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High-Energy Scattering of a Fermion with Anomalous Magnetic Moment:
Nonexponentiation*
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Although it is well known that the scattering amplitude for a Dirac particle in a potential takes a simple-
exponentiation form at high energies, we show here that this is no longer the case if the Dirac particle has
an anomalous magnetic moment as in the case of the proton. This serves as an example of our conclusion
that simple exponentiation holds only if a particle can be treated as a point with no internal structure or
internal degrees of freedom. This means that simple exponentiation is unlikely to occur for high-energy
amplitudes of hadron-hadron scattering.

1. INTRODUCTION as it turns out, the spin of such a fermion does not Rip
in a scattering process. A detailed discussion of the
limitation of exponentiation is given elsewhere. v'

In this paper, we show that exponentiation already
breaks down for the scattering of a fermion in a static
field if the fermion has an anomalous magnetic moment.
Simple exponentation also fails for the scattering ampli-
tude of a charged vector meson in an external field,
which will be treated elsewhere. '

'ORE than a decade ago, a number of authors''
~ ~ found that, for a charged scalar meson or a

Dirac particle in a static field, the scattering amplitude
takes the simple-exponentiation form of Moliere. ' For
this reason, in the Glauber approximation, ' for example,
this exponentiation form is assumed. Recently, interest
in exponentiation forms has received a new impetus as
certain evidences for its existence have been discovered
in field theory. In particular, the same simple-exponenti-
ation form was found to hold in the multiphoton ex-
change amplitude of electron-electron scattering' ' and
a double-exponentiation form was found for electron-
photon scat tering. ' These developments produced
the optimism that the exponentiation form holds gener-
ally for a high-energy amplitude of hardon-hadron
scattering.

We wish to point out that the simple-exponentiation
form holds only in the approximation in which a particle
is treated as a point with no internal structure and no
internal degree of freedom. This is true for a boson
satisfying the Klein-Gordon equation. This is also
true for a fermion satisfying the Dirac equation with
no anomalous magnetic moment. The latter is because,
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2. FERMION IN STATIC FIELD

The Dirac equation for a fermion with an anomalous
magnetic moment « in a static field V(x) and a mag-
netic field H is'

8$
i—=[—m v+Pm «P(X H —ie E)+e—V]g, (2.1)

8$

where, for definiteness, we choose the representation

(o Oi (1 0)
~0 crJ

'
~0 -1) '

(2 2)

E= —vV.
Eo 0)

We sometimes use the notation V(x„s) and H(x„,s)
instead of V(x) and H(x), as the occassion demands.
We assume that the potential is sufficiently smooth.
The boundary condition is

VH. Cheng and T. T. Wu, following paper, Phys. Rev. D3,
2397 (1971}.
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P (F2 2)22) 1/2

We solve (2.1) in the limit E~(27. We put

where u, is the initial bispinor state and is independent In (2.9) or (2.7), the matrices are 4X4. It is possible

of x and t. Also to reduce them into 2)& 2 matrices. Let us first eliminate
the term e V in (2.6) by the substitution

e
—1Z(t—x)y

Substituting (2.3) in (2.1), we get

(2.3)
Q= exp —ie V(xd, s')ds' F. (2.10)

Since F- —172(), (2.4) gives
(1- )~-0. (2 5)

E(1—eE)p= [ ie—p'+p222
—«P(X H ie—E)+eV](t) (2. .4)

2(a/a—z)F-.p(x, H, ie, E—,)F
(0'2'H1 2e«—' Ed

(2.«)
Lie« E1 —e1 H1

Let us multiply Eq. (2.4) by —',(1+e2) from the left.
Then the left-hand side of (2.4) vanishes as (1+e2)
X (1—e2) =0. For the right-hand side of (2.4), we move

(1+eE) to the right until it operates on p. Then, as a
result of (2.5), we have

(1+eE)e,(t)= e, (1—eE)(P 0,
(1+e,)Pq=P(1 e,)q-—O,

(1+e2)pZ-2$= pZE (1 eE)(—t) 0,
(1+e2)Pe2y= Pe, (1 eE)y—-o,

Next, as a result of (2.5), we set

td X ')(

F-(-'Z/~) I
~te,xi

where

i(B—/Bz)X= AX,

Substituting (2.12) into (2.11), we get

(2 12)

