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In view of the advances of knowledge, both experimental and theoretical, about hadronic scattering
processes at high energies, the potential-theory model studied before is found to exhibit a number of realistic
features. Because partial difFerential equations can be dealt with in a much more straightforward manner
than operator equations, this potential-theory model is useful in understanding some features of high-energy
processes. The problem of exponentiation, i.e., the possible appearance of an exponential factor, is studied
in detail. It is found that the simple-exponentiation form, found recently in field theories within certain
approximations, does not hold in general when the scattering particles have a finite size or internal degrees
of freedom. This result in turn is applied to the field-theoretical cases to understand further the nature of the
approximations involved.

inc —eikz (1.2)

(We have used notation slightly different from that of
I.) In Paper I, we use the following limit as the model
for high-energy scattering:

k —+ ~, V/k fixed . (1.3)

This limit has the following properties provided that t/'

is neither too singular nor long-ranged: (i) The total
cross section o approaches a finite value; and (ii) if we
define the Mandelstam variable'

t = —(2k sin-,'0)',

where 8 is the scattering angle, then do/dt approaches
a finite value for fixed t.

Although by no means clear at the time when
paper I was written, there is by now impressive experi-
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2 S. Mandelstam, Phys. Rev. 112, 1344 (1958).
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1. INTRODUCTION

'~EARI.Y fifteen years ago, one of us studied
systematically a potential model for high-energy

scattering. ' Consider the scattering of a plane wave by
a potential V=V(x,y, )ssuch that the wave function
P=f(x,y, s) satisfies the Schrodinger equation

(V'+k' —Vg =0, (1.1)

mental evidence' that properties (i) and (ii) hold at
least approximately for high-energy diffraction scatter-
ing of hadrons. Therefore, the limit (1.3) is indeed of
interest as a model in connection with high-energy
processes. Moreover, recent studies on the high-energy
behavior4 of field theories yield results that show
remarkable similarity with the behavior of the scatter-
ing amplitude in the limit (1.3) because of the appear-
ance of certain exponential factors. Indeed, the appear-,
ance of,such exponential factors is the basis of the
Glauber approximation. ' Although there is some formal
similarity, the exponential factors found by Abarbanel
and Itzykson' in the P' theory are actually of a rather
different character7; contrary to their claims, the terms
that they calculated are not the leading terms.

Because of the appearance of exponential factors in
these different connections, it is desirable to have a more
thorough understanding of the simplest case, namely,
the case of the Schrodinger equation (1.1) in the
limit (1.3). It is thus the purpose of the present paper
to study the cases where either the incident particle or
the scatterer has internal degrees of freedom. Although
this generalization is mathematically trivial, it is

'See, for example, the rapporteur paper of G. Bellettini, in
Proceedings of the Fourteenth International Conference on High-
Energy Physics, Vienna, 1968, edited by J. Prentki and J. Stein-
berger, (CERN, Geneva, 1968).

4 H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1852 (1969);186, 1611 (1969).This similarity has
been explicitly stressed in the last article. See also F. Englert,
P. Nicoletopoulos, R. Brout, and C. TrufIin, Nuovo Cimento
64A, 561 (1969);and S.-J. Chang and S.-K. Ma, Phys. Rev. 188,
2385 (1969).

R. J. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Britten et al. (Interscience, New Vork, 1959), Vol. I.

' H. D. I. Abarbanel and C. Itzykson, Phys. Rev. Letters 23,
53 (1969).

' H. Cheng and T. T. Wu, Phys. Rev. (to be published).
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physically relevant because hadrons do have these
internal degrees of freedom.

An exponential factor does appear in these more
general cases. However, this exponential factor is in
general complicated in various ways; for example, in
the case treated in Sec. 3, this factor is of the form
of an ordered exponential. Such ordered exponentials
are not simple objects, an example being the 5 matrix in
field theory,

S= exp i d4xl. (x)
~

where L is the Lagrangian density.
The question whether an exponential factor appears

is therefore not the relevant one within the present
context. Rather, in connection with possible application
to field-theoretic calculations at high energies, ' the
question is whether the complete answer for the elastic
scattering amplitude in the limit (1.3) is determined by
low-order perturbation calculations. The answer to
this question is yes for the case treated in Paper I, but
is eo in general when there are internal degrees of
freedom. In Sec. 5, we discuss the implications of this
result in the interpretation of the answers for the case
of field theories.

