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In view of the advances of knowledge, both experimental and theoretical, about hadronic scattering
processes at high energies, the potential-theory model studied before is found to exhibit a number of realistic
features. Because partial differential equations can be dealt with in a much more straightforward manner
than operator equations, this potential-theory model is useful in understanding some features of high-energy
processes. The problem of exponentiation, i.e., the possible appearance of an exponential factor, is studied
in detail. It is found that the simple-exponentiation form, found recently in field theories within certain
approximations, does not hold in general when the scattering particles have a finite size or internal degrees
of freedom. This result in turn is applied to the field-theoretical cases to understand further the nature of the

approximations involved.

1. INTRODUCTION

EARLY fifteen years ago, one of us studied
systematically a potential model for high-energy
scattering.! Consider the scattering of a plane wave by
~ a potential V=V (x,y,2) such that the wave function
Y=y (x,y,2) satisfies the Schrédinger equation

(V+E—V)p=0, (1.1)
with
l‘binc= eikz .

(1.2)

(We have used notation slightly different from that of
I.) In Paper I, we use the following limit as the model
for high-energy scattering:

k—ow, V/k fixed.

(1.3)
This limit has the following properties provided that V'
is neither too singular nor long-ranged: (i) The total
cross section o approaches a finite value; and (ii) if we
define the Mandelstam variable?
t=—(2k sinih)?, (1.4)
where 6 is the scattering angle, then do/dt approaches
a finite value for fixed ¢.
Although by no means clear at the time when
paper I was written, there is by now impressive experi-
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LT. T. Wu, Phys. Rev. 108, 466 (1957). This paper shall be
referred to as I. The original title of this paper was “High-Energy
Potential Scattering I.” An early paper entitled “High-Energy
Potential Scattering II,”” not related to the present paper, was
never submitted for publication.

2 S, Mandelstam, Phys. Rev. 112, 1344 (1958).

mental evidence® that properties (i) and (ii) hold at
least approximately for high-energy diffraction scatter-
ing of hadrons. Therefore, the limit (1.3) is indeed of
interest as a model in connection with high-energy
processes. Moreover, recent studies on the high-energy
behavior* of field theories yield results that show
remarkable similarity with the behavior of the scatter-
ing amplitude in the limit (1.3) because of the appear-
ance of certain exponential factors. Indeed, the appear- .
ance of such exponential factors is the basis of the
Glauber approximation.® Although there is some formal
similarity, the exponential factors found by Abarbanel
and Itzykson® in the ¢* theory are actually of a rather
different character”; contrary to their claims, the terms
that they calculated are not the leading terms.
Because of the appearance of exponential factors in
these different connections, it is desirable to have a more
thorough understanding of the simplest case, namely,
the case of the Schrodinger equation (1.1) in the
limit (1.3). It is thus the purpose of the present paper
to study the cases where either the incident particle or
the scatterer has internal degrees of freedom. Although
this generalization is mathematically trivial, it is

8 See, for example, the rapporteur paper of G. Bellettini, in
Proceedings of the Fourieenth International Conference on High-
Energy Physics, Vienna, 1968, edited by J. Prentki and J. Stein-
berger, (CERN, Geneva, 1968).

¢H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1852 (1969) ; 186, 1611 (1969). This similarity has
been explicitly stressed in the last article. See also F. Englert,
P. Nicoletopoulos, R. Brout, and C. Truffin, Nuovo Cimento
64A, 561 (1969); and S.-J. Chang and S.-K. Ma, Phys. Rev. 188,
2385 (1569).

5 R. J. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Britten ef al. (Interscience, New York, 1959), Vol. I.

6 H. D. I. Abarbanel and C. Itzykson, Phys. Rev. Letters 23,
53 (1969).

7 H. Cheng and T. T. Wu, Phys. Rev. (to be published).
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physically relevant because hadrons do have these
internal degrees of freedom.

An exponential factor does appear in these more
general cases. However, this exponential factor is in
general complicated in various ways; for example, in
the case treated in Sec. 3, this factor is of the form
of an ordered expomential. Such ordered exponentials
are not simple objects, an example being the S matrix in

field theory,
S= [exp(i/d“x L(x)>:| s (1.5)
+

where L is the Lagrangian density.

The question whether an exponential factor appears
is therefore not the relevant one within the present
context. Rather, in connection with possible application
to field-theoretic calculations at high energies,? the
question is whether the complete answer for the elastic
scattering amplitude in the limit (1.3) is determined by
low-order perturbation calculations. The answer to
this question is yes for the case treated in Paper I, but
is no in general when there are internal degrees of
freedom. In Sec. 5, we discuss the implications of this
result in the interpretation of the answers for the case
of field theories.

The appearance of the exponential factor has been
referred to as exponentiation.? In connection with all
the existing calculations of high-energy behavior in
field theory, this term exponentiation has been applied
only in the case where the exponential factor takes the
simplest form. Because of the appearance of an expo-
nential factor in general, we propose, in order to
avoid confusion, to use the term ‘“‘simple exponentia-
tion” to refer to this simplest case where the exponent
in this exponential factor is a numerical function of
x, (i.e.,  and y) only, and hence, within the particular
approximation, the complete answer for the elastic
scattering amplitude can be found from the perturbation
calculation of the lowest order in the potential. In
this sense, simple exponentiation holds for high-energy
electron-electron scattering with multiphoton exchange.*
Whether simple exponentiation holds can be tested by
carrying out the calculation of the term quadratic in
the potential. Recently, a test of this variety has been
attempted by Muzinich, Tiktopoulos, and Treiman.®

In Sec. 4, we find, on the basis of such a test, that
simple exponentiation does not hold when the target,
roughly speaking, has a finite size. As discussed in Sec.
5, because of this result, simple exponentiation cannot
hold in the case of ¢® theory, for example.

