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High-Energy Behavior of a Spin-Flip Amplitude
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The perturbation series for the spin-Rip amplitude, where two units of spin are exchanged, of the scattering
of two vector mesons through fermion —fermion —vector-meson coupling is studied in the limit of high ener-
gies. Similar to the case of elastic scattering (without spin Qip) in quantum electrodynamics, there are, for
this spin-Qip amplitude, terms in the perturbation series of the orders of magnitudes s, s lns, s(lns)', s(lns)',
etc. For each n, the leading term in the coef6cient of s(lns)" is due to Feynman diagrams with n+2 closed
fermion loops. These leading terms are found explicitly for the exactly forward direction, and are then
summed. Because these terms alternate in sign, at high energies this sum is smaller than any one of the lead-
ing terms in the series. This sum is studied in detail for the case where massless photons are exchanged, and is
found to have a simple factorization property. Some of the results are extended to the more general case of
exchanging massive neutral vector mesons. The high-energy behavior of this spin-flip amplitude is quali-
tatively different from that of the spin-nonflip amplitude studied previously.

l. INTRODVCTION

ECENTI Y, we have studied the high-energy be-
havior of elastic scattering amplitudes in the

exactly forward direction in quantum electrodynamics. '
This was accomplished through the method of sum-

ming the leading terms from the one-tower diagrams.
Although the result, taken literally, violates the s-
channel unitarity, ' ' a suitable interpretation in terms
of pionization' furnishes a number of predictions on
some of the fundamental questions in high-energy
physics. '

An important ingredient in this development, as
previously emphasized, ' is the fact that the leading
terms, which are summed, are all positive. This fact is
related closely to the optical theorem, and thus its
validity has been shown only for the spin-nonAip ampli-
tudes in the forward direction. In general, for other
amplitudes, the leading terms may or may not be of
the same sign. It is the purpose of this paper to carry
out essentially the same considerations as those in Ref.
1 for the spin-Rip amplitude in photon-photon scatter-
ing. As in Ref. 1, we shall restrict ourselves to the ex-

actly forward direction, but the "photon" may be
a massive neutral vector meson.
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f Work supported in part by the National Science Foundation
under Grant No. GP-13775.
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To the lowest nontrivial order, namely, the eighth
order, photon-photon scattering in the forward direc-
tion has been studied in detail. To this order, it has
been found that there are, at high energies, two large
amplitudes of comparable magnitude. One of these two
is of course the spin-nonQip amplitude, while the other
one is the spin-Rip amplitude involving the exchange
of two units of spin. It is this latter amplitude that we

study here to higher orders.
The motivation for carrying out the present study

is as follows. We have been trying to learn about the
high-energy behavior of hadronic scattering processes
from relativistic field theory in general and quantum
electrodynamics in particular. In this learning process,
two very diRerent but equally important kinds of steps
are necessary: calculations and interpretations. Ex-
amples of the former are the initial ones on two-body
processes in lowest nontrivial orders7 and that on
logarithmic factors, ' while examples of the latter are
those on the impact picture' and limit of cross sections. '
At present we have a satisfactory understanding of two-
body elastic processes without the exchange of any
quantum number, 4 but the situation is much less clear
when quantum numbers are exchanged. In this paper,
we provide a calculation involving the exchange of spins.
It is possible for an amplitude involving the exchange of
spins to have similar high-energy behavior as the spin-
nonQip amplitude' already studied. An example of such
a case is provided by photon-photon scattering in scalar

'H. Cheng and T. T. Wu, Phys. Rev. D 1, 3414 (1970).' H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1852 (1969); 182, 1868 (1969); 182, 1873 (1969);
182, 1899 (1969).' H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 670 (1969).
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electrodynamics. But it is also possible for a spin-flip
amplitude to have a diferent high-energy behavior.
The result of the present paper shows an example of
this high ener-gy behavior of the second type

The calculation in this paper is somewhat compli-
cated. However, these two kinds of high-energy be-
havior can be understood as follows with very little
computation. In the analysis of the high-energy be-
havior of the spin-nonflip amplitude as given in Ref. 1,
a kernel Ito(q&, q~') plays a central role. Let 0 be the

angle between the two-dimensional vectors q& and qj',
then t see Eq. (6.1) of Ref. 17

1 1

Itv(q&, q, ') =q&'q&" d* dy

Cx(1 —x)+y(1 y)7 —x(1x)y(1—y)L5+cos207
X

x(1 —x)qP+y(1 —y)q&" +m'

Thus Ito(q&, q&') consists of two parts, a 0-independent

part which is positive, and a cos20 part which is negative.

Since the high-energy behavior of the spin-nonflip

amplitude is controlled by the spectrum' of the opera-
tor with kernel

Xo(s,s') =
s+X' s'+X' 0

1 1

dx

*(1—x)+y(1 —y) —»(1—x)y(1 —y)
X (1.2)

x(1—x)s+y(1 —y)s'+ m'

that of the spin-flip amplitude must analogously be con-

trolled by the spectrum of

1 s 3'

Xg(s,s') = ——
2 s+X' s'+V

1 1

ds
0

*(1—*)y(1—y)
X— (1.3)

x(1—x)s+y(1 —y) s'+m'

1n (1.2) and (1.3), X is the mass of the exchanged vector
meson. Suppose we define an operator X& by

(X,f)(s) = ds'X~(s, s')f(s').

