PHYSICAL REVIEW D

VOLUME 3,

NUMBER 1 1 JANUARY 1971

Multiplicity in Very High-Energy Particle-Nucleus Collisions*

Paur M. FisgBANE aAND J. S. TrEFIL}
Department of Physics, University of Illinois, Urbana, Illinois 61801
(Received 20 July 1970)

We investigate the broad features of final multiplicity in high-energy inelastic particle-nucleus collisions.
The 4 dependence of multiplicity is rather sensitive to the nature of the high-energy particle-nucleon
reaction. In particular, we investigate consequences of the particle-nucleon reaction being of multi-

peripheral type.

T has become clear that at very high energies one
will no longer be able to measure all momenta of all
particles. In addition, the number of two- and three-
particle correlations is so large that one will not be
able to analyze the data through the study of these
correlations. Instead one will have to work with
quantities such as partial distributions or multi-
plicities. It has recently been suggested! that measure-
ments on multiplicities in nuclear scattering may
provide a useful tool for determining the nature of the
dominant high-energy primary reactions. The basic idea
behind this proposal is that the particle-nucleus ampli-
tudes will depend in a relatively straightforward way
on the particle-particle amplitudes, so that by measur-
ing the former, one may hope to derive information
about the latter. In addition, by measuring multi-
particle production in nuclei, one can obtain information
about the state in which the particles are produced by
observing their interaction with nucleons farther down-
stream from the one on which they were created. High-
energy production data on large nuclei is now being
collected in a cosmic-ray experiment,? and more will
become available soon from the National Accelerator
Laboratory (NAL). It is the purpose of this brief note
to exhibit some of the most striking predictions for
this type of process. We shall be concerned throughout
with deriving general results which can be expected in
such reactions, rather than in making hard theoretical
predictions on the basis of particular detailed models.
Hence our results should be taken as indicating the
broad features to be expected in multiparticle produc-
tion from nuclei at high energies, rather than an
investigation of details of such processes.

In discussing processes of this sort, there are basically
two types of problems which must be handled. These
are (1) those concerned with the behavior of the nucleus
during the interaction, and (2) those concerned with
models for the production of multiparticle states at
high energies.
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For our nuclear model, we choose to represent the
nucleus as a spherical absorbing medium of uniform
density whose radius is picked to match those measured
in electron scattering experiment.® Thus we restrict our
attention to those reactions in which the nucleus does
not become excited or fragmented, i.e., to coherent
scattering. In practice, this means that we look only
at small forward angles, or at momentum transfers less
than or on the order of the nuclear Fermi momentum.
This, in turn, implies that our calculations will be best
for those reactions in which the energy of the incident
particle is sufficiently high so that the longitudinal
momentum transfer associated with the creation of a
high-mass final state is small. While there is some
incoherent scattering even in the small-f region, it can
be taken into account by standard techniques.*

There are two types of primary reactions we would
like to use as extremes to illustrate what one can learn
from the A4 dependence of high-energy coherent-
scattering experiments. The first is pure isobar produc-
tion without decay within the nucleus—a criterion
obeyed by hadron resonances above 100 GeV. Here the
number of particles scattering in the nucleus remains
at one even though that particle may be an excited
state of the projectile. The only possible increase in
multiplicity is due to higher isobar production with
each collision and the concommitant increase in the
number of stable decay products of that higher isobar.
The second type of primary scattering event is the
truly inelastic reaction of the multiperipheral type.®
In this case, the number of particles available to
rescatter within the nucleus increases with each
collision, so that an increase in multiplicity can now
arise from the products of the initial multiperipheral
interaction initiating reactions of their own, building
up a cascade within the nucleus. Of course the dominant
reaction at high energy may be intermediate between
these two extremes. Nevertheless it is worthwhile to
study the extreme cases in order to delineate the possi-
bilities offered by nuclear scattering.