2. GENERAL REMARKS

Before considering the various cases with internal
degrees of freedom, it is perhaps interesting to give an

81. J. Muzinich, G. Tiktopoulos, and S. B. Treiman, Phys.
Rev. D 3, 1041 (1971).
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over-all view about high-energy potential scattering
as defined by the limit (1.3). For the sake of definiteness,
consider the case of the Schrédinger equation (1.1),
although similar remarks apply to Maxwell’s equations,
for example. For large %, different behaviors are
obtained depending on the assumption for V. In
particular, we may assume that

V(%,3,2)/k" 2.1)

is fixed. Three choices of the value of # are particularly
interesting: (i) #»=2, (ii) »=1, and (iii) #=0. The
limit (1.3) corresponds to case (ii).
Since cases (i) and (iii) are more familiar, we discuss
here these three cases in the order (i), (iii), and (ii).
(1) When V(x,y,2)/k* is fixed, the Schrodinger
equation is more conveniently written in the form

[V2HR2(1—V/E) =0, 2.2)
Let
€(x,y,2) =1—k2V (2,9,2) ; (2.3)
then
[V2+k26(x,y,z)]¢(x,yyz) =0. (2.4)

Accordingly, €(x,v,2) is a scalar dielectric constant and
this case can be interpreted as the kigh-frequency
scaltering by a dielectric obstacle. This is therefore a
case that can be dealt with by physical optics.® More
precisely, the procedure is as follows: The rays of
geometrical optics are first traced, and a phase and
amplitude are assigned to each point on each ray. These
phases and amplitudes are simply added together if a
point in space can be reached by more than one ray.

We emphasize the following two points. (a) The rays
of geometric optics, as determined by optical laws,
may or may not cover the entire space. Regions not
reached by these rays are the shadows. If the asymptotic
behaviors in the shadow regions are desired, classical
theory of diffraction needs to be used. (b) One simple
extension of geometrical optics is to define additional
rays when a ray reaches a singularity of V (x,y,2), such
as the point x=y=2=0 when V (x,7,2) is, for example,
either ¢~"/r or ¢*. In general, the contributions for
these additional rays decrease as some power of Z
for large k. If these additional rays still fail to cover
the entire space, exponential decrease with % is expected
in the regions not reached by any ray.!°

(iii) When V(x,y,2) is fixed, the total phase shift
through the potential is small, and hence the Born
approximation may be applied.!!

The Born approximation may or may not give all
the desired answers. So far as the scattering amplitude
is concerned, the Born approximation is sufficient
provided that V(x,y,2) is neither too singular nor

9 See, for example, M. Born and E. Wolf, Principles of Optics
(Pergamon, London, 1959).

10 See, for example, R. W. P. King and T. T. Wu, Scattering and
Diffraction of Waves (Harvard U. P., Cambridge, 1959).

1 M. Born, Z. Physik 38, 803 (1926).
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analytic in the three variables #, y, and z. In the case
of the singular potentials such as (x?+3%-+22)2 the
Born series needs to be summed.? In the opposite
extreme of the analytic potential, the Born approxima-
tion may fail for large momentum transfers and
application of the WKB method in the three complex
variables x, y, and z is needed.’® There are similarities
between this extension of the Born approximation and
the theory of diffraction.

(ii) The case of fixed V(x,y,2)/k is intermediate
between the above two. On the one hand, the present
case can be considered to be an extreme situation in
physical optics, where the rays are straight lines. Thus
the exponential factor in the scattering amplitude is
precisely the additional phase shift due to the presence
of the potential. On the other hand, this exponential
factor may be used to modify the integral equation from
which the Born approximation is derived by iteration.
This is precisely what was carried out in I.

Like the Born approximation, this high-energy
approximation of I may or may not give all the desired
answers. Clearly there are complications if the potential
V(x,y,2) is too singular. If V has weak singularities,
as in the cases of ¢7"/r or e mentioned above, then
additional rays may be introduced and the high-energy
approximation gives all the desired information. In
the other extreme, where V (x,y,2) is an analytic function
of x, y, and 2, the high-energy approximation again
may fail, and a WKB approximation in three ccmplex
variables is once more needed for large momentum
transfers.4 '

In summary, these three cases are treated by the
following methods. (i) #=2: physical optics supple-
mented, if necessary, by the theory of diffraction;
(il) »=1: high-energy approximation supplemented,
if necessary, by the complex WKB method; and
(ili) #=0: the Born approximation supplemented, if
necessary, by the complex WKB method.

3. MATRIX CASE

A. Formulation

As a simple extension of the case treated in I, let the
wave function ¥ be a column matrix with V elements
and the potential ¥ be an NXN matrix. Then (1.1)
still holds and (1.2) is replaced by

yine=gikzy | (3.1)
where # is a constant N X1 matrix. We study this case
in the limit (1.3).
Because of (1.3), let
V(x,3,2) = gkU (x,3,5) , (3.2)
2N, N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964);
G. Tiktopoulos and S. B. Treiman, Phys. Rev. 134, B844 (1964).

18T, T. Wu, Phys. Rev. 143, 1110 (1966).
14 This point is mentioned in Sec. 7(b) of Ref. 13.
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where a coupling constant g, although not necessary, is
introduced to facilitate the counting of orders. Both g
and U are held fixed as £ — . Let

Y=eitd (3.3)
Then ® satisfies the partial differential equation
(2ik3) 95+ V2—ghU)D =0 . (3.4)
Suppose we drop the term V*in (3.4); then
(0/9z+3%igU)®=0, (3.5)

and hence, by (3.1),

@(x,y,z)=|:exp<—%ig /_ 1 dz'U (x,y,z’)>:|+u. (3.6)

Here the subscript + indicates an ordered exponential
with respect to the z axis.
The source term J of I, defined by

J=gUd, 3.7)

is then given by

J(x7y,z) = gU(x;y,Z)

X[exp(-%ig /; 1 dz'U (x,y,z’))lu. (3.3)

Note that, for a potential that is smooth and not long
ranged, the approximation (3.8) is uniformly valid for
large % although (3.6) is not. Equation (3.8) can thus
be used to calculate the scattering amplitude defined by

f(ALAg) = ——k/dxdydz o1 T (x,y,5)e" i B1etd20) - (3.9)

where A= (Ay,4,) is the momentum transfer and v is
the outgoing state. Therefore, to leading order,

F(ALA,) =2i/ dxdy e~i(A1e+020)

Xt t 1 ——[exp(—%ig/: ds U(x,y,z))l}u. (3.10)

This is the desired answer. To this first approximation,
the answer differs from that of the simple case of I,
which corresponds to N =1, only in the appearance of
the ordered exponential. We proceed to study the
effects of this ordered exponential.

