is set forth in

Appendix A.) This "scaling theorem" essentially im-

*Research supported in part by the U. S. Air Force Once of
Scientific Research under Grant No. AF-F44620-70-C-0030,
Harvard University, where this work was initiated.

~R. E. Taylor, in International Symposium on Electron and
Photon Interactions at High Energies, Lieerpoo/, England, 1069,
edited by D. W. Braben and R. K. Rand (Daresbury Nuclear
Physics Laboratory, Daresbury, Lancashire, England, 1970).

2 J. D. Bjorken, Phys. Rev. I'79, 1547 (1969).
' C. G. {allan and D. J. Gross, Phys. Rev. Letters 22, 156

(1969).' With these assumptions scaling follows immediately provided
that we recall El, (co,q') &0.

poses stringent smoothness constraints on hadron
dynamics, which are typically not respected by per-
turbation theory. Translated into configuration space,
these constraints limit the possible singularities of the
electroproduction functions on the light cone. ' " In
particular, Jackiw, Van Royen, and West" and others
have shown that the commutator functions C~ has the

B.J. Io8e, Zh. Kksperim. i Teor. Fiz. Pisma v Redaktsiyu 9,
163 (1969) )Soviet Phys. JETP Letters 9, 97 (1969)g; B.L. Io8e,
Phys. Letters 308, 123 (1969).

6 R. A. Brandt, Phys. Rev. Letters 23, 1260 (1969); iNd. 22,
1149 (1969); Phys. Rev. D 1, 2808 (1970), and references cited
therein. (The last paper cited emphasizes explicitly that the DGS
spectral function must satisfy stringent asymptotic requirements. )

7 R. Jackiw, R. Van Royen, and G. B. West, Phys. Rev. D 2,
2473 (1970). (Some of the results of the present paper have already
been quoted in this article. )

8 J. M. Cornwall, D. Corrigan, and R. K. Norton, Phys. Rev.
Letters 24, 1141 (1970).

9H. Leutwyler and J. Stern, Phys. Letters 313, 458 (1970);
CERN Report No. CERN-TH. 1138 (unpublished). This refer-
ence employs smearing functions explicitly.

~o J. Stack ('unpublished)."D. G. Boulware and L. S, Brown (unpublished); L. S.Brown,
in Lectures in Theoretical Physics, edited by W. E. Brittin et al.
(Gordon and Breach, New cwork, 1970), Vol. XII.

"See Refs. 6, 7, and 9, among others.