Then the spectrum of X~ is (see Appendix A for details)

L- /12g, O7. (1.5)

Consequently, in order to get the desired high-energy

behavior of this spin-flip amplitude, we need to study
the improper eigenfunctions of 3'.~ near 0. The fact that
these improper eigenfunctions are rapidly oscillating

functions of s is the underlying reason why the high-

energy behavior for the spin-flip amplitude is different.
This rapid oscillation is also the source of mathematical
difficulties.

These two types of high-energy behavior can also be
seen from the follov ing slightly different point of view.
Both of the operators Xo and X~ are of non-Fredholm
type, as evidenced by their continuous spectra. If the
large-s behavior of these kernels are reduced, such as in
the Lee-Wick theory, ' these kernels may then be of
Fredholm. type. In this case the eigenvalues of these
kernels are discrete. While the high-energy behavior
of the spin-nonflip amplitude is then controlled by the
largest discrete eigenvalue of Xo," that of the spin-flip
amplitude is instead controlled by the accumulation
point of the eigenvalues of X&~ Thus the high-energy
behavior of the second type is further removed from
that expected from a single Regge pole. "

On the basis of this discussion, the high-energy be-
havior of the spin-lip amplitude in the exactly forward
direction is of the form

i(const)s(lns) '(In lns) ' (1.6)

with possible further factors of the form (In lnlns),
etc., omitted. This is to be contrasted with the result of
Ref. 1 in the form

i(const)s'+" ~'~t "(lns)-'

We shall be concerned mostly with the evaluation of
the exponent b. As we shall see below, the value of b

depends on mass ratios.
In Secs. 2 and 3, the problem is precisely formu-

lated. Because of the mathematical difhculties already
mentioned, we first treat in Secs. 4 and 5 the special
case P =0, i.e., the special case where photons are
exchanged. In this case, we are able to compute both
of the exponents b and c. The much more dificult case
of P &0 is then treated in Sec. 6, where we obtain the
exponent b but not the exponent c.

2. SPIN-FLIP AMPLITUDE

Consider the scattering process

1+2—+ 1'+2',

where all four particles are vector mesons. If the par-
ticles 1 and 1', and also 2 and 2', are identical, then this
is an elastic scattering process; otherwise it is inelastic.
Let the masses of these vector mesons be, respectively,
~g, ~2,

Afar',

and ~2'.
As stated in the Introduction, we shall restrict our-

selves entirely to the exactly forward direction. For the
spin-flip amplitude of interest, two units of spin are ex-
changed. Thus, for example, the incoming vector
mesons 1 and 2 are both right-circularly polarized while
the outgoing vector mesons 1' and 2' are left-circularly
polarized. We are thus only interested in the transverse-
to-transverse impact factors. In the exactly forward
direction, these impact factors depend only on one vari-

' T. D. Lee and G. C. Wick, Nucl. Phys. Q9, 209 (19fj9}.
'OH. Cheng and T. T. Wu (to be published)."T.Regge, Xuovo Cimento 14, 951 (1959}.
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able q j. and are explicitly given by"

1 1

s"'(qi) =,'e'f;-f,' dn dp

&(—gn(1 —n)P(1 —P) (a' e') (e e'')

+( ' '')L~"(1-8P(1-P)(-:—)')
—P(1 —P) (M/+M, ")j}{n(1—n)q, '+m'

—P(1—P)[M,'n+M, "(1—n) j) ' (2.1)

for i =1, 2. Here e denotes the polarization vector, f;
and f are the coupling constants of particles i and i' to
the fermion of mass m, and e is that of the exchanged
vector meson of mass X. So far as the spin-Rip amplitude
is concerned, only the term proportional to (tl& e;)
X(rli e,') is relevant.

Similar to the treatment of Ref. 1, we follow the
procedure of summing the leading terms, i.e., the terms
with the highest power of lns. %e therefore study the
tower diagrams as shown in Fig. 1, where the number of
fermion loops is designated as n+2, with n =0, 1, 2, . . ..
For given n, the leading contribution at high energies to
the scattering amplitude is

i(pi!) 's(lns) "(J",X"J"') (2.2)

Lsee Eq. (5.19) of Ref. 1].For the exactly forward di-

rection, we have

where

FIG. 1. Tower diagrams for the scattering
of two vector mesons.

J"'(e ) =(a '+~') '&'*'(e.) (2 3) rection is

wherefor i =1, 2, and the kernel X is given by, with (1.1),

X(O,q&)c!&') =4e'(2ir) —'(rl, '+X')—'(g,"+l~')—'

«p(a, a ') (2 4)

is(4ir) 'e'f, f,'fpfp'A,

A =(J&'&, exp(2AXi) J&'&)

h. =e4(2pr) 4lns=x PnP lns.

(2.7)

(2.8)

(2.9)
The formula (2.2) gives all the amplitudes. To pick out
the spin-Rip amplitude of interest, de6ne, because of
(2.1) and. (2.3),

In (2.9), n is the fine-structure constant.
In this paper, we study in some detail the asymptotic

behavior of A, as defined by (2.8), for large positive A.