The appearance of the exponential factor has been
referred to as exponentiation. In connection with all
the existing calculations of high-energy behavior in
field theory, this term exponentiation has been applied
only in the case where the exponential factor takes the
simplest form. Because of the appearance of an expo-
nential factor in general, we propose, in order to
avoid confusion, to use the term "simple exponentia-
tion" to refer to this simplest case where the exponent
in this exponential factor is a numerical function of
x& (i.e., x and y) only, and hence, within the particular
approximation, the complete answer for the elastic
scattering amplitude can be found from the perturbation
calculation of the lowest order in the potential. In
this sense, simple exponentiation holds for high-energy
electron-electron scattering with multiphoton exchange. 4

Whether simple exponentiation holds can be tested by
carrying out the calculation of the term quadratic in
the potential. Recently, a test of this variety has been
attempted by Muzinich, Tiktopoulos, and Treiman. '

In Sec. 4, we find, on the basis of such a test, that
simple exponentiation does not hold when the target,
roughly speaking, has a finite size. As discussed in Sec.
5, because of this result, simp/e exponentiation cannot
hold in the case of p' theory, for example.

2. GENERAL REMARKS

Before considering the various cases with internal
degrees of freedom, it is perhaps interestin. g to give an

SI. J. Muzinich, G. Tiktopoulos, and S. B. Treiman, Phys.
Rev. D 3, 1041 (1971).

Over-all view about high-energy potential scattering
as defined by the limit (1.3).For the sake of definiteness,
consider the case of the Schrodinger equation (1.1),
although similar remarks apply to Maxwell's equations,
for example. For large k, different behaviors are
obtained depending on the assumption for V. In
particular, we may assume that

V(x,y,s)/h" (2.1)

is 6xed. Three choices of the value of e are particularly
interesting: (i) n=2, (ii) n=1, and (iii) n=0. The
limit (1.3) corresponds to case (ii).

Since cases (i) and (iii) are more familiar, we discuss
here these three cases in the order (i), (iii), and (ii).

(i) When V(x,y,s)/h is fixed, the Schrodinger
equation is more conveniently written in the form

LP+h'(1 —V/h') ]f=0 (2.2)

then
e(x,y,s) =1—h 'V(x, y,s); (2.3)

L'P+h'e(x, y,z)]P(x,y, s) =0. (2.4)

Accordingly, c(x,y, s) is a scalar dielectric constant and
this case can be interpreted as the high freqlency-
scatterieg by a dielectric obstacle. This is therefore a
case that can be dealt with by physical optics. ' More
precisely, the procedure is as follows: The rays of
geometrical optics are first traced, and a phase and
amplitude are assigned to each point on each ray. These
phases and amplitudes are simply added together if a
point in space can be reached by more than one ray.

We emphasize the following two points. (a) The rays
of geometric optics, as determined by optical laws,
may or may not cover the entire space. Regions not
reached by these rays are the shadows. If the asymptotic
behaviors in the shadow regions are desired, classical
theory of diffraction needs to be used. (b) One simple
extension of geometrical optics is to define additional
rays when a ray reaches a singularity of V(x,y,s), such
as the point x=y=s=0 when V(x,y, s) is, for example,
either e "/r or e ". fn general, the contributions for
these additional rays decrease as some power of k
for large k. If these additional rays still fail to cover
the entire space, exponential decrease with k is expected
in the regions not reached by any ray."

(iii) When V(x,y, s) is fixed, the total phase shift
through the potential is small, and hence the Born
approximation may be applied. "

The Born approximation may or may not give all
the desired answers. So far as the scattering amplitude
is concerned, the Born approximation is sufhcient
provided that V(x,y,s) is neither too singular nor

See, for example, M. Born and E. Wolf, I'rincip/es of Optics
(Pergamon, London, 1959).

'0 See, for example, R. W. P. King and T. T. Wu, Scattering and
Digraction of W'ass (Harvard U. P., Cambridge, 1959).

» M. Born, Z. Physik 38, 803 (19Z6).
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analytic in the three variables x, y, and s. In the case
of the singular potentials such as (x'+y'+s') ' the
Born series needs to be summed. " In the opposite
extreme of the analytic potential, the Born approxima-
tion may fail for large momentum transfers and
application of the WEB method in the three comp/ex
Mriubles x, y, and s is needed. " There are similarities
between this extension of the Born approximation and
the theory of diffraction.

(ii) The case of fixed V(x,y, s)/k is intermediate
between the above two. On the one hand, the present
case can be considered to be an extreme situation in
physical optics, where the rays are straight lines. Thus
the exponentia) factor in the scattering amplitude is
precisely the additional phase shift due to the presence
of the potential. On the other hand, this exponential
factor may be used to modify the integral equation from
which the Born approximation is derived by iteration.
This is precisely what was carried out in I.

