
RELATIVISTIC QUANTUM MECHANICS OF DYONS

scribing particles with both electric and magnetic
charges. One can also use the standard formulation with
proper modifications to obtain equivalent results.
However, it seems to us that our method leads most
directly to 6nal conclusions without any need for such
cumbersome artiices as potentials and wave functions
with singularities along strings. Owing to its manifest

gauge invariance, our method can also serve as a con-
venient consistency check for other approaches.
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A wave equation for free fermions is proposed based on the structure of the dual theory for bosons. Its
formal properties preserve the role played by the Virasoro algebra. Additional Vizard-like identities, com-
patible with the equation ale shown to exist. Its solutions lie on linear trajectories. In particular, the
parent is shown to be doubly degenerate, but these solutions lie on different sheets of the cut j plane.

INTRODUCTION

'N spite of its obvious theoretical appeal, the dual
~ ~ model' has been denied. full acceptance (credibility)
because of its failure to include fermions. In this paper
we present an extension of the model to encompass
half-integer-spin states by making use of a structure
evident in the dual theory of free bosons. ' Namely, we
found that the following view of duality led to no con-
tradiction with existing results: Each "free" boson ap-
pearing in the theory is a state of a complex system. Its
structure can be parametrized in terms of an internal
motion which is periodic in an internal time coordinate
so that each observable of the system is the average
over a cycle of the internal motion of suitably general-
ized operators. In this way, operators appearing in the
description of point, paltlclcs lIl coDvcDtloDal theories
must be thought of as averages over some internal
motion when applied to a hadronic system. The system
then becomes a point particle in the limit of the internal
cycle going to zero. These precepts are illustrated by
their application to the bosonic case in Sec. I. We use
these guidelines to introduce a generalization of the
Dirac matrices and postulate a Dirac wave equation for
the free fermionic system. Its formal properties are
studied in Sec. II. Section III will be devoted to a
detailed study of its solutions.

I. BOSON CASE

In order to set the notation and illustrate the ideas
behind our interpretation, it is desirable to first consider

' See G. Veneziano, in Proceedings of the International School
of Physics "Kttore Majorana, "Krice, Italy, 19?0 (unpublished).

~P. Ramond, National Accelerator laboratory Report No.
THY 7, 1970 (unpublished).

the (already known) free-boson theory. The free ha-
dronic system is described in terms of an internal
motion generated by the Nambu' Hamiltonian

LP
(n) .P (n) +M 2q (n ) .(f(n)]

with
Mn=(A

~ S=oq 1~ 2)

P —Q p (n) (1.4)

collcspond1ng to a coordInate

(1.5)

The variable g which describes the evolution of the
internal motions is introduced by means of the Heisen-
berg equations

P~a, f]=~(df /dr), (1.6)

where f is any operator. It is important to note that in

». Nambu, University of Chicago Report No. KFI69-64,
1969 (unpublished); see also I. Susskind, Yeshiva University
Reports, 1969 (unpublished); S. Fubini, D. Gordon, and G. Vene-
ziano, Phys. Letters 293, 6'?9 (1969).

and the normal-mode coordinates are four-vector
operators satisfying the usual commutation relations

(n)
~ (m)] Lp

(n) p (m)] O

t ~
(m) p (n)] —

~g gmnm ~ , O

where we use g s=(1, —1, —1, —1} for the Lorentz
metric. The internal system carries a total momentum
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(A (r))—= — dr A (r) .
—m/u

(1.8)

In particular, this means that each operator appearing
in the usual theories must be expressible as the average
of a more general operator over the internal motion of
the system it describes. We now proceed to give several
examples. The momentum of the boson is

p. =&P.(r) &

while its position is
*.= &Q.(r) & (1.9b)

We thus call P„and Q, the generalized momenta and
position, respectively. The genera, lization of the Klein-
Gordon operator is obtained by this correspondence
principle,

P' —m'=&P& &P) —m' —& &P P) m' (110—)

The solutions of the generalized Iklein-Gordon equation
are the states of the free bosonic system. This equation
is of course the usual one. It should be noted that we

require normal ordering of the periodic modes to elimi-
nate the zero-point energy.

Similarly, the operators

~-e'= &Q-Pe QeP-) -(111)

explicitly satisfy the commutation relations of the
Lorentz group. An amusing application of this corre-
spondence principle is to consider the usual ghost-
eliminating conditions and its generalization

0=p a" =&P )&e' "'P ) —& (P'e'""')=0, (1.12)

which can be explicitly seen to be exactly the condition
found to hold by- Virasoro. ' We stress that in the absence
of interactions, this condition is independent of the
mass.