J(r) (s) — 4
s+l~' p

dn dPn(1 —n)P(1 —P)

X (n(1 n)z+m—'

—P(1 —P)LMPn+M;"(1 —n) j) ' (2.5)

fori =1, 2. Because of (1.3) and (1.4), the spin-flip part
of (2.2) is"

3. EIGENFUNCTION EXPANSION

In order to study the asymptotic behavior of A, we

expand J('& and J'" in terms of' the continuous eigen-
functions'4 of X~. It is convenient to label these eigen-
functions not by the corresponding eigenvalue but by
the rate of oscillation for large values of s (see Sec.
4). We thus write in view of (1.3)

i(47r) 'e'fifi'f f (ep!)p'st 2e'(2') 'lns]"
X(J"' XPJ "&) . (2.6)

Xif&= pP(t)f& ~

or more explicitly
(3 1)

Because —Xi is positive definite (see Appendix A) this
series alternates in sign, at least when Mq ——3f2 and
Mi' ——Mp'. When these leading terms (2.6) are summed,
the total spin-Qip amplitude in the exactly forward di-

"H. Cheng and T. T. Wu, Phys. Rev. D 1, 459 (1970).
'3 For g, the operator is de6ned with respect to the integration

(2x) 'fdqz, while for X1 the operator is defined with respect to
f'dr =fdq32. There is therefore a factor 4r.

ds'f&(s')
s+X' p s'+X'

x(1—x)y(1 —y)
X d~ dy

p p x(1—x)s+y(1 —y)s +mP

=~(&)fi(s) (3 2)
'4 These "eigenfunctions" are of course not square integrable.
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=(l)f() ("'
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0
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0
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(4.20)and

then

v' =1+v'/2/22; (4.11)

for v&1, where

satisfies
f,(v) =&22/tf, (s) (4.13)

(1—x')(1 —y')1 1

2' X2 2
dv' f,(v') dx dy

=4/ (t)fi(v) (412)

example in Ap-which has previous y
tice the similarityendix . '
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d' discontinuityd 420) inthat the
v~). The solutron

(412) an '

f 420) is simply ~(vfor the kernel o
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(4.21)~(v) =P'~—l(v) ~

e e en
'
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f,(v)f,.(v)dv = tI(t —t') (4 14) p==m. Sechxt. (4.22)

o ( )
3.4 .
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(1-x')(1-y')
(4.15)

2—x' v+(1 —y')v'+x'+y

D v, v' = dx dy(1 —x')(1—y')

X8(—(1—x' v—')v+(1 —y')"+*'+y').
v so that both van ed the sign of v soh twehavech g

d v l d larger thanan v

p' 'ty
Th ltd for D(v, vtion over x an y o

D(v )=AL(v+1)(" 1—
3 v' v")+2vv' —8jXL3(v+v')+2 3+L3(v'

1 )1/2+ (vi 1 ) (/2

X» (4.17)

(1 )0 0
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1 1
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we have, for large t,

fi(v) -t"'P,&,*(v) . (4.28)

As seen from (D21) or (D20), (4.28) is not accurate
when v is close to 1. Nevertheless, for most purposes of
determining the high-energy behavior of the spin-Aip
amplitude in quantum electrodynamics from the tower
diagrams of Fig. 1 in Sec. 4 D, (4.28) is accurate
enough. From (4.13) on the basis of (4.28), we get
Anally

f,(z)~(-', t)"'m 'P;, .(1+-,'m 'z).

D. High-Energy Behavior

(4.29)

(4.30)f,(0)~-'&r '(2t)'"m '

on the basis of (D18), (D8), and (4.29). Therefore,

A (8/9)x 'm ' tdt e &&'& "fp(t)]'

We now have all the necessary information to get the
high-energy behavior of the spin-fhp amplitude in
quantum electrodynamics. For A given by (4.9), we
use (4.26) and"

3fg
——3fi' and 3f2

——M2'.

In this case, (4.3) is replaced by

1 1

J&"(z) = —4 da dP n(1-n)P(1 —P)

(5 1)

0 0

XI n(1 —n)z+m' —P(1 —P)MP] ' (5.2)

for i =1, 2. Equation (4.4) is not changed, while, in-
stead of (4.5) and (4.6), the spin-flip amplitude is given
by (2.7) with A expressed by (3.6).

It is convenient to use the mass ratios

2&!i ——~Mi2/m' and E2 4%22/m——' (5 3)

In terms of these ratios, J&'&(z) takes the form, after
the change of variable (4.11),

1 1

J&"(z) = ——,'»v ' dx dy(1 —x')(1 —y')

A. Elastic Scattering

Instead of dealing directly with the general case of
Sec. 5 8, we first consider the case where

6=2 and c=—1. (4.33)

In this case of quantum electrodynamics, there is only
one mass, namely, that of the fermion. For this reason,
both b and c must be simple numbers. In Sec. 5 we still
keep X=0 but introduce the 3f's. It is then seen that 5
depends on mass ratios.