To understand this technique better we must first
look more closely at multiple scattering in nuclei. Let
us consider the multiple scattering of a single high-
energy particle in a nucleus. We assume for con-

3 R. Herman and R. Hofstadter, High Energy Electron Scattering
Tables (Stanford U. P., Stanford, 1960).

4 J. S. Trefil, Nucl. Phys. B11, 330 (1969).

5 K. A. Ter-Martirosyan, Nucl. Phys. 68, 591 (1965); see also
F. Zachariasen and G. Zweig, Phys. Rev. 160, 1322 (1967).
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venience that, regardless of the type of individual
reaction, the original projectile remains more or less
intact and retains its high energy. We also assume that
the total cross section is a constant. (We shall later
assume for simplicity that it is the same constant for
all particles.) We call this leading particle the primary.
In an isobar-type reaction the primary is the projectile
or its excited state. In a multiperipheral-type reaction
the primary is the particle at the top of the multi-
. peripheral chain (this is discussed in more detail
below). In our model, the primary propagates through
the nucleus with a mean free path { determined by the
number density of nucleons and the total primary-
nucleon cross section o7, according to

1/¢ =orX (number density of nucleons). (1)

For a nucleus of a given radius R, we can find the
probability P(I) for the occurrence of I collisions by
integrating over both the path length available for
collision at a given impact parameter b and the impact
parameter. This relative probability (unnormalized)
is given by

2R n 7 n
P(I) =1r/ ndn/ dzl/ dzs- - / dzr
0 0 21 21-1

B X(1/0)T exp(—1/¢)
—r f wdn(n/6) exp(—n/0)/11, @

where n=(R2—5%)"2 is the total distance in nuclear
matter traversed at a given impact parameter b. This
form is easily derived by noting that the probability
of a particle travelling a distance z in an absorbing
medium without a collision is just e~#/¥, and the proba-
bility of at least one collision between z and z-dz is
just 1—e ¥%/=dz/¢, so that the probability of having
collisions at 2y, 2s, ..., 2zr and then getting out of the
nucleus with no further interactions is just

()7 exp(—21/¢) exp[ — (22—21) /5] - -
Xexp[— (n—2z1)/¢]

which, after some trivial cancellations, leads directly
to Eq. (2). We note in passing that P(J) is closely
related to the incomplete gamma function,® and that
the average number of collisions is just

e - 4 R
I=%I1PI) /> PU)=-—. 3)
=0 =0 3¢

For our calculation, we shall choose o7=40 mb, a
value appropriate for a proton primary (and hence the
value most useful for analyzing cosmic-ray data). This
corresponds to { =1.83 F. P(I), probably normalized, is
given for this value of { and various nuclei in Fig. 1.
As one might expect, for larger nuclei the distribution

6 M. Abramowitz and I. A. Stegun, Handbook of M athematical
Functions, edited by M. Abramowitz and I. A. Stegun (U. S.
Department of Commerce, National Bureau of Standards,

Washington, D. C., 1964), Applied Math. Sec. 6, Chap. 6.5,
p. 260, formula 6.5.1.
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¥16. 1. Probability P(I) for I primary collisions in various nuclei.
The mean free path is determined by ¢7=40 mb.

8 9 10

is flatter and the peak in the distribution occurs at
larger values of 1.

We can now use these distributions to make pre-
dictions based on our two models for the nature of the
primary scatterings. For an isobar model, the final
multiplicity is just the multiplicity from the decay of
the isobar produced at the Ith collision weighted by
P(I). This will result in a multiplicity not very different
from that observed on a proton.