Like the Born approximation, this high-energy
approximation of I may or may not give all the desired
answers. Clearly there are complications if the potential
V(x,y, s) is too singular. If V has weak singularities,
as in the cases of e "/r or e " mentioned above, then
additional rays may be introduced and the high-energy
approximation gives all the desired information. In
the other extreme, where V(x,y, s) is an analytic function
of x, y, and s, the high-energy approximation again
may fail, and a WKB approximation in three complex
variables is once more needed for large momentum
transfers. "

In summary, these three cases are treated by the
following methods. (i) v=2: physical optics supple-
mented, if necessary, by the theory of diffraction;
(ii) n=1: high-energy approximation supplemented,
if necessary, by the complex WKB method; and
(iii) m=0: the Born approximation supplemented, if
necessary, by the complex WKB method.

Then C satisfies the partial differential equation

(2ik8/Bs+V' g—kU)C =0.
Suppose we drop the term P in (3.4); then

(8/Bs+ ,'igU—)C =0,
and hence, by (3.1),

(3 4)

(3.5)

C(x,y,s) = exp~ ——,'ig ds'U(x, y,s')
~

u. (3.6)

Here the subscript + indicates an ordered exponential
with respect to the s axis.

The source term J of I, defined by

(3 'I)

is then given by

J(x,y,s) =gU(x, y,s)

exp~ ——',ig ds'U(x, y,s')
~

u. (3.8)i +

Note that, for a potential that is smooth and not long
ranged, the approximation (3.8) is uniformly valid for
large k although (3.6) is not. Equation (3.8) can thus
be used to calculate the scattering amplitude defined by

f(h&,62) = —k dxdyds nt J(x,y,s)e '&~'*+~'"', '(3.9)

where cL= (b,~, h2) is the momentum transfer and e is
the outgoing state. Therefore, to leading order,

where a coupling constant g, although not necessary, is
introduced to facilitate the counting of orders. Both g
and U are held fixed as k —+~. Let

(3.3)

3. MATRIX CASE

A. Formulation f(&g,&g) =2i dxdy e '&~' +~'»

As a simple extension of the case treated in I, let the
wave function f be a column matrix with 1V elements
and the potential V be an $)&$ matrix. Then (1.1)
still holds and (1.2) is replaced by

1—exp —-', zg d. U(*,y,.) ~

u. (3.10)
J +

inc —ei7czN (3 1)

where u is a constant EX1 matrix. We study this case
in the limit (1.3).

Because of (1.3), let

This is the desired answer. To this first approximation,
the answer differs from that of the simple case of I,
which corresponds to E= 1, only in the appearance of
the ordered exponential. We proceed to study the
effects of this ordered exponential.

V(x,y, s) =gkU(x, y,s), (3.2) B. Simple Exponentiation

12 N. N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964);
G. Tiktopoulos and S. B.Treiman, Phys. Rev. '134, B844 (1964)."T.T. Wu, Phys. Rev. 143, 1110 (1966).

' This point is mentioned in Seq. 7(b) of Ref. 13. [U (x,y,s), U (x,y, s') ]=0 (3.11)

Suppose we make the additional, very restrictive,
assumption that
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then (3.19) should be equal to

ds (y(xy, s))

If simple exponentiation holds, then

[A,B]=o.

(3.27)

(3.28)
=cos[g(a'A'+b'B') "'] i(o—2aA+0 lbB)

X (a2A 2+b2B2) I/2 Sill [g(a2A 2+b2B2) I/2] (3.2 1)

A comparison of (3.19) and (3.21) shows that the
right-hand sides are equal to order g~ in general, but to
order g' only if either aA =0 or b8=0.

This example also provides a case where simple
exponentiation does not hold but the condition {3.17)
ls satls6ed.

Therefore, for this example, (3.17) is necessary and
suScient for simple exponentiation.

Suppose that (3.27), or equivalently (3.28), is not
satisfied so that simple exponentiation does not hold.
Ke can then ask the question whether a and b together
determine c. Equation (3.26) can be written in the
following form:

A =-,'a+x, B=-',a —x,

E. Second Examyle
[x,a]=b —a', (3.29)

[X,b]=c——,'(ab+ba) .

where o, is a number, we have

The example of Sec. 3D can be solved rather
simply because the differential equation (3.5) can be
trivially solved in each of the three intervals (—a—b Therefore, under the substitution

b), ( b,—b), an—d (b, a+b) As a se. cond example, we
consider the general case of two intervals. More
precisely, we consider the case where

(3.3o)

[U(x,y,s), U(x, y,s')]=0 (3.22)

wllen 8 and 8 are of the same sign. The dividing plane
2 =0 can of course be replaced by any surface s =s(((x,y)
without any additional complication. When (3.22) is
satisfied, we have

(; —+ (,+(2[a,b] .

Consequently u and b together cannot determine c
unless

exp —
g 'bg ds (((x,y,z))

A(x,y) =-,' ds U(x, y,s)

—
f2
—Q~(& 7J)g—&08(& fJ) (3.23)

ia»]=0. (3.32)

We do not know the answer to any of the following
questions. Under what conditions is (3.32) sufFicient
for a and b to determine all the higher coeKcients?
In general, how many coefficients in the Taylor expan-
sion (3.25) are needed to determine all the coefficients P

What is the relevance of the Lie algebra generated by
A and 8?