~(8/9)v. 4m ' tidti e "'Lin(-', x'p, ')

—In In(g'v'ti ') —1]
(8/9)v. 4m 'A. 'Eln(~ax'A)

—ln ln(six'A) —2+y], (4.31)

where y=0.57722 is Euler's constant. By (2.9) and
(4.5), the desired high-energy behavior for the spin-flip
amplitude in the exactly forward direction is"

i (5s12/9)m 'n'(ln )s
2.Dn(x&rn' lns)
—ln In(ei&rn' lns) —1+y]. (4.32)

Finally, a comparison of (4.32) with (1.6) verifies
(4.10), which has been obtained very simply in Sec.
4 A. Equation (4.32) gives the more precise informa-
tion that

vo('~ =1—2R;. (5.5)

Note that no&" may be negative. However, the stability
of the vector mesons against decay into two fermions
requires that

Xi&1 and (5 6)
Thus

and ~0~»& —1. (5.7)

In other words, the branch cuts along the real axis of
the v plane always stop below 1. Define D") to be the
discontinuity across the cuts (except for a factor
—&rm ')

D "&(v) = dx dy(1 —x')(1 —y')

X8(—(1—x')v+ (1+x')—2(1—y')2&!;]

XL(1—x')v+(1+x') —2(1 y')E,] '. (5—.4)

If these J"&(z) are considered to be functions of the com-
plex variable e, then they are analytic except for a
branch cut from —~ to —eo'~ along the real axis,
where

5. SCATTERING OF VECTOR MESONS
—D(v v (&&) (5.8)

We next generalize the results of Sec. 4 to allow

Mi, Mi', M2, and M2' to be positive. The restriction
X=O is still retained.

"If the approximation (4.29) is used directly, the answer for
the high-energy behavior of the spin-fbp amplitude changes by a
factor (-',x)'. Such an over-all factor is in any case not of great
physical interest.

' Note that the leading term of this result (4.32) is independent
of the coupling constant e. Compare, however, with {5.17).

by (4.16) and (5.5). Note that, since v»"&(1, (5.8) re-

quires an extension of the domain of definition for
D(v, v ). With this extension, the explicit result (4.17)
holds only for v&1, i.e.,

D(v, v') = 1'6 r(v+1)(1-v')] '"(( —1)'"(1—')'"
XP(v+") I 2]—P("+v")+2vv' —8]

Xtan 'I (1—v')/(v —1)]'&2) (5 9)
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—'o)] ex 1 exp —it 1(1+o)2/ (1 o)2/2 o ~ (

s 'o . (5.13)
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0
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0
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—2'trte —
I/4 (t) Ptdte "e

0

do D(') (o)P;t=;(1&)
VO
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vo
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is theontour j oiva ', on C f integration isd ivation, the con
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H. CHENG AND T. T. KU

By (2.9) and (5.16), the desired high-energy behavior
of the spin-Rip amplitude in the exactly forward direc-
tion for the scattering of vector mesons is, when (5.1)
is satisfied,

«{4«r)'sm 'c'f«f«'f«f«'r(b)[R«(1 —R«)R«{1—R«)] '/'

X(«s«rn' Ins) '[In(g'mn' lns)] '+'

Xf1+(2—b)[ln In(-,'n.n'Ins)]/
[In(-', n-n' Ins)]}, (5.1'7)

where b is given by (5.15).A comparison with (1.6) then
gives the further information

c=2—b. (5 18)

In the limit M« —+ 0 and M«~ 0, we get from (5.15)
that b~ 2. If (5.18) is used, we then get c —+0. This
limiting value 0 does not agree with the —1 of (4.33).
This is, however, not surprising for nonuniform asymp-
totic expansions.

B. Inelastic Scattering

In the more general case where (5.1) is not satisfied
but & is still 0, (5.2) must be replaced by

1 1

J"&(s)= —4 dr«dP n(1 —n)P(1 —P)
0 0

Xfn(1 0/)z+—m'

—P(1—P)[/M'n+M "(1—n)]} ' (5 19)

for «=1, 2. Equation (4.4) is still not changed, and the
desired spin-flip amplitude is still given by (2.7) with
(3 6).

With the change of variable (4.11), J&'&(s) takes the
fol 111

J&"(s) = ——,'«/« ' dx dy(1 —x')(1—y')

Xf (1—x')v+ (1+x')—(1—y')

X[R;(1+x)+R (1—x)]} ', (5.20)
where

R;=M,«/(4«/««)

R =3f;"/(4«/«') . (5.21)

As in Sec. 5 A, let v be a complex variable. Then J"&(s)

ls Rn RIlRlytlc function of v except fol R branch cut fI'om
—~ to —v0&'~ along the real axis, where

vo('& = min (1—x ) f(1+x )—1gx~1
—[R'(1+x)+R''{1—x)]} (5 22)

The computation of this minimum is straightforward,
but the result is somewhat complicated:

«)&'& =-,'[(1—R,)'"+(1—R )'".]'—1. (5.23)

This minimum value occurs at

(1—R')' —(1—R )~

(1—R,') l+ (1—R,) -'*

(5.24)

As a generalization of (5.8), the discontinuity of
J"&(s), «=1 or 2, across this cut is given by

1 1

D&'&(v) =-' dx dy(1 —x')(1 —y')
—1 0

Xb f —(1—x') v+ (1+x')—(1—y')

X[R,(1+x)+R,'(1—x)]}. (5.25)

Unhke (5.8), the right-hand side of (5.25) is not in any
simple way related to the D(«&,v') of (4.16).As we learned

in Sec. 5 A, the only important quantity is

D "&(« "')=«r(1 R)'"(1 R')'—"—
X[(1—R')"'+(1+R*')'"] '