In a multiperipheral model the prediction is more
striking but more difficult to calculate accurately. We
use the simplest multiperipheral model that is consistent
with a constant total cross section. It will be the high-
energy data that reveals whether the appropriate
stringent kinematical constraints (all subenergies large,
all momentum transfers small) must be satisfied. We
assume that the characteristics of the collisions are as if
these constraints do hold. With this model, the distri-
bution for producing N particles in a primary collision
is flat for NV from 2 to Nmax~Ins. The particle which
emerges from the top of the multiperipheral chain
retains almost all of the energy of the projectile. This
particle we call a primary or first-level particle. The
particles in the chain have successively lower energies,
the energy of the 7th such particle being approximately
B¢ times the energy of the primary. 8 depends on N,
the number of particles in the chain, in such a way that
the last particle on the chain remains at rest in the lab.
For the coherent nuclear reactions we are studying this
last particle in just the target nucleon. We call the
second particle in the chain a secondary, or second-level
particle, and similarly for other lower-level particles.
The reason the multiperipheral reaction is interesting
to us is that both the primary and the lower-level par-
ticles can cascade.” The difficulty arises as follows. When

7 Lower-level particles follow the primary particle through the
nucleus. One may ask whether the fact that the primary’s going
ahead has changed the nucleus to the extent that scattering of
lower-level particles is affected. This problem has been investigated

in Glauber theory and the effect is found to be very small [see
J. S. Trefil, Phys. Rev. Letters 23, 1075 (1969)1.
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F1c. 2. Total number of final particles versus A, using an
average number of collisions per particle and an average number
of particles produced per collisions. As described in the text, we
take N=10, 8=1, and g7=40 mb. The solid curve which rises
slightly faster than linearly represents chaining in all possible
}evels, and the dashed curve represents chaining through the third
evel.

the primary produces an N-particle chain, the energy
of the secondary is reduced by a factor B(N). This
secondary can itself have a subsequent multiperipheral
collision with a probability for producing N’ particles
which is flat out to V' max. V' max now depends on B(N),
namely, N'max=Nmax—B(V). Thus the multiplicity
distribution arising from a given sequence of collisions
is already very complicated. In addition, the multi-
dimensional probability distribution for collisions other
than just primary collisions, in analogy with Fig. 1, is
difficult to calculate. Expressions analogous to Eq. (2)
for a given number of particles produced at an arbitrary
collision are straightforward to write down, but numeri-
cal calculation is not feasible, and complete treatment
of the multiplicity distribution on nuclei when the
primary reaction is multiperipheral is very complicated.

There are, however, two distinct and, in a sense,
orthogonal ways in which we can get an indication of
the dependence of multiplicity on the atomic number 4.
(1) In the first approach we give up the idea of getting
a distribution of multiplicities but concentrate on
estimating the average multiplicity due to the cascading
of many particles. (2) In the second approach we study
the effect of nuclear scattering of the primary on the
shape of the particle multiplicity distribution, but
without trying to include the effect of cascading of
lower-level particles.
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(1) In order to estimate the average effect on multi-
plicity of the cascading of lower-level particles, we
assume that a particle in the nucleus undergoes an
average number of collisions (I) in the nucleus and that
each collision produces an average number of particle
according to its energy.

The average number of primary collisions in a nucleus
is taken directly from Eq. (3). I is a linear function of
the nuclear radius R, or is approximately proportional
to A3, How can we estimate the average number of
lower-level collisions? It is reasonable that particles
produced in the primary collision would have an average
number of collisions equal to 7—1 since one “average
collision length’ has already been traversed.® Similarly,
particles in the second primary collision or in the first
collision produced by lower-level particles of the first
primary collision would have 7—2 collisions on the
average. In order to test this, we calculated the two-
dimensional collision probability analogous to Eq. (2)
for primary collisions and collisions of the secondary
particle in the first primary collision. As expected, the
average number of collisions for the secondary was
approximately one less than the average number of
collisions of the primary. We therefore take as a working
rule that a particle produced after # collisions undergoes
an average number of collisions equal to I —.