B(x,y) =-; ds U(x,y,s). (3.24)

exp —
2 $g ds dd(x, yd))

=1 2ga(x, y) ', g—'b(x,y)+ 62i—g2—c{x,y)+ . ; (3.25)

I.et the power-series expansion of this ordered
exponential be

F. Higher-Order Corrections

So far we have only considered the leading approxima-
tion in the limit (1.3). We next apply the method of I to
this matrix case. Almost all the calculations can be
taken over without modi6cation.

Instead of neglecting the term P in (3.4), we convert
it into the integral equation [see (2.10) of I]:

ei k (jr—r'/ —z+z')

J(r)+gkU(r) — J(r')dr' =gU(r) I, (3.3—3)
4x[r—r'/

then

c=A '+3A'B+3A B'+B' .

where r=(x,y,s) and. the source J is defined by (3.7).
The method of stationary-phase integration is then

(3 26) Rppllcd to rills cxRct lntegl'Rl cqllatloll, Rlld lt is cRslly
verified that every step in Sec. 3 of I applies without
modi6cation whatsoever, except the change of notation
x&-+ —s'. The final approximate equation is a trivial



K UFNG A

,d~„tron of (4') 'f

g U(x,y&s) u

,)+i,gU(x, y,s

k
—

igU(x&y&s)

z
Id, J(x,y,s )

)J (xys')+~J("y"

U( s)u =J(x&y& )

+i
AU(x&y&s)

'd. J( y ')

J(x y s)+ ', ig-U( d'J(»')

l+ip ig—U(x,y&s)=gU(x, y,s)

roxlmCThc next oraer app
. b,„„g,enly(

tlOn Satisf'"

g—
2gU(x&y&s)

I+2(s s')'J 2(x&y&s

ds'L Ji(»y &s )

{3.34), (B/B,)J(x,y,s) +''''
1~CXP ds'U(x&y&s )

/~

&.

~
s')~

( gU{*»'
d (3 4) ()f I.defined by { 'whei'e i a

44) and
and Js a'e

45) of » we"More explicitly, by

J (xys)=-,'A,J(x,y, sJ1 S,P)S
exp~ ——,zg (. )ds"U(»y&s )

where
, ,s = ', A&2J(—x,y,s,

{3.35)
of Sec. 4w the procedure o(3.38), we follow t eTo solve

of I. Let

6,=B'/Bx'+B'/By'

c LR IRclRn.
t eneralizatlon

lS Cthc tl RnsvcI'sc

3.34) is solved by
'

ortant whenl3CCOIlles lIIlpo
term for s

(3.36) {3.39)ds' J(x,y,s');] x

f(x,y,s) =u ——,i

then
J s) =2iBf(x,y, s) Bs,

e i nationx,s
'

he differential eqx,s) satisfies t e iand hence f(x,y, s

(3.40)

dx' U(x, y,x'))

The leading

1'—', igU(x, y, s) exp ——,igs =(4k) 'gU(xys) —i —-igl gU(*,y;)f(,y, =

1'dkIa, exp ——,~g s ', ,
" u, (3.41)ds" U(x, y,s") u,

cond. ition'th the boundarytogCthCI' wit

The solution of 3.41) is

f(x, y, —~)=u. (3.42)

f(x,y,s) = exp~ ——,ig u+ 4k) 'ds'U(x, y,s') u+
z

1'
4S CXP —

~ bg dx" U(x,y,x")) &U(x,y, x'

1'X ,'igU(x, —y, s-") exp ——,ig

z'

dx" U(x,y,x")) +
z'

1'
dg 5g exp —2'bg

zl I'

ds'"U(x, y,s"')
-+

1'
CXP —

g 'Lg ds'U(x, y,s') u+( iSik) ' I 1 '
ds' g'U'(x, y,s') exp dx" U(xyx"))

ds'a, exp~ ——,ig dx" U(x, y,x"))

ds" U(x,y,s")d exp' sig ss ( ~

u, (3.43)ds" U(x,y,s") u,



CATTFRIN IIRGY OTEN I IALFNE

and hence

,)L~+(4k) 'gU(x»")j 'g( ys) =gU(»y~~

0d, ( U2(x, y,~) ' p+(8y)—
&g3U(x)yp)

3.«)dz"U(x, yP )
4u)

8

g exp 22gexp —
&2g '