X[1—(1—R;) '"(1—R ) '/']-'". (5.26)

Since (5.14) still holds for the present case, we get
immediately, as a generalization of (5.15), that

b-[2m —cos '5 "&—cos '5 "']/«r
=2«r 'fsin '—'[(1—R«)'/'+(1 —R«')'/']

+sin '2 [(1—R«) '/«+ (1—R«') '/«]}

=2 -«fs -«-,'[(1—;m,/~) /+(1 —4u, "/~')'/]
+sin '-,'[(1—-'M«'/«/«') '"

+ (1—-', M«"/«/«') '/']} . (5.27)

Moreover, {5.18) still holds. With this b, (5.17) is only

slightly modified so that the spin-Rip amplitude in the
exactly forward. direction for the scattering of vector
mesons is

«(-'«r)'s«/« 'e'f f 'f f 'r(b) [(1—R ) (1—R ') (1—R,)(1—R '))'"[(1—R )'"+(1—R ') '"] '"
X[I (1 R )«/«{I R ~) 1/«]—«/«f 1 «[(1 R )1/«+ (1 R 1)l/«]«} 1/4[(1 R«) &/«+{I R )//«]-«/«

X[1—(1—R«)'"(1—R«')'"] '"f1——,'[(1—R )"'+(1—R ')'/']'}'"(-'«rn'Ins)-'[ln(-'nn'lns)] '+'

X f 1+(2—b) [ln In('s«ra' Ins)]/[In(s~«rn' lns) ]}. (5.28)

This is the desired result. In connection with factoriza-
tion, note the appearance of I'(b).

5. EXCHANGE OF MASSIVE
VECTOR MESONS

9'e now turn our attention to the case X&0. Since
this case is Inuch more complicated than the massless

one treated in Secs. 4 and 5, we shall concentrate en-

tirely on determining the exponent b.

The additional difhculty for this case X&0 is the fol-

lowing. Instead of (4.4), we must now solve the integral
equation (3.2) approximately for small /«(/). Since (4.4)
has been analyzed on the basis of the solution to (4.20),
the corresponding simplified integral equation for P &0
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is

& —&0

'v —1 1
dv' pp(v') —— =p pp(v),

'v —vp v+v
(6.1)

d" p (")[(v+") ' C(v —vo) '—(" vp) '—]
=/ v(v), (63)

where CNO is a 6xed consta, nt. Equation (6.3) is solved
in Appendix E.

Numerous questions may be raised concerning
whether (6.3) is appropriate. We believe that the ex-
ponent b is sufficiently insensitive to the details of
f~(s) so that this rough approximation is admissible,
but we do not have any confidence of extending the re-
sults to the exponent c. We mention here only one of
the simpler questions. Is it necessary to incorporate
another feature of (6.1), namely, the zeros at 1? This
question can be answered by considering the special
case v0 ———1. Since

L(v —1)/(v+1)][("—1)/("+1)](v+v') '
=(v+v') ' —2(v+1) '(v'+1) ', (6.4)

(6.1) can be solved exactly in terms of Legendre func-
tions of the first kind for this special value of v0. The
zeros at —1 are present only if the coefFicient of the
second term on the right-hand side of (6.4) is precisely—2 as given there. From the explicit solution, we see
that the solution does not change qualitatively when
this coefficient is varied, except that pp(1) =0 only for the
special value —2. Since the va, nishin. g of f, at v=0 does
not directly affect the exponent b, we conclude that the
zeros at 1 are unimportant for our limited purposes.

By (2.5) and (5.20), for the present case of X)0,

J&"(v) = ——,'m '(v —1)(v—vp)
—' dh dy(1 —x')

0

X( —y')(( —*')v+( +*')—( —X')

X[@,(1+~)yZ, '(1—x)])-i, (6.5)

for i =1, 2, where vp is defined by (6.2) while R; and

where

vp ——1—~pX'/m'. (6.2)
J

Unfortunately, unlike (4.20), (6.1) cannot be solved
exactly by the authors for a general value of v0. We
reluctantly reached this conclusion after months of un-
successful attempts.

Because of this difficulty, we are forced to use a fur-
ther simplified integral equation. One of the major differ-
ences between (6.1) and (4.20) is the presence in (6.1)
of poles at vp, with

~
vp~ (1. We therefore make up

another integral equation with this feature incorporated.
More precisely, we assume that some information about
the integral equation (3.2) can be obtained by studying

R are de6ned by (5.21). Considered as a function of
the complex variable v, J"~(s) has a branch cut along
the real axis from —~ to —v0('), where e0 "& is given by
(5.23). In addition, if vp) vp "i, there is a pole at v = vp.

From the procedure of Sec. 5 B, we need to know the
magnitudes of 4(vp) and C(—vp~'~), where C is defined
by (E10). These quantities are studied in detail in
Appendix E. In particular, from the last paragraph of
Appendix E, we know that C(vp) is never important.
Therefore, from (E23) and (E24), we get

ln[SC'( —vp&")] —/[m. —cos ' min(vp vp/ )]. (6.6)

Accordingly, the result (5.27) is only slightly modified to

f/=m. '[2ir —cos ' min(vp, vp&'&)

—cos ' min(vp, vp/ i)]. (6.7)

Like (5.27), (6.7) can be written in terms of half-angles
as

$ —2v.—1(sin—1 min[(1 i/2/m2)1/2 i(1 i~i2/m2)1/2

+-', (1—-', Mi"/m') "']
+sin ' min[(1 —-'X'/m')'" -'(1 —-'Mp'/m')'"

+-', (1—-', Mp"/m') '"]). (6.8)

Since (6.8) contains (5.27) as a special case, it is the
general result for the exponent b.