B. Simple Exponentiation

Suppose we make the additional, very restrictive,
assumption that

LU (,9,2),U (x,3,2) ]=0 3.11)
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for all x,y,2, and 2’. Then the ordering becomes unneces-
sary, i.e.,

f(A1,A) =2i/ dxdy e~ (Arethaw)

Xv’{l—exp(—%ig/w dz U(x,y,z)):lu. (3.12)

To the lowest order in g, f(Ay,Ay) is just given by the
Born approximation. Therefore, once the Born approxi-
mation is known for all A, Ay, and %, we can compute
from this information

fw dz U(x,y,2) (3.13)

for all  and v, and hence substitution into (3.12) gives
the desired f(Ay;,Az) to all orders in g. Note that in
this process of finding f(A,A2) from the Born approx-
imation, U is not determined although (3.13) is. In
other words, (3.11) is a sufficient condition for simple
exponentiation, as defined in Sec. 1, to hold. In partic-

ular, simple exponentiation always holds for N=1,

since (3.11) is trivially satisfied in this case.
More generally, for the present matrix case, we say
that simple exponentiation holds if and only if

[eXp<—%ig /_ : dz U (x,y,2)>l
=exp<—-%ig/jc dz U(x,y,z)> (3.14)

for all x and y.

C. Perturbation Expansion

It is perhaps instructive to expand both sides of
(3.14) to the second order in g:

[left-hand side of (3.14)]

—1—1ig / &z Uep)—1g? / &z U(n,p,2)

X/ d7'U(x,y,2")+0(g?) (3.15)
and -

[right-hand side of (3.14)7]

)

—1-1ig / dz Ulnyy) —1g f

x / i Uwy)+0() . (3.16)

dz U(x,9,2)
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Therefore, if (3.14) holds for all g, then in particular

/°° dz/z ds'[U (%,v,2),U (%,9,5")]=0. (3.17)

* Similar but more complicated conditions follow from

the coefficients of higher powers of g. Even (3.17) is
of course not satisfied by all matrices, and hence
simple exponentiation does not hold in general. We
shall now give some explicit examples.

D. First Example

As a first example, take N =2 and consider

0, it [2]>a+b
U(x,y,2)=< A (x,y)os, if b<|z|<a+b
B(xy)o1, if |z|<b, (3.18)

where o; are the usual Pauli matrices, ¢ and b are two
positive numbers, and 4 (x,y) and B(x,y) are arbitrary
functions that approach zero rapidly as x?4y?—.
Physically, in this example, the two particles interact
both with themselves and with each other through
constant potentials, but the range of the two constant
potentials are different.
A direct computation gives

ool -t avtsnn)]

=[cos(3ga4) —ios sin(3804)]
X [cos(gbB) —ioy sin(ghB)]
X[cos(3gad) —ios sin(3gad)]
=[cos(gad)—ios sin(gad)] cos(gbB)

—ioysin(ghB). (3.19)

This answer can be recast in an exponential form

[eXP<—%ig /_ : dz U (x,y,2)>]+

=exp{ —i[os sin(ged) cos(gbB)—+a1 sin(ghB)]
X [sin*(gad) cos*(gbB)+sin?(ghB) /2

Xcos Y cos(gad) cos(gbB)]}. (3.20)

We learn from this example that, when simple
exponentiation does not hold, the ordered exponential
can be written as an ordinary exponential only af the
expanse of sacrifying the linear dependence of the exponent
on the strenglh g of the potential.

For this example, simple exponentiation clearly
holds if either a4 =0 for all x and y or 6B=0 for all
x and y. Conversely, if simple exponentiation holds,
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then (3.19) should be equal to

exp(—%ig / dz U (x,y,z))

=cos[ g(a?42+b2B2) V2| —i(ssaA+01bB)

X (a2424b2B?)~12sin[ g(a?42+02B2) VY], (3.21)
A comparison of (3.19) and (3.21) shows that the
right-hand sides are equal to order g* in general, but to
order g® only if either ¢4 =0 or 6B=0.

This example also provides a case where simple
exponentiation does not hold but the condition (3.17)
is satisfied.

E. Second Example

The example of Sec. 3D can be solved rather
simply because the differential equation (3.5) can be
trivially solved in each of the three intervals (—a—b,
—b), (—b,bd), and (b, a+b). As a second example, we
consider the general case of two intervals. More
precisely, we consider the case where

[U(x;y,z)>U(x,y,Z')] =0

when z and 2" are of the same sign. The dividing plane
z=0 can of course be replaced by any surface z=20(x,y)
without any additional complication. When (3.22) is
satisfied, we have

ool vtess)]

(3.22)

—_ —-iyA(x,y)e_iﬂB(-"rU)’ (3.23)
where
A(x,y) =%/ dz U(x,9,2)
0
and
0
Bsy) =4 / 45 Ulyyz) (3.24)

Let the power-series expansion of this ordered
exponential be

[exp(—%ig / s U(x,;v,Z))l

=1—iga(x,y) — 3¢ (x,y)+&ig’c(a,y)+- -5 (3.25)
then
a=A+B,
b=A4424B+B?, (3.26)
and

c=A3+-34*B+34B*4B3.
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If simple exponentiation holds, then

b=a? 3.27)

[4,B]=0. (3.28)

Therefore, for this example, (3.17) is necessary and
sufficient for simple exponentiation.

Suppose that (3.27), or equivalently (3.28), is not
satisfied so that simple exponentiation does not hold.
We can then ask the question whether ¢ and b together
determine ¢. Equation (3.26) can be written in the
following form:

4 =%a+x ) B=%d—x )
[X,a]=b—a?, (3.29)
and
[X,b]=c—3(ab+0ba) .
Therefore, under the substitution
X — X+aa , (3.30)
where o is a number, we have
a—a, b—b,
but
¢c— c+afab]. (3.31)

Consequently @ and b together cannot determine ¢
unless
[a,b]=0. (3.32)
We do not know the answer to any of the following
questions. Under what conditions is (3.32) sufficient
for @ and b to determine all the higher coefficients?
In general, how many coefficients in the Taylor expan-
sion (3.25) are needed to determine all the coefficients?
What is the relevance of the Lie algebra generated by
A and B?