It should be noted that the operators

B &e+innrpp(r)) (1.13)

generate an infinite-dimensional I.ie algebra and play a
central role in the construction of suitable interaction
terms. ' Before proceeding to the fermion case, we

4 M. A. Virasoro, Phys. Rev. D 1, 2933 (1970).
5L. Clavelli and P. Ramond, Phys. Rev. D 3, 988 (1971);

P. Campagna, S. I'ubini, E. Napolitano, and S. Sciuto, Torino
Report, 1970 (unpublished).

the limit coo ~ 0, the lowest mode becomes translational
while the internal motions generated by the higher
modes become periodic. We consider this to be the
physical limit. It is our observation that in this limit all
observables of the system ca,n be written as averages
over the period of internal motions. We take the
fundamental cycle of the internal motion to be the
interval

—Pl /(d( r('r/(d
&

so that the average of an operator A(r) is de6ned as

+1P /CO

mention the formula

LP-(r),Pe(r') j

which we shall use in Sec. II.

II. FERMION CASE

(u(r„()r( '))=2r„Al —(,—,')), mod(2 / ) (21)
|2m

for the anticommutator seems to be the simplest one
consistent with that obeyed by the p's. Similarly, we

require
F„(r) =vpF„(r)vp (2 3)

on the grounds of simplicity. These last three require-
ments are sufhcient to determine the explicit form of
F„(r) in an almost unique way. This is done by remark-
ing that F„(r) can be written, by assumption, as a
Fourier series over the fundamental cycle. The Fourier
coeScients are then determined by taking various pro-
jections of Eq. (2.2) along the components e+' "' and
integrating over r Then requir. ing (2.3) to hold suffices
to set all the higher Fourier coefhcients. We And

Fp(r) =rp+'((dprhp

Lb (n)te(nnr+f) (n)e—(nnr j (2 4)
n=1

where the b's are operators obeying the anticommuta-
tion relations

{b (n) $ (m)} {b (n)(' $ (m)t} 0

{f (n) f) (m)t} g g m~nag —]
(2.5)

In what follows we shall assume that 5„is not singular in
the limit ~0~ 0, and we thus neglect it. We emphasize
that these simple requirements lead to a unique form.
Note the appearance of Yp, which is essential for (2.2)
to hold since it is the only 4X4 matrix to anticommute
with all y„'s. We propose the following generalization of

6 We use the notation of J. D. Bjorken and S. D. Drell, Rela-
te'istic Quantum Mechanics (McGraw-Hill, New York, 1964).

In close analogy to the usual procedure where Dirac
matrices are introduced to describe half-integer-spin
point particles, we keep all the features encountered in
the bosonic case and define over the space of internal
motions a generalization of the Dirac matrices F„(7).
We require that its average over a cycle of the internal
system be equal to the usual Dirac matrix, ' namely,

(2.1)
The equation



the Dirac equation:

[«.{)F,( )&
— ]I+)=0,

the square of the generalized Dirac equation, and that
it holds for any mass. Another Ward-like identity is
obtained by considering the operator

as suggested by our correspondence principle. In terms
of creation and annihilation operators it is given by

which obeys

y p m—y—; Q {QM )(u( '" b("''f)("—)t a(")) (2../)

P,„=(+'.- r„( )F„( )),

[J-„,P„]=-',(v(2m —N) F„+„,
(F,F„)=2L +

(2.18)

(2.19a)

{2.19b)

It is easy to see that one recovers a familiar spectrum.
Use of the anticommutation relations (2.2), the perio-
dicity of I'„, and Eq. (1.14) yields

[P2— + Q { ( )t. g( )+f)( t.b( )]I@)—0 (29)
n=l

which leads to linear trajectories.
The consistency of our interpretation requires the

relativistic Hamiltonian to be the generator of the
internal motion. Indeed, we see that

[-!(I' I'), I',( )]='—I',( )
dT

(2.10)

by direct use of Eq. (2.2). In analogy to the usual Dirac
equation, we check that the operators

iV ))r'=-', i(1' I'p) (2.11)

satisfy the I orentz-group commutation relations and

I 1'.))",I'.(.)]='(g)).1'-( )-g-,I'))( )), (2.»)
where (u's and f)'s are taken to commute) the total
Lorentz generators

(2.13)

leave the generalized Dirac operator invariant, thereby
showing that they are the relevant representations of
the Lorentz group acting on the solutions of (2.6).