+
gs U( ~y~

vlded tha

+ag—
(gU(x)y, s)

g

hi her or(Iers pro+d re can be rePt'vc proce ureresult to seep d Q

pf derivatives.
Th s is the desired res

scient number p

d*dy Lf( 'y'f(a&,&2) = —'

he potentla i V,x,y,~)»'

amplitude

(& & ) he, s bee&

G. S«tte g
.

litudetate. The scatter'"&e the outgPingm transfer and
'

ljfj.ed to
Let &

3 40) e,r((i 3 &

be the momentum
2) (3 9) cau bg 6uea by (3 9) ~y

3 43) the, t, «s'""fQllows fl"Qm

dk &(*0' '~)

ds'&(&A'~)—122U2(x y g) exp 2 g(8ia)-'

«pdg'U(x, y)~ ) )
exp Y~g

It the

exp —~2gdx(iy ~

3.4( )ds'U(xD'~~ )
"+

A. Introduction

oes not hold.ld. On the o

s. Rev. 137, 8708 (1965).d C. N. Yang, Phys. Rev. 137,"T.T. Wu an

00

t a expxppnen. tiRtip
~ '

n goesscen
~

roxlma-
4

CR .
C C~SCS an

]culations we
certain Rpp

m leo

By BOUND SySTEMSSCATTERING
ho R ln SQm,

t pn Rn examp. We therefor~ s«y
d s stem" in prder

int lsse, . rto
tj.ons.

~

b a bPu y
ntjation

ote»a scatteI'I g y '
pic expQIi

tail the case p
ut circumstance .

e ain R deep
where slm

ated In some de Ri

f learn abou
1 In this way we g

tion

Sec 3, we have
discrete degree o

h lds ~ppro~ mate y
enon pf exponen

article has a
de ree pf o

f the p"en

where the inc'd .p
Rtrjx case the, g .

d t understand' g

Actually ';th either the in e
f nd ln geld thepr

free QIH.

e associated " . ~

the same.
eedom can

thema
re

the Ina
Qn can c

8 Formulation

article or the targ

wo ar ic, ed as 1 and 2, ln

Thus the 2

hin state 2 or

Rllexe 1. T e c

particle being
' '

r

ec. , 6 d that
'V '+E Vz —V2——ec. 3, we n

WP+-, m

ls etwccn I and 2) whl cls the potential between

gesimple expon
'

en

res ective y,
icle1hasbeen a

inciden p

case of the big -enerinteresting ca -ene
each hadronn must e

1 Ifk
hadron has an en

boun in
We therefore expecrees of freedom. e ex e

t,-, 6,ld theoretic . n
result of Sec. , a al simp c
d



H. CH EN 6 AN D T. T. KU

Let fo(r2) be the wave function for particle 2; then When (4.9) and (4.11) areused, we find that the leading
Po(ro) satisfies approximation to the scattering amplitude is the

Glauber form'
L'2222 'lI('22 —Eo—V2(r2) jpo(r2) =0 (4.3)

|t'" (ri,r2) =o'"*'go(r2) . (4 4) f(AI,62) =22k dxldyl dxodyodz2

We want to study (4.1) for large k when the following
three quantities are kept 6xed: Xo *"'*'+"""A*(x2y2 s2)go(*2 y2 22)

Ul(rl) =k 'Vl(rl),
Ulo(rl, ro) =k 'Vlo(rl, ro), (4.5) j —exp dslLUl(xl y1,21)

V2(r2) .
We have omitted g here.

C. Exylicit Solution

%'e solve this problem by the procedure of Sec. 3 A.
Similarly to (3.3), let

Note tlIRt, (4.13) ls RIIIlos't exactly 'tllc sRlllc Rs (3.10).
Application of this procedure to other situations is
obvious.

P(ri»r2) =O' C (ri»r2) i

then the partial diGerential equation for C is

(4 6)
D. Simyle Exyonentiation

For elastic scattering, the target bound system must
remain unchanged, i.e.,

(22kB/(is+ 7'I +-2' nz ')II2 —ho —k Ul —V2 —k Ulo)C

=0 . (4.7)

Suppose we drop all terms not proportional to k; then

(8/rls+2i UI+ ,'2UI2)C =0-. (4.8)

This is a f rst-order ordinary differential equation, and
its solution is, with the boundary condition (4.4),

(I)(xi,yi,sl; xo,y2, 22)

4'I(x2 y2, 22) 4'o(x2 y2 s2) ~

The substitution of (4.14) into (4.13) yields the follow-

ing approximate formula for the elastic scattering
amplitude:

f(~,,~ )

=2ik dxldyl dxodyods28 ( ) )+ 2"))
~
lpo(xo, y2»22) ~

=A(».,y. ,» )p(»-,»—dsl (Ul(xl yl sl )

1—exp ——,'i dz, r U, (x„y„s,)

In writing down (4.9), we have restricted ourselves to
the simplest case where neither particle 1 nor particle 2
has any internal degree of freedom. Thus the exponen-
tial in (4.9) need not be ordered.