(2.13)

where e&——o.ie~+e2e2 is the transverse part of e. Thus
(2.4) becomes

L
—i(8/Bz) —((p(X2 H1—ied E«)+eV]p 0. (2.6)

The solution of (2.6) is

A =K(O'1'H1 —2ed E10'2)

(2.14)
&1—2&2+2(a —»2))

o

0

(H1+iH2 —i(E1+iE2)

&(r1(+1++2)+(((r2(+2 +1)

Q= exp —ie
z

V(xds') dz'

g

exp zK Xg Hg xg,s

The matrix A is 2&(2.

The scattering amplitude Mf, can be expressed in
terms of A. We have

~fi~zXf d xge—(d, E.(x.,e') jde') x;, (2.7)

where ( )+ denotes the ordered (with respect to s')
product.

The scattering amplitude is equal to

exp —ie V(xd, ,s)ds
i

3Rd; ——u7 d'xe * 'PeV(x) ((PX, H1(x—)

+i((pe« Ed(X)g(p(X), (2.8)

where Nf is the bispinor of the final state and 4 is the
momentum transfer. Substituting (2.7) into (2.8) and
carrying out the integration over s, we obtain

X exp~ i A(xd, s)ds
~

—1 x;E/222, (2.15)
) +

where X, and &f are the eoresalized, initial- and final-
state spinors.

The spinor function X is obtained from (2.13) as

( 00

(xy d'x, e ' '*, e*pl 'e V(x,,e)de)

X= exp i A (xd, s')dz' (2.16)

That the scattering amplitude and the wave function I
must be expressed in terms of ordered products means
that simple exponentiacion does not occur. As is ob-
vious from (2.13), the anomalous magnetic moment «

couples the two spinor states of X, and accounts for the
breakdown of simple exponentiation.

(
X exp~ (( IiPZ, H, (x,,z)

+Ped E,(x,ez)jdz
i

—1 u, . (2.9)
i +
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In Sec. 3, we give the closed form of
We diagonalize the matrix in (3.3) and obtain

exp z A (»1,s') ds'

(
0

i(x+iy)

—2(x —iy))

0
explicitly in the special case V(x)= V(lxl) and H=O.

3. CENTRAL STATIC POTENTIAL

(x2+y2) 1/2

=5
0

0
IS-' (3.4)

(x2+y2) 1l2j
In many instances it is helfpul to have specific ex-

amples in which closed-form solutions are possible. %e
therefore give a solvable example here. Consider the
case

where

~

~

~ ~

(x iy)1/2 (x iy)1/2
5= —)(x+iy)'" )(x+iy)'")

(3.5)

a central field. Then

JIg ——H2 ——0,

V= V(fxl)

i(x+iy) "' (x—iy—) '"
5 '= (22)

—1(x2+y2)—1/2 (3 6)
i(x+iy) "' (x—iy) "'

Equations (3.3) and (3.4) imply

&1=—(*/lxl) v'(lxl),
& = —(y/I»I) V'(l»I).

Thus (2.14) becomes

(3 1)

(3.2) exp i A (»1,s') ds' = exp i A(»1,2')dz'

0
~=~I»I 'V'(lxl) .

i(x+iy)

2(x iy)— —
3.3)

0
'

where

=5 5 ', 37

notice that aside from the factor in front, the matrix
in (3.3) is independent of s. Thus yf (x,,s) and yf (x,,s')
commute. This is why we can solve (2.13) in closed
form.

(x2+y2)1/2 (x2+y2+sy2) 1/2

((x2+y2+sy2) 1/2)day (3 P)

Performing the matrix multiplication in (3.7), we get

exp i
cosItw/

yf (x1,s') ds'
-(x+iy)(x'+y') '" sin~W

(x—iy) (x'+y') '/' sin/BV

cosf~:t/V

(3.9)

The wave function X and the scattering amplitude GRr, can be explicitly obtained from (2.15), (2.16), and (3.9).
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