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However, if we know one more scattering amplitude

where the bound system of particle 2 in the potentia]
Vs is left in a different state ¥;(x2,y2,22), then T and
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T’z can be determined from two different linear combina-
tions of the form (A8). Once 7'; and T'; are determined,
all the scattering amplitudes can be found from (4.13)
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The nonrelativistic quantum theory of a particle having both electric and magnetic charges moving in an
arbitrary external electromagnetic field is presented. The theory is based on the hydrodynamic formulation
of quantum mechanics. Dirac’s quantization condition for the electric and magnetic charges is rederived
as a consistency condition for the motion of the probability fluid. Neither the wave function nor the electro-
magnetic potential, which were the source of ambiguities in all other formulations, appears in our approach.
Nevertheless, this theory has all the essential features of the standard quantum mechanics, including the

superposition principle.

I. INTRODUCTION

HE main source of difficulties in formulating the
quantum theory of particles carrying both elec-
tric and magnetic charges is the ambiguity in the
definition of the electromagnetic potential.! One could
hopefully avoid all these difficulties if one could develop
an equivalent formulation of quantum theory in which,
instead of the electromagnetic potential, only the field
strengths appear. Such a formulation based on the
hydrodynamic form of the Schrédinger equation will be
presented here. In the absence of magnetic monopoles
this form of quantum mechanics is completely equiva-
lent to the Schrodinger theory. The generalization to
include magnetic monopoles is very natural and it
brings about a full symmetry between electricity and
magnetism. The generalized theory will be shown to
possess all the basic properties of the quantum theory,
including the superposition principle; however, an
equivalent description in terms of a unique wave func-
tion is no longer possible.
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II. HYDRODYNAMIC FORMULATION OF
QUANTUM MECHANICS

As was observed by Madelung,? the Schrddinger
equation can be replaced by a set of four hydrodynamic-
like equations. In the presence of an external electro-
magnetic field those equations take on the form

dp
> +V-(ov) =0, n

ov e 1 #?
— 4 (v-V)v= —<E+ —vXB)—l— —V(p~12Ap12), (2)
at m c 2m?

where the density field p(r,f) and the velocity field
v(r,t) are related to the modulus and the phase of the
wave function and the vector potential A in the follow-
ing manner:

Y(r,t) =R(x,0) exp[ (&/1)S(x,1) ], 3)

p(r,l)=Rxt), 4)
1 e

v(r,)= —<VS(r,z) — —A(r,t)). 5)
m c

In the standard formulation there is one-to-one corre-
spondence between the state of the system and a set of
normalized wave functions differing by a constant phase

2 E. Mandelung, Z. Physik 40, 322 (1920).
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factor.? In the hydrodynamic formulation the state will
be determined by the set of four real functions p and v.
This description is completely equivalent to the previous
one if and only if the velocity field obeys the following
auxiliary condition:

* €
I‘—r—_fdl(mv—i— —A>=21rnh,
¢

n=0,+1,+2, .... (6)

Using the Stokes theorem one can transform this condi-
tion to a new form, which contains only the field
strength:

I‘=/dn-<mVXv+ fB)=27mh, )
p) ¢

where Z is an arbitrary two-dimensional surface. This
vorticity quantization condition means that the inte-
grand mV X v+ (e/c)B vanishes everywhere except on
certain singular lines where it has singularities of the
5® type. Condition (7) is consistent with the equations
of motion (1) and (2) because, on account of Eq. (2), the
material derivative of T' vanishes? i.e.,

dT/dt=0. (®)

Clearly the expectation value of every physical
quantity can be expressed in terms of p and v. We will
now express also the transition probability and the
superposition of two quantum states in terms of the
hydrodynamic variables. The transition probability Pi.
between two states, which in the standard formulation
is

Pro=|{1]¢2) |2, ©)

now has the form

1: r
Piy= l/d3r(P1P2)l/2 eXP(;m/ dl'(v2"v1))
ro

where the line integral can be evaluated along any curve
not passing through singular vorticity lines. On account
of the quantization condition (7), the result does not
depend on the integration contour. The change of the
initial point ry affects only the unobservable over-all
phase of the integral.