Ki th respect to particle j, we can define the curren t

J=k '(—2222 '&2'+&o+ VI+ V2+ VI2)C' (4 1o)

By (4.5), the leading term of J is

Inspite of the simplicity of this expression, simple
exponentiation as defined in the Introduction still
does not hold. If we expand the right-hand side of
(4.15) to the lowest order in the interaction potentials,
we get

fo(~I,&2)

J= (Ui+UI2)C) . (4.11)

Let i/i(xo, y2, 22) be the 6nal state for particle 2; then
the scattering amplitude is de6ned similarly to (3.9) as

= —k dx dyio '(~"'+~2"" dxodyodso ~go(x2, yl, s2)
~

'

f(II)1»+2) = —k dxidyldsldxodyods2+(xl»yl»sl j x2»y2»22)
X dslLUI(xl»y1»sl)+ f, 12(xl»yl»sl j x2»y2»22) j (4 16)

Xtt I*(xo,y2, 22) expL —j(II)lx,+&2yi)j. (4.12) Therefore, complete knowledge about. fo(hl, h2) allows
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F10. 1, Lowest-order diagrams of electron-electron scattering
with one electron loop.

photon exchange, where the "photon" may be either
massless or massive. Because the electron spin is not
important, '~ for these diagrams the electrons have
neither additional internal degrees of freedom nor size.
Therefore, on the basis of our knowledge here from
potential theory, this result of simple exponentiation is
not surprising.

So far as the leading terms are concerned, simple
exponentiation still holds when electron loops are
present. " In the simplest case, electron loops are
exchanged between the two incident elections as shown
in Fig. 1. In this case, although simple exponentiation
holds in the leading order, it fails in the next order,
which is smaller by a factor (ins) '. This failure was
previously emphasized in italics, "and is also the theme
of Muzinich, Tiktopoulos, and Treiman in a somewhat
diferent context. From the present point of view, this
failure can be easily understood as follows. Suppose we
take the c.m. system for dehniteness; to the leading
order, the large momentum of the incident electron,
labeled 1 in Fig. 1, is carried entirely by the virtual
electron labeled 2. Therefore, to the leading order of
approximation, the electrons have no size. To the next
order, however, the contributions come from the region
where the large momentum of electron 1 is shared
comparably between the electron 2 and the photon 3,
all as labeled in Fig. 1. Therefore, instead of a point
electron, we have an electron and an electron-positron
pair, all carrying large momenta of comparable magni-
tude. The situation is therefore very similar to the case
discussed in Sec. 4. Because of the size of this system
of an electron and an electron-positron pair, simple
exponentiation is violated.

We may raise the following question: Since (1ns) ' —+
0 as s~~, is it possible that simple exponentiation
holds at energies so high that (Ins) ' is neghbibly small?
There are many ways to see that this is not possible. A
particularly transparent way is to make use of the
excellent discussion of I,ee, Huang, and Yang'9 on the
summing of leading terms. By that discussion, compared
to the sum of the leading terms, the sum of the next-
order terms is smaller by a factor of o', where o, is the
one-structure constant. Therefore, no matter how high
the energy is, strictly speaking simple exponentiation
does not hold. Fortunately, because of the smallness of

» See, in particular, the third article of Ref. 4, pp. 1617, 1618.
» T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

{1957).

the fine-structure constant, the violation Inay not be
large. In connection with the tower diagrams, the nature
of this violation is actually a most interesting subject,
but we shall not enter this discussion here.

This fRctol a~ can bc put 1n R dlffclcllt manner. To thc
leading order of approximation, the large momentum of
the incident electron 1 is carried entirely by the electron
2, as already mentioned above. This statement applies
both to the diagrams of Fig. 1 and also to the tower
diagram of Fig. 2. Actually, for the tower diagram,
for the important region of integration, the ratio

(Momentum of the virtual photon 3)

(Momentum of the incident electron 1)

is not zero but of the order n'. This point is of great
importance in connection with the @3 theory.

We emphasize that the violation of simpte exponentia
tion does not in any unsay agect our predictions about
h~gh-energy hadronic processes. " The results there
depend only on the large absorption at high energies
and its consequent removal of particles from the
incident beam; the explicit form of simple exponentia-
tion is carefully not used. This point is not further
discussed in our paper" simply because of-the lack of
space, and is the reason why we avoided discussing
inelastic processes, which are more sensitive to the
details of absorption. We distrust results that depend
critically on simple exponentiation.

B. P' Theory.

The situation with exponentiation is actually more
complicated in the case of @' theory. First, when the
coupling constant g is small, "the high-energy behavior

FIG. 2. The one-tower diagram for electron-electron scatterjng.