We next introduce the operators

which obey the infinite-dimensional Lie algebra

(2.14)

[L ~,L ~]=a)(m —n)L~ ~—',n'a)'i)„, , (2.15)

so that we dehne the generalization of the Virasoro
operators by

(2.16)Lp„L~ r'+I ~„s——

=[(F')——;i{1I
&
—~ ]I e)=0, (2.8)

where the dot over a symbol denotes di6erentiation
with respect to r. This expression explicitly reduces to

III. SPECTRUM

Ke now turn to a discussion of the solutions of the
equation. It is convenient to introduce the notation

(g~) ll2[(1(n)t. b(n) b(n)t. @(e)] (3 1)

Then the generalized Dirac equation is

[y p —m —7gx]I%)=0.
The spectrum equation (2.9) shows that in the occupa-
tion-number space spanned by the a's and the 5's the
masses of the excited states obey

m)2=vV+i&0, 3=0, 1, . . . . (3.3)

It is easy to show that we can write the positive-energy
solutions corresponding to the 1th mass level as

I
+ ")(~)&=

[2E(E+m)]"'

X[m+{1'.P&] I
U((') (k)) (i= 1, 2), (3.4)

wi th

XRI U, (')(u)&= —i~I U, (')(u)&, '=1, 2, 3, 4 (3.5)

and
I
U1"(k)) is a four-spinor operator with nonzero

element in the ith column only. The negative-energy
solutions are

These are now used to obtain compatible new relations.
Now

0 =P (Po m) I
+—

&
= [2L, —(Fo—m)F„]I e&, (2.20a)

so that we have an additional identity, namely,

P„Ie&=0.

This one can be seen to be the generalization of
p f)( )4=0 ac'cording to our correspondence principle
(or p (1 " =0). T11e 111'tel'actloll ternls 11111sthave spec) flc
transformation properties under the algebras (2.15) and
(2.19) for these equations to hold for the system
interaction.

It is clear that the condition 1
I
+)")(&)&=-

J..I
@&=0 (2.17) [2E(E—ns)]"'

is compatible with the equation for the spectrum, i.e., X[tn+ (I' F&]I U(")(k)) (i =3, 4). (3.6}
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The norm of these states is positive only when the space
components (or an even number of time components) is
involved. We proceed to give several examples.

l=1. We have two candidates:

~
Ut~("(k)) =g (')te "'~0)U"',

) U (')(k))=b ")te "'~0)U(') (3 7)

The corresponding states ~%'))"') and ~%)2")) have

spin- —,
' and -~ components as can be checked by applying

on them the Lorentz generators. Hence the parent
trajectory is doubly degenerate. As discussed earlier,
the spin-2 components can be removed by requiring
Eqs. (2.17) and (2.20) to hold.

3 =Z. There are four candidates:

so that we have two spin-2, four spin-2, and six spin-~
states. Some are eliminated through the Ward-like
identities.

In the general case, we have

pg (i)tj~ i

I
U "'(k))=II Lb""3"e '"'lo)U"', (39)

~.=) (n () i/2

where

~
U~, (')(k)) =(1/v2)g (')tg (')te '"'~~0)U")

~
U22(')(k)) =(1/&2)(g (')'b, ")t+g (')tb ("")

Xe—(k
q~ 0)U(i) (3 g)

j U (()(k)) g (2)te—(k ~

q~ P) U(()

~

U' (i)(k)) b (2)te ik ~

q~ P)
—U(()

propagator

(3.11)

Notice that, unlike usual infinite-component equations,
the imaginary part is positive definite, thereby render-
ing the sign of the mass matrix unimportant for con-
siderations of extra "parity ghosts. "~ Also, for on-mass-
shell states, the numerator is positive definite.

A possible explanation of the degeneracy is presented
by considering the possible expectation values of the
matrix y5X between the states on the parent trajectory.
We find that for the positive-energy solution, it has two
eigenvalues,

X~=&iL(J—-,')(e(k'/8') ]'". (3.12)

It is seen that the sign can be accounted for by taking
one solution to lie on the second sheet of the cut J plane.
Finally, we wish to say that the degeneracy structure of
the solution is comparable to that encountered in the
boson case.

IV. CONCLUSION

Although we have not presented a treatment of the
system in interaction, we hope that the wave equation
will prove to lead to such a formulation in the near
future. At present we can only understand how to
introduce the electromagnetic interaction of our base
systems by means of a minimal coupling scheme. How-
ever, the more important self-interactions are still a
mystery to us.

~=K (inde)
j=1

(3.10)
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and e;=0 or 1.
It follows that there are two spin J=l+—,

' positive-
energy solutions at this level (those with nt=l and
those with n) ——l —1, e&

——1), so that the parent trajectory
is doubly degenerate.

Before interpreting this degeneracy, consider the
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