Given two states (p1,v1), (p2,Vs) in the hydrodynamic
formulation, one can form a three-parameter family of
states (not necessarily normalized) described by (p3,vs)
which are defined by the following formulas:

2

, (10)

(11)

8 There is still an arbitrariness of the phase of the wave func-
tion due to the freedom in the choice of the vector potential.

d da
4 d a= A2 _(a. .
dt_L dn-a fzdn 7 (a-V)v+(V v)a).
[See, for example, C. Truesdell and R. Toupin, The Classical

Field Theory, in Handbuch der Physik, edited by S. Fliigge
(Springer, Berlin, 1960), Vol. ITI/1, p. 345.]

ps=ap1talpet2a100 (p1p2)'2 cos® ,
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3= o1t 0spe+ 20102 (p1p2)!/? cos® ]!
X[ar’p1vitas?psVetaias (Vi4Vs) (01p2)!/? cosd
+ (h/m)arcz (pr!*Vpa!? —p2'*Vp1?) sin® ],

(12)

where

b(r,l) = % /r dl- (vo—v1)+8. (13)

0

Comparing these formulas with the usual form of the
superposition of two wave functions,

Ys=cw1tcpe, (14)
we find that

(15)

and 3 is the phase difference between the wave functions
Y1 and ¥,. As in the usual formulation, the superposition
of two solutions of the equations of motion satisfies
again the equations of motion, although this property is
now not so obvious.

Equations (1), (2), (7), and (10)-(13) form the basic
set of equations in the hydrodynamic formulation of
quantum mechanics. This formulation is completely
equivalent to the standard one. It is best suited for the
generalization to include magnetic monopoles since the
electromagnetic potentials appear nowhere in the
equations.

1= |01| , w=|c|,

III. GENERALIZATION TO MAGNETIC
MONOPOLES

If magnetic monopoles are present only as sources of
the external electromagnetic field, then there is no need
even to modify our basic equations. However, the con-
sistency condition (8) will hold only when the strength
of the magnetic monopole is quantized. We will study
this condition later in the more general case, when also
the quantized particle in addition to its charge carries a
magnetic monopole. In this case we obtain the basic set
of equations by simply adding to the electric charge
terms the corresponding monopole terms which are
obtained from the electric terms by the substitutions

E—-B, B— —E, (16)

where g is the magnetic charge. The equations of motion
and the vorticity quantization condition now read

€e—g,

dp
— +V-(ov)=0, (17)
ot

ov e 1 g 1
— 4 (- V)v= —<E+ —VXB>+ —<B— -vX E>
ot m c m c
h2
+ V() (18)
2m?

e g
I‘E/dn-<mV><v—|— —B——E)=21mh, (19)
z c Cc
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whereas the formulas for the transition probability and
the superposition remain unchanged.

To study the consistency of the quantization condi-
tion (19) with the equations of motion, we will evaluate
the material derivative of I'. With the use of Egs. (17),
(18) and generalized Maxwell equations,

19E 1

— ——4VXB= -j,, (20)
¢ 0Ot c
V. E::‘pff) (21)
1 0B 1
— - _VXE= i, (22)
¢ at c
V-B=pn, (23)
we obtain
ar e, g € g
— =/ dn<— —Jm+ _Je+ ~PmV— —Pev>- (24)
dt s c c c c

If we insist on this expression vanishing, we obtain
the proportionality of the electric and magnetic charges
and currents:

(25)
(26)

€Pm=gPe,
ejm=gije-

These conditions imply the universality of the ratio of
the electric to the magnetic charges and lead to a theory
which is not essentially different from the usual theory
with no magnetic charges. However, the vanishing of
dI'/dt is not a necessary condition for Eq. (19) to be
consistent with the equations of motion. The value of I'
can also change in time discontinuously from one value
of » to another, i.e.,

dr/di=2mh Z Anid(t—1t;). 27)

This condition will be satisfied if and only if the sources
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of the electromagnetic field are pointlike,

pe=z e 0P (r—r;), (28)
Jo=2_ evid®(r—rs), (29)
pn=X g:d®(—1.), (30)
jm=z givid®(r—r.), (31)

and the electric and magnetic charges of particles
satisfy the Dirac® conditions in the weaker form given
by Schwinger and Zwanziger?:

ni=0,:1:1,ﬂ:2, (32)

(egi—ges)/Amhc="%n;,
IV. DISCUSSION

The quantum theory of magnetic monopoles de-
scribed in this paper can be regarded as an explicit
realization of Dirac’s idea presented in his classic paper.®
In that paper Dirac pointed out that the existence of a
well-defined phase factor of the wave function is not
necessary for a consistent and complete quantum
theory. We believe that the existence of the wave
function obeying the Schrodinger equation is not a
precondition for a quantum theory. In the presence of
magnetic monopoles the wave function cannot be intro-
duced in an unambiguous way, but we can still have a
complete theory having all essential properties of the
standard quantum mechanics.

Our formulation of the quantum theory of particles
having both electric and magnetic. charges is not re-
stricted to the nonrelativistic domain and to the one-
particle states. Generalizations to the Klein-Gordon
particle with magnetic monopole and to many non-
relativistic particles are straightforward and will be
presented elsewhere. However, we have not been able so
far to include the spin in the hydrodynamic description.

" 5 P.'A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931).