F. Higher-Order Corrections

So far we have only considered the leading approxima-
tion in the limit (1.3). We next apply the method of I to
this matrix case. Almost all the calculations can be
taken over without modification.

Instead of neglecting the term V2 in (3.4), we convert
it into the integral equation [see (2.10) of 17:

eik([r—-r'l—z+z')

J(t)+gkU(r) / ———J()dr' =gU(t)u, (3.33)
4r|r—1'|
where r=(x,y,2) and the source J is defined by (3.7).
The method of stationary-phase integration is then
applied to this exact integral equation, and it is easily
verified that every step in Sec. 3 of I applies without
modification whatsoever, except the change of notation
x <> —z. The final approximate equation is a trivial
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modification of (4.1) of I:

gU(x,y,5)u

— I (92 +EigU (5,9,9) / 02T (53,)

—k—lgU<x,y,z>[ / dz'(z—z')Jl(x,y,z'>+—1—J(x,y,z>]

—o0

—ik%gU (x,y,z){ / a2 [J1(x,9,8)

+2(Z—Z,)2j2(x,y,z,)]
—1(8/88) () } Fee, (339)

where J; and J, are defined by (3.6) and (3.4) of L
More explicitly, by (4.4) and (4.5) of I, we have

jl(xry:z) =iAt](xay)Z)

and (3.35)

j2(x;3’,2) =%At2j(x,y,z) )

where
A,=3%/9a2+02/0y° (3.36)
is the transverse Laplacian.
The matrix character of the present generalization
becomes important when (3.34) is solved by iteration.
The leading term for J satisfies

03

together with the boundary condition

f(x’ Y, —

The solution of (3.41) is

o) =] e s [ dz'U(x,y,z'>)]+u+<4k>—l / s

’

w)=u.

’l:exp<—%¢g/ dZ”U(x:y;Z")>:| gU(x,%Z/)
# +
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+higU(y.2) / Iy, (3.37)

and is hence given by (3.8). The next-order approxima-
tion satisfies

T (9,2 +3igU (w,.2) / 0T (1.7

—U(ny2) {1+ik~1g0<x,y,z>

X[exp(—-%ig / dz'U (x,y,z’)):l
—a0 +

e / dz’(z—z')At(gU@,y,z')

X [exp(—%ig /_ : dg" U (x,y,3 ’)):L) }u (3.38)

To solve (3.38), we follow the procedure of Sec. 4
of I. Let

o 3) =u—1i / Ty (3.39)

then

](x>y:z) = Ziaf(x,%z)/az ) (340)

and hence f(x,7,z) satisfies the differential equation

af(x,y,2) B ) e
I +%13U(x)y,z)f(x’y;z) = (4k) lgU(x,y,Z) { _%th(x:y;z) [exp(—%zg/ dZIU(x,%Z/))]
—00 +

—l—/ dz’A,[exp(—%ig/ dz”U(x,y,z"))] }u, (3.41)
—0 4

—00

(3.42)

’

X {—%igU(x,y,z’)I:exp(—%ig/ dz"U(x,y,z”))] +/ dz"At[exp(-—%ig/ dz"’U(x,y,z”’))] ]u
—0 -+ —0o0 —0o0 -

=[exp—%ig/ dz’U(x,y,z’):l u+(8ik)’“1/ dz’[g“UZ(x,y,z') exp(—%ig/ dz”U(x,y,z”))] u
—0 + -0 —00 +

z

—%ik“lf dz’A{exp(——%ig/ (lz”U(x,y,z")>:|

u
4

’

+%ik"’/ dz’[exp(—%ig/ dz”U(x,y,z”))] At[exp(——%ig/ dz”U(x,y,z"))] u, (3.43)
—c0 2 -+ g +
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and hence
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f(x,y,z>=gU<x,y,z>[1+<4k>~lgU<x,y,z>J[exp(—%ig f dz’U(x,y,z'>)] "
—0 +

Bk PU (5,9,2) / dz’[woc,y,z') exp(—%ig / dz"U(ac,y,z"))] "

+

%ik‘lgU(x,y,z)/ .dz'[exp(—%igf dz"U(x,y,z"))] A{exp(—%ig/ dz"U(x,y,z"))] u. (3.44)
— k3 + —00 +

’

This is the desired result to second order. This iterative procedure can be repeated to higher orders provided that
the potential V (x,y,5) has a sufficient number of derivatives.

G. Scattering Amplitude

Let A be the momentum transfer, and v be the outgoing state. The scattering amplitude f(A1,A;) has been
defined by (3.9). By (3.40) and (3.42), (3.9) can be simplified to

F(Byhg) = —2ik / drdy o[ f(x, 3,0 )= 1]t 220,

It therefore follows from (3.43) that, to second order,

(3.45)

f(ALAL) =21k / dxdy e~ %t { 1 —[exp(—%ig / dz U (x,y,z))]
— +
~ ity [ i pute) oo ~tig [ UG )]
—o0 —0 +
-I—%ik“lf dz(l—[exp(—%ig/ dz'U(x,y,z’))] )A;[exp( ——%ig/ dz'U(x,y,z’))] }u (3.46)
—0 2 + —00 -

4. SCATTERING BY BOUND SYSTEMS
A. Introduction

In Sec. 3, we have treated in some detail the case
where the incident particle has a discrete degree of
freedom. Actually, in this matrix case, the degree of
freedom can be associated with either the incident
particle or the target, the mathematics being the same.
Thus the 7th component of the wave function can be
interpreted as corresponding to either the incident
particle being in state ¢ or the target particle being in
state 2.

From the explicit examples of Sec. 3, we find that
simple exponentiation in general does not hold if the
incident particle and/or the target particle have
discrete internal degrees of freedom. In the physically
interesting case of the high-energy scattering of hadrons,
each hadron must be thought of as made of stuff.’
Thus each hadron has an enormous number of internal
degrees of freedom. We therefore expect, from the
result of Sec. 3, that in general simple exponentiation
does not hold. On the other hand, from field-theoretic

1T, T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).

calculations, we have seen that exponentiation does
hold at least in some cases and in certain approxima-
tions. We therefore study in this section an example of
potential scattering by a bound system® in order to
learn about circumstances where simple exponentiation
holds approximately. In this way we gain a deeper
understanding of the phenomenon of exponentiation
found in field theory.