V. REMARKS

Since the mathematical manipulations involved in
this paper are quite heuristic, it is perhaps useful to give
our views on this procedure. It is clear that, compared
with the treatment of the spin-nonfiip amplitude in
Ref. 1, the steps taken in the present paper raise many
more problems and hence are much less justified mathe-
matically. Let us list some of these problems.

(A) In Ref. 1, we sum a series where every term is of
the same sign and hence no cancellation is possible.
Since the nth term is proportional to (lns)" for large s,
the sum must necessarily increase faster than. (lns)" for
all n as s —&~.' It is therefore reasonable that the sum
should behave like s raised to a power, and this be-
havior is verified in the explicit calculation. This is not
the case here, where terms of the series alternate in sign,
leading to extensive cancellation. Indeed, since the
exponent 6 is positive, the sum is actually smaller in
every case than any one of the terms in the series. For
this reason, the procedure followed here of summing the
leading terms is much less justified. However, we be-
lieve that this problem is not serious, at least compared
with the other difFiculties to be given below.

(B) An essential step in the determination of the
high-energy behavior of the spin-Qip amplitude is to
solve for the highly oscillatory eigenfunctions of an
integral equation. So far as the authors are aware, there
is no general procedure to obtain these eigenfunctions.
In the massless case X=O, this needed information is
obtained in Sec. 4 C by assuming a solution in the form
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of a Legendre function and verifying that this assumed
solution indeed satisfies the integral equation approxi-
mately over most of the range. This is true unfortunately
only over most of the range i &a& ~ but not over all
the range, the error being large when v is close to 1.It
is therefore a legitimate problem to raise whether the
assumed solution is a good approximation to the desired
solution. Ke can only answer this by simple examples
where the kernel (v+v') ' of {4.20) is perturbed by
a separable kernel. On the basis of these simple ex-
amples, the solution (4.29) is accurate enough for our
purposes.

This answer by example is less satisfactory than it
seems at first glance. Kith the detailed calculation of
Appendix D, we may ask whether [see in particular the
uniform asymptotic approximation {D21)]

f (I)(z) (1/) I/2m —I (v2 1)—I/4(cosh —Iv) I/'l

)([EI($cosll 'v) —(( cosll. 'v) E (f cosh v)] 1 (7.1)

with z =2m'(v —1) as always, is a better approximation
to fI(s) than (5.29). Clearly we should study the
integral

phenomena encountered in the analysis of the model
integral equation (6.3) as carried out in Appendix E.
As seen explicitly from (E27) and (E29), the asymptotic
behavior of the denominator S for large 5 is quite differ-
ent for the two cases vv&0 and vv(0. By (6.2), these
two cases are, respectively, X&V2m and P &V2ns. Does
thig mean that the high-energy behavior is somehow
related to anomalous thresholdsP Furthermore from
(E27), S has a zero near vv

——2 '" because

P(2Ir 'cos '2 '/') —g{1—2II '2 '/') =0.
Is there anything unusual at this peculiar point vo ——2-'I'
or X= {2—&2)I"mP

8. SUMMARY AND DISCUSSION

(A) All the results on f/, one of exponents in the high-
energy behavior (1.6) of the spin-fhp amplitude for the
forward scattering of two vector mesons, are contained
in (6.8), since (4.10) and {5.27) are special cases. Let

' I sin I{min[(I 1lI2/m2) I /2 1(I 1
/lII 2/m2) I/2

+-', (1——,'IM I'2/m') I/'])

ds' f,&I I (s') dh dy

x(1—x)y(1 —y)
X — . (7.2)

x(1—x)s+y(1 —y)s'+m'

We have been unable to find any approximate relation
between (7.2) and (7.1), mostly because of some un-

pleasant properties of the Weber functions E~ and E2.
(C) The situation is even worse for the case X&0 as

discussed in Sec. 6. While in Sec. 4 for A. =O we can
substitute the assumed solution into the integral equa-
tion (4.12) to verify that the integral equation is ap-
proximately satished over most of the range and to
identify the eigenvalue /I(t), this cannot be carried out
for X&0. In particular, the generalization of (4.25) to
X&O is not known. This implies that the approxima-
tions involved in Sec. 6 are significantly less accurate
than those of Sec. 4, and it is for this reason that it is
not possible to calculate the exponent c for X&0 by the
procedure of Sec. 6. It is a most interesting mathemati-
cal problem to improve the most unsatisfactory pro-
cedure of Sec. 6 for P &0.

In spite of these di@.culties, we believe 6rmly that
the results here on the exponents b and c are correct.
The reason is that the exponent b is determined almost
entirely by the location of singularities in the complex

plane, and is hence very insensitive to the details of the
approximation. Moreover, since the approximation for
the massless case X=O is far superior to that of the
massive case P &0, it is reasonable to expect that more
information can be extracted for X=0, namely, the value
of the next exponent c.