Next we study the number of particles produced
per collision. Let the average number produced in the
primary collision be N. According to our previous
remarks, the average number produced by the collision
of a second-level particle would be N—3 (note that
since N =3Nu.ax, this 8 equals one-half of our previous
B8); by a third-level particle, N —28, etc. We further
make the reasonable assumption that § is independent
of energy. This means that the collision of a third-level
particle of a primary collision would produce the same
number of particles, N—28, as the collision of a particle
which is itself the secondary of a secondary produced
in a primary collision. It is now clear how to count the
average number of particles produced by the collision
of any lower-level particle, whether this lower-level
particle be the direct product of a primary collision or
the result of cascading of other lower-level particles.
We say that a particle is a universal jth-level particle
if in a collision it produces N — (j—1)8 particles on the
average. We note that both N and 8 are quantities
which must be determined by experiment.

With the above approaches to number of collisions
and particles produced per collision, it is a straight-
forward matter of counting to compute the number of
particles emerging from a given nucleus. Recall that

8 The assumption is implicit here that all particles have the
same mean free path. A refinement to this calculation which is
rather simple to make is, for example, to assume that the primary
particle is a proton (¢7=40 mb, {7=1.83 F) and that all lower-
level particles are pions (e7=30 mb, {7=2.40 F). The proton or
pions would then have as many further collisions as the available
remaining average path length would allow.
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in the multiperipheral model the target particle re-
mains at rest and does not emerge from the nucleus.
Then, for [ an integer and including the effect of cascad-
ing up to the Jth universal level, the total number of
emerging particles is

- J —
NI=14+N-2)I+¥ (N—2—;B)
=1

i 1 F—1\ w1
xz——( >II I=kt1D). @
=)

When I is not an integer, we consider only terms in
the product over £ which remain positive. We are then
making an error (small in the cases we consider) which
depends on I minus the largest integer in I. We also
constrain J such that each term in the sum over j
remains positive.

In order to illustrate the effect, we calculate NV
from Eq. (3) for the I given by the arrows in Fig. 1,
for N=10, and for =1. We put J=9, which is the
last universal level that can conceivably rescatter in the
nucleus. The results are shown in Fig. 2. Notice that
N grows with A at a rate slightly faster than linear, a
rather striking rise in multiplicity. It is perhaps worth
noting that although we took N arbitrarily at some fixed
energy, the rate of increase of N is ~Ins; therefore we
would expect the nuclear effect also to increase as Ins.

(2) As our second distinct method of studying the
nuclear effects, we study the effect of many primary
collisions on the number distribution. We have already
stated that in single collisions the distribution is flat
up to Nmax. Qualitatively we may see the effect as
follows: for a given number of primary collisions, there
are several ways one can have a given number of
particles emerge, and the number of ways differs for
different final numbers of particles. For the reasons
discussed above, we make a quantitative calculation
of the number distribution including only multiple
collisions of the primary particle.

Let us first assume that there are I primary collisions.
If there are #; particles produced in the ith collision
and j;=n;—2, recall that the number produced in 7
collisions is

I
N=3 ji+1.
=1

If p(n) represents the probability of producing =
particles in a given collision,

n S A'Tma,x

©®)

1/ N max,
p(n)= {

0, 72> N max

then the probability that N particles emerge when
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there are I collisions is

p(V,I)= Z Z Z p(n)p(ng)- -

<p(nr)dsiir1 N

71=0 ja=0 =0
Nmax—2 Nmax—2 Nmax—2
=(1/Nmax)! 2 2 -+ 2 Smiw.
J1=0 J2=0 =0

If we define Jmax =N max—
p(l\r,l) = (1/l\rxnax) I

I max min(Jmax, N—1—j4,0) min (Jmax, N—1—j1+++57-1,0)

X2 2 2 L.

1=0 j2=0 =0 (6)

2, this can be written

Finally, the probability of having NV particles emerge,
averaged over all numbers of primary collisions, is

P(V)= g) PWV,DP(I), )

where P(I) is given by Eq. (2).