B. Formulation

Consider two particles, designated as 1 and 2, in
an external potential. The Schrodinger equation is

(VEH3m WVl4 E—V1i—Vo— V=0, (4.1)

where Vs is the potential between 1 and 2, while V; and
V. are, respectively, the external potential as seen by
particles 1 and 2. The mass of particle 1 has been taken
to be 7 without loss of generality. Let particle 1 be the
incident particle of very high energy, and particle 2 be
bound in the potential. If 2 is the momentum of the
incident particle 1, and E, is the binding energy of
particle 2, then

E=k—E,. (4.2)
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Let yo(rz2) be the wave function for particle 2; then
Yo(rs) satisfies
[3m Va2 — Eo—Va(r2) Wo(rs) =0 (4.3)
and
Yine(r,re) = e ho(ry) . (4.4)

We want to study (4.1) for large £ when the following
three quantities are kept fixed:

Ul(rl) =k‘1V1(r1) ,

Ura(r1,19) =k Via(r1,12) (4.5)

and
V2 (1'2) .

We have omitted g here.

C. Explicit Solution

We solve this problem by the procedure of Sec. 3 A.
Similarly to (3.3), let

Y(ry,rs) =e* (11,12 ;
then the partial differential equation for ® is

(2ik6/az+V12+%m—1V22-—Eo—-kUl— Vz—-k Ulz)q’
' =0.

(4.6)

4.7
Suppose we drop all terms not proportional to %; then
(0/02431U1+31U12)=0. (4.8)

This is a first-order ordinary differential equation, and
its solution is, with the boundary condition (4.4),

(I)(xlryl’zl; xz:y%Z?)

21
=o(%2,y2,%2) eXP('—%i / dzy'[Ur(%1,91,21")

+Ua(w1,91,21"; xz,y2;z2):|> . (49)

In writing down (4.9), we have restricted ourselves to
the simplest case where neither particle 1 nor particle 2
has any internal degree of freedom. Thus the exponen-
tial in (4.9) need not be ordered.

With respect to particle 1, we can define the current

J =k—l(—%m_lV22+Eo+ Vi+ V2+ Vlz)fb . (4 10)
By (4.5), the leading term of J is
J=(Ur+Up)d. (.11)

Let y1(w2,v2,22) be the final state for particle 2; then
the scattering amplitude is defined similarly to (3.9) as

f(Al,Ag) = —k/dx,dyldzldxzdygdzgf(xl »Y1,21;5 x2,y2,22)

Xll/l*(X2,y2,Zz) CXPE _ Z(A 1x1+A2y1):| . (4 12)
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When (4.9) and (4.11) are used, we find that the leading
approximation to the scattering amplitude is the
Glauber form?®

f(AI,Ag)=2ik/dx1dy1/dxzdy2dzz

X e At Ay (s, 99,290 (22,2,22)

X[l—exp(—%i/ dz1[ U1(21,y1,%1)

+U12(x1,y1,zl; xg,y2,22)]>:| . (413)

Note that (4.13) is almost exactly the same as (3.10).
Application of this procedure to other situations is
obvious.

D. Simple Exponentiation

For elastic scattering, the target bound system must
remain unchanged, i.e.,

Y1 (wa,y2,22) =o(x2,Y2,22) . (4.14)
The substitution of (4.14) into (4.13) yields the follow-
ing approximate formula for the elastic scattering
amplitude:

f(AnAy)

=Zik/dxlclylfdxgdygdzze“i(A”“"A”l) l¢()(x2,y2,22) I 2

X[l —exp(—%i/ dz1[ U1(1,y1,21)

4+ Uso(w1,y1,%1; xz,yz,zz)]>] . (415)

Inspite of the simplicity of this expression, simple
exponentiation as defined in the Introduction still
does not hold. If we expand the right-hand side of
(4.15) to the lowest order in the interaction potentials,
we get

fO(Al’A2)

=—F / daydy e (At Az / dwadyadzs |Yo(as,y0,22) | 2

X/dZ1EU1(x1,y1,Zl)+Ulz(xl,yl,zl;xz,y2;z2)]- (4.16)

Therefore, complete knowledge about fo(A1,Az) allows
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us to determine

/ dzy / daadysdza | Yo(2e,y2,22) | 2

X[Ul(xlyyl;zl)_i"U12(x19y1,z1; x2>3’2,z2)] )

which is in general not enough information to give
J(Ay,4,).

In the Appendix, we discuss this point in some more
detail.

(4.17)

E. Conditions for Simple Exponentiation

In (4.15) the term quadratic in the interaction
potentials is

Lik / daydy e~ (rertdan) / Axodyadzs | Yo(xe,y2,72) | 2

2
X( / dzi Us(1,91,21) + Ua(21,y1,%1; xz,yz;zz)]) .
(4.18)

Therefore, a necessary condition for simple exponentia-
tion to hold is

</dxzdy2d22[¢o(x2,y2,22) | 2/dz1|:U1(x1,y1,zl)

2
+Ura(21,51,%1; x2,y2732)])
= / dxadysdzs | Yo(2a,y2,%2) | 2( / dzs[Us(21,91,%1)

2
+Ure(#1,y1,815 xz,yz,m)]> . (4.19)

We restrict ourselves to the case where U; and Usjs are
real. Because of the normalization of Yo(x2,y2,22), the
left-hand side of (4.19) can never be larger than the
right-hand side. Thus (4.19) holds if and only if

/ dz[Ur(21,91,21) +Usa(01,y1,815 %2,92,%2) ] (4.20)

is independent of xs, s, and 25 in the support of ¥, i.e.,
in the region where yo(xs,ys,22) is different from zero.!®
In other words,

/ dz1U12(%1,y1,215 ®2,¥2,%2) =F (x1,31)  (4.21)

when !ﬁo(xz,yz,Zz) #0.

16 The support is usually defined to be a closed set. This point
is irrelevant here.
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Suppose that (4.21) is satisfied; then (4.15) simplifies
greatly to

f(Al,A2)=21,k/dx1dy1

X gi(ArartAzyn) { 1— exp|: —%z(F (%1,91)

+/ dlel(xl,y1,21)>]} . (422)

This is the form for simple exponentiation.