~0 H. Cheng, and T. T. Wu, Phys. Re&. Letters 24 1456 (1970)„
~' We take the mass of the scalar particle to be 1.
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1V =O((lns)'I') . (5.3)

Thus the leading approximation fails before reaching

Fro. 3. One-particle exchange
diagrams.

"M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters 9,
275 (1962)."E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951).

~ P. G. Federbush and M. T. Grisaru, Ann. Phys. {¹Y.) 22,
263 (1963).

2' T. L. Trueman and T. Yao, Phys. Rev. 132, 2741 {1963).

of the elastic scattering amplitude for fixed momentum
transfer is determined by the one-particle exchange
diagrams as shown in Fig. 3. Because of the simplicity
of these diagrams, powers of lns cannot appear. Con-
sequently, for small g, the elastic differential cross
section do/dt is proportional to s ' at high energies,
and this case is thus not very interesting. In order to
get other, more interesting high-energy behavior, the

coupling constant g cannot be considered to be small
On the other hand, let us consider, for definiteness,

the ladder diagrams in the t channel as shown in Fig. 4.
These diagrams were 6rst studied by Gell-Mann and
Goldberger. " Just as in the case of quantum electro-
dynamics, the large momentum of the incident particle
I is carried entirely by particle 2 in the leading approx-
imation, but not for the next-order terms, which are
smaller by a factor (lns) '. By an argument entirely
similar to that presented in Sec. 5 A, the ratio

(Momentum of the virtual particle 3)E= (5.2)
(Momentum of the incident particle 1)

is found to be of the order g' for small coupling constants.
The simple but crucial result can be understood in

a number of different ways, and we shall present some
of the details in a separate paper. For example, we may
study asymptotically7 the Bethe-Salpeter equation. "
With respect to the asymptotic calculation of individual
diagrams, the crucial point is the following. Let E be
the number of rungs in the ladder diagram of Fig. 3;
then the well-known asymptotic behavior of Gell-Mann
and Goldberger, " and Federbush and Grisaru" holds
forPxed 1V. By comparing with the next-order term as
found by Trueman and Yao,"" it is easily verified that
the leading approximation fails when

FIG. 4. Ladder diagram in the t channel.

the largest term at

1V =O(g' lns) .

This point is to be discussed in great detail. '
Since the coupling constant cannot be considered to

be small, the ratio g of (5.2) is not small, and hence the
large momentum of the incident particle 1 is divided
comparably between particle 2 and particle 3. Thus the
situation is similar to the one studied in Sec. 4:
Each of the incident particles must be considered to
have internal structure and size, and simple exponentia
tioe does not hold. This result is clearly not limited to
the ladder diagrams of Fig. 4. Even for the ladder
diagrams, the situation is actually more complicated,
because the large momentum of particle 3 is shared
comparably by particles 4 and 5, while that of 5 is
shared comparably by 6 and 7, etc. This repeated
sharing is also of great importance.

Ke emphasize that the summing of leading terms is
not necessarily a meaningful approximation when
coupling is large. Failure to realize the limitations has
misled a number of authors, including Chang and Yan."

2'S.-I. Chang and T.-M, Yan, Phys. Rev. Letters 25, 1586
(197O).

C. Remarks

%e add here four simple remarks.

(a) Throughout our study of the high-energy
behavior of diffraction processes, elastic or inelastic,
the dominating contributions to the matrix elements
always come from the region where all the particles are
not far og mass shell, i.e., the region where all p' are of
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the order of m'. This is in particular true of the tower
diagrams'~ in quantum electrodynamics, and should
be contrasted with the case of fermion exchange. "In
a way that requires further clarification, the relevance
of high-energy potential scattering must depend on
this point.

(b) Even though in general an ordered exponential
is a rather complicated expression, it nevertheless
shares with ordinary exponentials the property that

eo(*2,y2) = dso I A(x2 yo, s2) I, (A1)

In general, if V»(xl, yl, sl,'xo,yo, s2) is an arbitrary
function of six variables, the answer to the above
question is still no. We therefore restrict ourselves here
to the most interesting case (4.23). When (4.23) holds,
it is convenient to carry out the s integrations. Let

llIIl exp —A. M(s)ds
I

=0,
)

(5.5)
Tl(xl, yl) = dsl ~ 1(xl y1 s1) (A2)

provided that M(s) is positive definite. This is the basic
property that is needed for our previous discussion"
on the limiting behavior of cross sections at high
energies.

(c) In the case of quantum electrodynamics, since
the bare photon itself has no direct electromagnetic
interaction, an electron never appears completely ab-
sorbing to a photon no matter how high the energy is.
From this point of view, the case of high-energy
Compton scattering is extremely interesting and is to
be discussed in a separate paper.