We have calculated P(NV) and compared it to p(n)
for C2, Sr®, and Pb?8 in the cases Nmax=3, 10, and 20.
(A detailed model for multiperipheral events will give
some relations between N,.x and the energy of the
primary, but we do not wish to make any choice of the
relationship here.) These functions are shown in Figs.
3(a)-3(c). Notice the departure from the flat multi-
peripheral distribution. This occurs because the number
of collisions is smaller in the smaller nuclei, hence the
distribution is more peaked at smaller N and falls off
more rapidly at larger N. Also, for small Nua.x and
small 4 we see a pronounced second maximum near
Nax. This is because in a single collision no more than
Numax particles can be produced. The second peak
represents the separation between the effect of single
and double or higher collisions. The distribution is
smoothed out for larger radii and larger Nax.

We should note that including the effects of cascading
lower-level particles would affect the distribution shape
chiefly at larger V. This is because lower-level collisions
cannot occur until inelastic primary reactions have
occurred.

We would now like to make a few remarks about the
limitations of this idea as we have presented it. We
have stated that in order to apply our results it is
necessary to stay within the coherent peak. For a large
nucleus this peak may be very narrow. To the extent
that transverse momentum is cut off at ~ several
hundred MeV at high energies, a substantial number
of events may lie within this peak. However, the
experimental difficulties may be very severe because
the angle which the coherent peak subtends may force
the experimenter to have to count particles which are
essentially in the beam line.
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F16. 3. Final particle distribution for three nuclei and three
values of Nmax. The square curve is the distribution of the funda-
mental multiparticle spectrum. These curves represent the effect
of chaining the primary particle only.

In the sense that produced particles are further from
the beam line, an experiment in the incoherent region
is simpler to perform. A calculation of multiplicity in
this region cannot be done by treating the nucleus as a
dense medium. There is, however, a calculation which
could be performed and which would be appropriate to
this region. This is a Monte Carlo calculation in which
the nucleus is treated as a collection of free nucleons.
One could ask for the number of fast particles lying
within a certain finite cone, given the nature of the
primary reactions. In contrast to the remark made in
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Ref. 7, in such a Monte Carlo calculation the effect a
fast particle would have on a slower particle following
it through the nucleus would be considerable. This
calculation, although somewhat more involved, is very
similar to the old Monte Carlo shower calculations.
There is a further practical reason why this Monte
Carlo calculation should be performed. In the type of
experiment we are talking about it will not be experi-
mentally possible to decide on the final state of the
nucleus. Furthermore, many of the outgoing final
particles are neutral so that an estimate of the total
transverse momentum of the final particles will not be
easy to make with any accuracy, leading to uncertainty
about whether one is within the coherent peak. Thus
it would be more useful experimentally to have an
estimate for the sum of coherent and incoherent cross
section for fast outgoing particles within some finite
forward cone.

Assuming again that we can stay within the coherent
peak so that our model can be applied, there are
cautionary remarks to be made, especially to the effect
that our results for final multiplicity are overestimates.
We assumed in our calculation of the average final
multiplicity (Fig. 2) that particles at every possible
level of the multiperipheral chain cascade. Since the
energies of lower-level particles may be relatively low,
this is an assumption that can be called into question.
The dashed line in Fig. 2 shows the effect on average
multiplicity—somewhat less striking—when only parti-
cles up to the third level on the multiperipheral chain
are allowed to cascade.

We have made three further assumptions which
should be examined further. The first is that the multi-
peripheral process in nuclear matter is the same as in
vacuum. This is not an assumption which can be tested
without recourse to nuclear physics, but it does not
seem physically unreasonable. Secondly, we have
assumed the primary retains sufficient energy to
produce the same number of particles at each collision.
It would be simple to modify our result to include
decreasing multiplicity with each collision. Thirdly,
the multiperipheral model we used is one which leads
to a constant cross section. Recent data seem to indicate
that o7 may not be flat at high energies. If this is the
case, the simple multiperipheral model we have used
would have to be modified. Nevertheless, the general
features we have discussed would remain, namely,
nuclear-dependent sensitivity of the total number of
final particles to the “inelasticity”’ of the primary
reaction, and nuclear-dependent sensitivity of the shape
of the final number distribution.
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