In general, since o(xs,y2,22) is a ground-state wave
function, yo(xs,y2,22) is never zero. Thus simple
exponentiation holds only if (4.21) is satisfied for all
%2, ¥2, and .. Let xy —, for example, and we get
F(x1,y1)=0. This means, roughly speaking, that
effectively there is no interaction between particle 1
and particle 2. This case is uninteresting.

So far we have considered Uy, to be a function of
the six variables x1, y1, 21, ¥2, V2, and z,. Physically the
most interesting case is

Ure=Un(®1—%3, y1— 2, 21—22) . (4.23)

Thus the condition (4.21) is
/ dz1Ura(o01,91,%1) =F (01422, y1+y2),  (4.24)

provided that yo(x142xs, y1+7s, 22)70. If the support
of ¥ is three-dimensional, (4.24) can be satisfied only
if F is a constant. This again means that effectively
there is no interaction between particle 1 and particle 2.

We therefore conclude that, in the presence of
significant interaction between particle 1 and particle 2,
simple exponentiation can hold approximately only if
Yo(x2,Y2,22) is large in a small region. Since ¥o(xe,y2,22) is
a ground-state wave function, physically the most
important case is the situation where Wo(xs,ys,y2) is
concentrated near one point. We shall study this case
only, since the more general cases seem artificial and
not instructive.

F. Small Bound Systems

Let yo(xs,y2,22) be large only in the neighborhood of
the origin. Let the origin be chosen such that

/ dxadysdzars | Po(w2,y2,22) | 2

= / dxadyadzays | Yo(wa,ye,z2) | 2=0.  (4.25)
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Define the second moments by

Moo= | dasdysdasws®|o(as,y2,22) |2,

May= | dxedysdzsnnys|Yo(we,y2,22) |2, (4.26)
and

Myy= | duadysdzsys® | $o(we,ye,:) | 2.

Suppose (4.23) holds, and we try to expand Ui into
a Taylor series

/ Ura(1— %2, y1—y2, 21— 22)d21

=/ Ulz(xl, Y1, 21—22)d21—x2W12x(x1,y1)

—yszy(xl,yl)+%x22W1m(x1,y1)
+xzyzW1m,(x1,y1)+%y22W1zyy(x1,y1)+- Tt (4-27)

By (4.26) the substitution of (4.27) into (4.15) gives
approximately

f(A],Az) =2ik/dx1dy1
X gitArertdaun) { 1— [exp(——%i/ dzi[ [ U1(%1,y1,%1)

+ U12(x17y1,zl):])] { 1 _%[M:ﬁx(szz'f" 27«W12x:c)

+2Mxy(Wl2xW12y+2iW12xy)
+Myy(W12y2+2'iW12yy):|}} . (4.28)

This is correct only to the lowest order of the size of the
small bound system.

Within this approximation of keeping only the
second-order moments M, M, and M, (4.28) can
be written as

F(AAg) =2ik / dxdy,

X Armthau) { 1= {1 =3[ M oW 122*(s1,91)

F2M 2y W 20201, 1) W a2y (1,91) + M 3y Wy *(w1,51) 1}
X exp]: ——%i</w dza[ [ Ur(21,91,21) + Ura(21,91,21) ]
F LM oW 1020 (21,91) +2M oy W 190y (1,51)

+M meyy(xl,yl)]ﬂ} . (4.29)
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Therefore, the violation of simple exponentiation is
measured by

M oW 1047 (x1,y1)+2sz (xl,yx) Wiay (xx,y1)
+ My Wi (21,31) -

Since, by (4.26), the expression (4.30) is equal to

(4.30)

/ dxadyadzs |Wo(%s,y2,22) |2
X [sz1zx(x1,y1) +y2 W1, (x1,y1):|2 )

simple exponentiation is always violated. Very roughly,
the violation is of the order of the square of the radius
of the bound system.

(4.31)

5. APPLICATION TO FIELD THEORIES

We have learned from the explicit calculations here
that, in high-energy potential scattering, simple
exponentiation in general does not hold when either the
incident particle or the target has internal degrees of
freedom.!” Although it may or may not be possible to
extrapolate simple results in potential scattering to the
more realistic cases of field theories, complications that
already appear in potential theory certainly cannot be
expected to disappear in the contexts of field theories
and hadron physics. Thus we expect that simple
exponentiation does not hold for the high-energy
scattering of hadrons. In this section we discuss the
implications in field theories of the failure of simple
exponentiation.

In connection with exponentiation, potential theory
is a particularly fertile ground in which to gain physical
insight. First, the formalism of high-energy potential
scattering is so simple that nothing obscure can be
hidden. This is in marked contrast with the lengthy and
involved field-theoretic calculations. Secondly, because
of the large amount of effort required in any reliable
field-theoretic calculation, only a small number of such
calculations can be carried out. Since such calculations
are further restricted to the simplest possible cases, the
results, if taken literally without very careful physical
interpretation, may be misleading. Finally, in many
field-theoretic calculations, some assumptions are made
about the region of integration from which the import-
ant contributions come. Results from high-energy
potential scattering can be extremely useful in deciding
which approximation may be used in field theories.

A. Quantum Electrodynamics

Among various field theories, quantum electro-
dynamics is the one where simple exponentiation was
first found.* In particular, simple exponentiation holds
for high-energy electron-electron scattering with multi-

17 Note that, in the case of the high-energy scattering of a
Dirac particle by a static electric field, simple exponentiation
holds even though there is a spin degree of freedom.
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Fic. 1. Lowest-order diagrams of electron-electron scattering
with one electron loop.

photon exchange, where the ‘“photon” may be either
massless or massive. Because the electron spin is not
important,!” for these diagrams the electrons have
neither additional internal degrees of freedom nor size.
Therefore, on the basis of our knowledge here from
potential theory, this result of simple exponentiation is
not surprising.