Another interesting question concerns some of the

—,
' —b, if', =u, '=0,

c2=
othel wise

(8.3)

C =CI+Cn. (8.4)

'0As an example of the discontinuous asymptotic behavior,
consider

A u2I (u) = lim — dy exp',
'—A sinh'8).

A—+On

Explicit evaluation gives
0 for a&0,

I(a) =+ g for a=0,

for 8+0.
The uniform asymptotic behavior of the integral for A. large is of
course expressed in terms of an error function.

f/ =2II 'sin l(min[(1 4IX'/—m')I/', ~I(1 4$III/m')—I/'

+-', (1—'IM' "/m') '"]), (8.1)

so that bj is independent of the nature of the particles
2 and 2' while b2 is independent of the natures of 1 and
1'. Then

(8.2)

(B) So fal as tllc llcxt cxpollcllt c of (1.6) ls coll-
cerned, we have information only for the special case
X=O, i.e., the case where photons are exchanged. The
results are given in (4.23), (5.18), and (5.28). From
(5.18) and (5.28) we see that the sum of the exponents
II+V is actually simpler, and we summarize our results
oII 6+v 111 Table I. It Is tllcI'cfolc useful to define v

—,
' —bg if M~ ——MI' ——0,cy=
1—bg otherwise;
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(C) Decompositions of the forms (8.2) and (8.4) can
be extended even further. From (5.17) we note that at
least for the case X=O, the high-energy behavior of the
spin-Rip amplitude in the exactly forward direction for
the scattering of vector mesons is given by

ZSP (61+52)A 1A 2

where

gq ——(x~)~t2m 'e2fqfq'[Rq(1 —Rg)] 't4

&&(~s~n' lns) '~[in(x'mo. ' ins)] " (8.6)

is independent of the nature of the particles 2 and 2',
while

A2=(-'s)'t'm 'e'f2f~'[R2(1 —E2)] '"
X (xsnn' 1n.s) ~'[ln(xsxn' lns) ] " (8.7)

is independent of the nature of 1 and 1'. Thus at very
high energies, the spin-flip amplitude factors in the
simplest possible manner except for an over-all constant
factor P(bq+b2). "This factorization is expected to be
quite general and not limited to this spin-Qip amplitude.
In a different connection, this factorization was dis-
cussed some time ago."

(D) We have often been asked the following ques-
tion'. Granted that the leading singularity is a branch
cut, what are the other singularities in the complex
angular momentum planets One reason for asking this
question is the hope that these other singularities are
of a simple nature, perhaps Regge poles. Since we are
able to calculate only the high-energy behavior of scat-
tering amplitudes, there is in general no way to answer
this question. The only possibility is to choose an ampli-
tude and a momentum transfer so that the leading
singularity does not contribute at all to the high-energy
behavior. This is precisely the case for the spin-Rip
amplitude in the exactly forward direction, and. in this
way we can get a glimpse of the other singularities.
What we see is another branch cut, perhaps even of
somewhat more complicated nature than that of the
leading singularity. This does not mean, however, that
the amplitudes for the exchange of other quantum
numbers are necessarily also complicated, and a great
deal more work is needed in this direction.

(E) On the basis of our limited knowledge in this
special case of the spin-Qip amplitude, we attempt to
compare this high-energy behavior of the second type
with that found previously' for the spin-nonflip ampli-
tude (high-energy behavior of the ffrst type). The follow-
ing qualitative differences come to mind immediately.

(i) The power dependence on s is a function of the
coupling constant for the first type, but is independent
of the coupling constant for the second type. For the

'Since F(bj+b2)=B(b&,b2)F(b&)1'(b2}, where 8 is the beta
function, this over-all factor can alternatively be given as 8{b~,bp)
while the factors I'(b&) and 1"(bl) are included, respectively, in
AI and A2.
Q~ The discussion on factorization was 6rst presented by T. T.
Wu, Bull. Am. Phys. Soc. 14, 49(T) (1969).

Tax,E I. Values of the sum of the exponents b and g.for the
scattering process 1+2-+ 1'+2' due to the exchange of massless
photons.

%1=BIj'=0
%1~0 or
M1'&0

examples, this s dependence is s'+" ' t'" for the spin-
nonfhp amplitude (1.7) but is simply s for the spin-fhp
amplitude (8.5).

(ii) High-energy behavior of the second type is also
less sensitive to the large-momentum behavior of the
underlying theory. As discussed previously, " if the
large-momentum contributions are suppressed, the high-
energy behavior of the first type changes from one ap-
propriate for a fixed branch cut to one for a moving
Regge pole. Similarly, with such a suppression, the
high-energy behavior of the second type changes, in
this example of the spin-fIip amplitude, from one ap-
propriate for a fixed branch cut to one for a fixed essen-
tial singularity. But the high-energy behavior for these
two cases of a fixed branch cut and a fixed essential
singularity are essentially the same; the value of the
exponent b is in particular not changed.

(iii) The high-energy behavior of the second type
depends on the highly oscillatory components of the
impact factors. In the example of the spin-flip arnpli-
tude, this is the reason why the exponent b is fairly
complicated and depends on mass ratios. The physical
meaning of this dependence is, however, not clear to the
authors.