(d) Equation (5.5) is insufficient for the study of
inelastic processes. In particular we find the determina-
tion of multiplicity to be a very difFicult task. Our very
preliminary result, based on multitower diagrams and
discussed by us elsewhere, " is that the multiplicity
increases with energy as (ins)2. This is consistent with
the meager experimental data and contradicts the
result of Chang and Yan."
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2 12(xl x2 yl y2)

ds1 +12(xl »~ yl y2 sl s2); (A3)

then

dxody200(xo, y2) = 1 (A4)

and it follows from (4.15) that

f(61,62)=22k dxldyl dxodyle '& '"+ '&"00(xo,y2)

X(1—expL —22(T'1(x2 y2)+T12(xl x2 yl y2))]) .
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form
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Tl(xl,yl) + dx2dy280(x2, y2) T12(xl—x2 yl —y2) . (A6)

Note that (A6) is in the form of a convolution integral.
Let

APPENDIX
Fl(51,62) = dxldylT1(xl, y, )e ' ~ *+~'&

In this Appendix we further discuss the problem of
determining the scattering amplitude f(61,62) of
(4.15) from the integral (4.17). In connection with
the problem of simple exponentiation in the 6eld-
theoretical cases, we certainly cannot assume that
fo(xo,yo, y2) is known. However, we study the academic
question of whether f(61,62) can be determined from
(4.17) if g'0(xo, yo, s2) is known.

"H. Cheng and T. T. Wu, Phys. Rev. D 1, 2775 (1970).
'8 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and

F. Zachariasen, Phys. Rev. 133, 8145 (1964);H. Cheng and T. T.
Wu, zNd. 140, 8465 (1965).

'~H. Cheng and T. T. Wu, in Proceedings of the Fifteenth
International Conference on High-Energy Physics, Kiev, 1969
(unpublishedl.

T»(d 1&62) = dxldy12»(xl, yl)e '&~'*'+~'"" (A7)

tio(41)~2) dx2dy200(x2yy2)e ' ~'"+~'»

then the Fourier transform of (4.17) is given by

2 1(+1)~2)+eo(Alp+2)T12(+lp+2) ~ (AS)

Therefore, if (4.17) is given, we know one linear
combination (AS) of Tl and F12. This is still insuflicient
to determine f(61,62) from (A5).
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However, if we know one more scattering amplitude
where the bound system of particle 2 in the potential
V2 is left in a different state fi(x2,y2, s2), then Ti and

T2 can be determined from two different linear combina-
tions of the form (A8). Once 7.'i and T2 are determined,
all the scattering amplitudes can be found from (4.13)
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The nonrelativistic quantum theory of a particle having both electric and magnetic charges moving in an
arbitrary external electromagnetic field is presented. The theory is based on the hydrodynamic formulation
of quantum mechanics. Dirac s quantization condition for the electric and magnetic charges is rederived
as a consistency condition for the motion of the probability Quid. Neither the wave function nor the electro-
magnetic potential, which were the source of ambiguities in all other formulations, appears in our approach.
Nevertheless, this theory has all the essential features of the standard quantum mechanics, including the
superposition principle.

I. INTRODUCTION

~HE main source of difhculties in formulating the
quantum theory of particles carrying both elec-

tric and magnetic charges is the ambiguity in the
definition of the electromagnetic potential. ' One could

hopefully avoid all these difhculties if one could develop

an equivalent formulation of quantum theory in which,
instead of the electromagnetic potential, only the field

strengths appear. Such a formulation based on the
hydrodynamic form of the Schrodinger equation will be
presented here. In the absence of magnetic monopoles
this form of quantum mechanics is completely equiva-
lent to the Schrodinger theory. The generalization to
include magnetic monopoles is very natural and it
brings about a full symmetry between electricity and
magnetism. The generalized theory will be shown to
possess all the basic properties of the quantum theory,
including the superposition principle; however, an
equivalent description in terms of a unique wave func-
t1on ls no longer possible.
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II. HYDRODYNAMIC FORMULATION OF
QUANTUM MECHANICS

As was observed by Madelung, ' the Schrodinger
equation can be replaced by a set of four hydrodynamic-
like equations. In the presence of an external electro-
magnetic 6eld those equations take on the form

8p—+V (py)=0,
8$

Bv 8 I A2—+(v V')v= —E+ —vXB + V(p ')2Ap')2) (2)
R tS 2m2

where the density field p(r, t) and the velocity field

v(r, t) are related to the modulus and the phase of the
wave function and the vector potential A in the follow-

ing manner:

P(r, t) =R(r, t) exp/(i jh)S(r, t)j,
p(r, t) =R'(r, t),

8
u (rt) = —(as (rt) —A(r),))— , -,

In the standard formulation there is one-to-one corre-
spondence between the state of the system and a set of
normalized wave functions differing by a constant phase

2 E. Mandelung, Z. Physik 40, 322 (1926},