So far as the leading terms are concerned, simple
exponentiation still holds when electron loops are
present.’® In the simplest case, electron loops are
exchanged between the two incident elections as shown
in Fig. 1. In this case, although simple exponentiation
holds in the leading order, it fails in the next order,
which is smaller by a factor (Ins)~™%. This failure was
previously emphasized in italics,'® and is also the theme
of Muzinich, Tiktopoulos, and Treiman? in a somewhat
different context. From the present point of view, this
failure can be easily understood as follows. Suppose we
take the c.m. system for definiteness; to the leading
order, the large momentum of the incident electron,
labeled 1 in Fig. 1, is carried entirely by the virtual
electron labeled 2. Therefore, to the leading order of
approximation, the electrons have no size. To the next
order, however, the contributions come from the region
where the large momentum of electron 1 is shared
comparably between the electron 2 and the photon 3,
all as labeled in Fig. 1. Therefore, instead of a point
electron, we have an electron and an electron-positron
pair, all carrying large momenta of comparable magni-
tude. The situation is therefore very similar to the case
discussed in Sec. 4. Because of the size of this system
of an electron and an electron-positron pair, simple
exponentiation is violated.

We may raise the following question: Since (Ins)™' —
0 as s—, is it possible that simple exponentiation
holds at energies so high that (Ins)~!is neglibibly small?
There are many ways to see that this is not possible. A
particularly transparent way is to make use of the
excellent discussion of Lee, Huang, and Yang!® on the
summing of leading terms. By that discussion, compared
to the sum of the leading terms, the sum of the next-
order terms is smaller by a factor of o?, where a is the
fine-structure constant. Therefore, no matter how high
the energy is, strictly speaking simple exponentiation
does not hold. Fortunately, because of the smallness of

18 See, in particular, the third article of Ref. 4, pp. 1617, 1618.
1T, D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).
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the fine-structure constant, the violation may not be
large. In connection with the tower diagrams, the nature
of this violation is actually a most interesting subject,
but we shall not enter this discussion here.

This factor o? can be put in a different manner. To the
leading order of approximation, the large momentum of
the incident electron 1 is carried entirely by the electron
2, as already mentioned above. This statement applies
both to the diagrams of Fig. 1 and also to the tower
diagram of Fig. 2. Actually, for the tower diagram,
for the important region of integration, the ratio

(Momentum of the virtual photon 3)

(5.1)

(Momentum of the incident electron 1)

is not zero but of the order o2 This point is of great
importance in connection with the ¢ theory.

We emphasize that the violation of simple exponentia-
tion does not in any way affect our predictions about
high-energy hadronic processes.® The results there
depend only on the large absorption at high energies
and its consequent removal of particles from the
incident beam; the explicit form of simple exponentia-
tion is carefully not used. This point is not further
discussed in our paper® simply because of the lack of
space, and is the reason why we avoided discussing
inelastic processes, which are more sensitive to the
details of absorption. We distrust results that depend
critically on simple exponentiation.

B. ¢° Theory

The situation with exponentiation is actually more
complicated in the case of ¢3 theory. First, when the
coupling constant g is small,? the high-energy behavior

.
’

F16. 2. The one-tower diagram for electron-electron scattering.

20 H. Cheng, and T. T. Wu, Phys. Rev. Letters 24 1456 (1970,
2l We take the mass of the scalar particle to be 1.
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of the elastic scattering amplitude for fixed momentum
transfer is determined by the one-particle exchange
diagrams as shown in Fig. 3. Because of the simplicity
of these diagrams, powers of Ins cannot appear. Con-
sequently, for small g, the elastic differential cross
section do/dt is proportional to s~ at high energies,
and this case is thus not very interesting. In order to
get other, more interesting high-energy behavior, the
coupling constant g cannot be considered to be small.

On the other hand, let us consider, for definiteness,
the ladder diagrams in the ¢ channel as shown in Fig. 4.
These diagrams were first studied by Gell-Mann and
Goldberger.? Just as in the case of quantum electro-
dynamics, the large momentum of the incident particle
1 is carried entirely by particle 2 in the leading approx-
imation, but not for the next-order terms, which are
smaller by a factor (lns)~'. By an argument entirely
similar to that presented in Sec. 5 A, the ratio

(Momentum of the virtual particle 3)
R= - (5.2)
(Momentum of the incident particle 1)

is found to be of the order g*for small coupling constants.

The simple but crucial result can be understood in
a number of different ways, and we shall present some
of the details in a separate paper.” For example, we may
study asymptotically” the Bethe-Salpeter equation.??
With respect to the asymptotic calculation of individual
diagrams, the crucial point is the following. Let V be
the number of rungs in the ladder diagram of Fig. 3;
then the well-known asymptotic behavior of Gell-Mann
and Goldberger,”? and Federbush and Grisaru?* holds
for fixed N. By comparing with the next-order term as
found by Trueman and Yao,” it is easily verified that

the leading approximation fails when
N=0((Ins)'2) . (5.3)

Thus the leading approximation fails before reaching

F16. 3. One-particle exchange
diagrams.

-0

22 M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters 9,
275 (1962).

2 E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951).

% P. G. Federbush and M. T. Grisaru, Ann. Phys. (N.Y.) 22,
263 (1963).

25 T, L. Trueman and T. Yao, Phys. Rev. 132, 2741 (1963).
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Fic. 4. Ladder diagram in the ¢ channel.

the largest term at

N=0(gIns) . (5.4)
This point is to be discussed in great detail.”

Since the coupling constant cannot be considered to
be small, the ratio R of (5.2) is not small, and hence the
large momentum of the incident particle 1 is divided
comparably between particle 2 and particle 3. Thus the
situation is similar to the one studied in Sec. 4:
Each of the incident particles must be considered to
have internal structure and size, and simple exponentia-
tion does not hold. This result is clearly not limited to
the ladder diagrams of Fig. 4. Even for the ladder
diagrams, the situation is actually more complicated,
because the large momentum of particle 3 is shared
comparably by particles 4 and 5, while that of 5 is
shared comparably by 6 and 7, etc. This repeated
sharing is also of great importance.

We emphasize that the summing of leading terms is
not necessarily a meaningful approximation when
coupling is large. Failure to realize the limitations has
misled a number of authors, including Chang and Yan.?

C. Remarks

We add here four simple remarks.

(a) Throughout our study of the high-energy
behavior of diffraction processes, elastic or inelastic,
the dominating contributions to the matrix elements
always come from the region where all the particles are
not far off mass shell, i.e., the region where all p* are of

26 S.-J. Chang and T.-M. Yan, Phys. Rev. Letters 25, 1586
(1970).
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the order of m?2 This is in particular true of the tower
diagrams?” in quantum electrodynamics, and should
be contrasted with the case of fermion exchange.?® In
a way that requires further clarification, the relevance
of high-energy potential scattering must depend on
this point.

(b) Even though in general an ordered exponential
is a rather complicated expression, it nevertheless
shares with ordinary exponentials the property that

lim [exp(—A f_ ) M(z)dz)] =0,

provided that M (z) is positive definite. This is the basic
property that is needed for our previous discussion®
on the limiting behavior of cross sections at high
energies.

(c) In the case of quantum electrodynamics, since
the bare photon itself has no direct electromagnetic
interaction, an electron never appears completely ab-
sorbing to a photon no matter how high the energy is.
From this point of view, the case of high-energy
Compton scattering is extremely interesting and is to
be discussed in a separate paper.

(d) Equation (5.5) is insufficient for the study of
inelastic processes. In particular we find the determina-
tion of multiplicity to be a very difficult task. Our very
preliminary result, based on multitower diagrams and
discussed by us elsewhere,? is that the multiplicity
increases with energy as (Ins)% This is consistent with
the meager experimental data and contradicts the
result of Chang and Yan.?

(5.5)
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APPENDIX

In this Appendix we further discuss the problem of
determining the scattering amplitude f(A,As) of
(4.15) from the integral (4.17). In connection with
the problem of simple exponentiation in the field-
theoretical cases, we certainly cannot assume that
Yo(x2,y2,y2) is known. However, we study the academic
question of whether f(A1,As) can be determined from
(4.17) if Yo(xe,y2,22) is known.

% H. Cheng and T. T. Wu, Phys. Rev. D 1, 2775 (1970).

28 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964); H. Cheng and T. T.
Wu, ibid. 140, B465 (1965).

®H. Cheng and T. T. Wu, in Proceedings of the Fifteenth
International Conference on High-Energy Physics, Kiev, 1969
(unpublished).
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In general, if Uis(x1,y1,21; %2,Y2,%2) is an arbitrary
function of six variables, the answer to the above
question is still no. We therefore restrict ourselves here
to the most interesting case (4.23). When (4.23) holds,
it is convenient to carry out the z integrations. Let

Oo(2,y2) = / ’ dzz | poloa,y2,20) |2, (A1)
T1(21,y1) 2/” dz1U1(%1,y1,21) (A2)
and
T1o(w1— 2, y1—32)
=/°° dz1Ura(1— %, y1—7y2, 21—22); (A3)
then
/ i dxadyabo(2e,y2) =1, (A4)

and it follows from (4.15) that

f(ALAL) =2k / dx1dy, / dxadyse™ Br121+8250 0 (15 41,)
X {1 —exp[ —3i(T1(2,92) + T1a(21— %2, y1—92)) 1} -
(A3)

By (A4), the expression (4.17) can be rewritten in the
form

T1(x1,y1)+[dxzdyzeo(xz,yz)le(xl—xz, y1—y2). (A6)

Note that (A6) is in the form of a convolution integral.
Let

Tl(AlyA2) = /dxldylTl(xl,yl)e—'i(Alfﬂl+A2yl)’
T12(A1,A2) =/dxldlem(xl;yl)e—i(Ale-A“”) ’ (A7)

Bo(Ar,A2) = / dwadysBo(g,ys) e Arorttonm)

then the Fourier transform of (4.17) is given by

T1(A1,A2)+00(A1,82) T12(A1,40) (A8)

Therefore, if (4.17) is given, we know one linear
combination (A8) of 7'; and T'15. This is still insufficient
to determine f(Ay,As) from (AS).
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However, if we know one more scattering amplitude

where the bound system of particle 2 in the potentia]
Vs is left in a different state ¥;(x2,y2,22), then T and

PHYSICAL REVIEW D
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T’z can be determined from two different linear combina-
tions of the form (A8). Once 7'; and T'; are determined,
all the scattering amplitudes can be found from (4.13)
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The nonrelativistic quantum theory of a particle having both electric and magnetic charges moving in an
arbitrary external electromagnetic field is presented. The theory is based on the hydrodynamic formulation
of quantum mechanics. Dirac’s quantization condition for the electric and magnetic charges is rederived
as a consistency condition for the motion of the probability fluid. Neither the wave function nor the electro-
magnetic potential, which were the source of ambiguities in all other formulations, appears in our approach.
Nevertheless, this theory has all the essential features of the standard quantum mechanics, including the

superposition principle.

I. INTRODUCTION

HE main source of difficulties in formulating the
quantum theory of particles carrying both elec-
tric and magnetic charges is the ambiguity in the
definition of the electromagnetic potential.! One could
hopefully avoid all these difficulties if one could develop
an equivalent formulation of quantum theory in which,
instead of the electromagnetic potential, only the field
strengths appear. Such a formulation based on the
hydrodynamic form of the Schrédinger equation will be
presented here. In the absence of magnetic monopoles
this form of quantum mechanics is completely equiva-
lent to the Schrodinger theory. The generalization to
include magnetic monopoles is very natural and it
brings about a full symmetry between electricity and
magnetism. The generalized theory will be shown to
possess all the basic properties of the quantum theory,
including the superposition principle; however, an
equivalent description in terms of a unique wave func-
tion is no longer possible.
* Work supported in part by the U. S. Atomic Energy Commis-

sion under Contract No. AT-30-1-3829, by the U. S. Army Re-
search Office (Durham), and by the National Science Foundation.
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II. HYDRODYNAMIC FORMULATION OF
QUANTUM MECHANICS

As was observed by Madelung,? the Schrddinger
equation can be replaced by a set of four hydrodynamic-
like equations. In the presence of an external electro-
magnetic field those equations take on the form

dp
> +V-(ov) =0, n

ov e 1 #?
— 4 (v-V)v= —<E+ —vXB)—l— —V(p~12Ap12), (2)
at m c 2m?

where the density field p(r,f) and the velocity field
v(r,t) are related to the modulus and the phase of the
wave function and the vector potential A in the follow-
ing manner:

Y(r,t) =R(x,0) exp[ (&/1)S(x,1) ], 3)

p(r,l)=Rxt), 4)
1 e

v(r,)= —<VS(r,z) — —A(r,t)). 5)
m c

In the standard formulation there is one-to-one corre-
spondence between the state of the system and a set of
normalized wave functions differing by a constant phase

2 E. Mandelung, Z. Physik 40, 322 (1920).