There are many other differences, such as the appear-
ance of the (ln 1ns) factor in (1.6) but not in (1.7), and
the discontinuous behavior of the corresponding expo-
nent as given by (8.3). But these differences may or may
not be general in distinguishing the high-energy be-
haviors of these two types.

Although these differences (i)—(iii) are of a major
character, we believe that the difference is actually even
deeper. By suppressing the large-momentum contribu-
tions, the high-energy behavior of the hrst type bears
close resemblance to one expected from a Regge pole (to
the right of J=1)."This is not at all the case for high-
energy behavior of the second type. Rather, the high-
energy behavior of the second type seems to be a
realization of the kind of behavior from essential
singularities. "
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A. v Not Close to 1 D(",v)--:(v —1) 'L2("—1)3'". (D4)

(DS)

Accordingly, by (CS),

We remember from (4.17) that D(v', v) has a logarith- Therefore, the second contribution is negligible. For v'

mic singularity at v=v'. Thus, for t large and v not close close to v by (4 17)
to 1, there are two possible contributions to the P(v) as
given by (D3): first from the vicinity of v'=v, and D(v' v) -'(v' —1)-"'ln

i
v —v

i
.

secondly from the vicinity of v'= i. But it follows from
(4.18) and (4.19) that, as v' —& 1,

Let

Then

P(V)~ —2(22r) '"/ "'Re e 's' dV'LV'+(V" —1)j"(V'—1) 3/41n~V —V'~

v =cosh( and v' =cosh)'.

(D6)

(D7)

P(v) —2(22r) '/ t '/ Re e 's/4 d$'e"&'(v 1) '—/4ln~coshg —cosh]'~

'tt ) '&'t —s'ts' t) '&'Re~~ —s "' tt'e' ) ltsIs'~)

—I~(2~)—I/2]—3/2(v2 1)
—I/O Re(v

—il/4e113)

—I ti(22r)
—I/21)—3/2 (v2 1 )

—I/O Re(ts—is'/4)v+ (v2 1)I/2)it) ~ 12rit
—IP, (v) (Dg)

This is the desired answer for v not close to 1, and of course larger than 1.

B. v Close to 1

When v is close to 1, the contribution to P(v) as given by (D3) comes of course from the vicinity of v =1.Thus
the change of variable (D7) reduces to

In this case, from (4.17),

and thus, by (C9),

v =1+2P and v'=1+21(".

D(";)-!~ '( ~e+!-(~'+~")»L(~+8)/l ~ el j), -
(D9)

(D10)

P(v)--', &
' &'O'Jp(t&') P&'+-', (P+—(")In

$t+$'
=-'~ '(8) ' k'4'~p(k') —(8)k'+12($'~'+&")» . (D»)

18—z'i-
We proceed to evaluate this integral.

For $' —+t)t), the quantity in the square brackets on the right-hand side of (D11) is approximately 4()t)3/(3$')
We therefore subtract this term first:

P( )--'&-I+ I &-I(g/)-3 dk'~P((') ( —4&)&"—3(8)'+-'(B'+&")&'»L(8+&')/18 —5'I j). (»2)

In writing down (D12), we have used

Jp(k')dk'=1 (D13)

Next we use the integral representation

Jp($') =22r '
x/2

cos($' cosp)dt/t. (D14)
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m/2
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(E2)
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P v)
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=CIxt' tanhxt' sec m

where

dv pp(v)(v —vp)-'

E„(()=2v. ' dQ sin(v$ —$ sing), (D19)
dt' (t') sechprt'P;s .,(—vp .=Or (ES)

+CIA cosh~t
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cipal-value integral at t' = t. Solving (E7) for I and sub-
stituting into (E6), we get

g(&') =8(t' —&)+CS 'v. t' tanhvt' (coshv. t —coshv-t') '
XP,~;(—vo)P;~ .;(—vo), (E8)

In order to verify that this is indeed a solution of the
integral equation (6.3), we make use of (C5) once more.
Define

4(v) = dt'g(i') [v. sech~i' P,~;(—v)] (E10)
where

S= j. —C~ coshxt dt't' tanh~t' sechmt' for complex v. Then the discontinuity of C (v) across the
branch cut from 1 to ~ along the positive real axis is

X(coshvt —coshvi') '[P...=;(—vo)]'. (E9)

Equation (E8), with (E2), gives the desired answers.

4 (v+i0) —C (v —i0) =2v-ip(v) . (E11)

This function C (v) also has the following property:

C'( —v) —I ~(v) = dt' p(t') (vr sechv i' —vr sech~t)P, ~,(v)

=CS 'v' sechvt P, ,=;(—vo) dt't' tanhv-f' sech~t' P, ~ =*,(—vo)P'~ ——;(v)

=CS '~ sechv. t P,~=;(—vo)(v —vo) ', (E12)

where, in the last step, we have used the Mehler formula for integrating the product of I.egendre functions over
their order. ""Ke therefore have

dv'q(v')[(v+v') —' —C(v —vv) '(v' —vo) ']

=(2v.i) ' d"~(")L(v+") ' —C(v —vo) '("—vo)-']

=C'( —v) —C(v —vo) 'C'(»)

=LPGA(v)+CS 'v s«h7r&P, t=(—vo)(v —vo) ']—C(v —vo) 'v sechvt P;, ,(—vo)[1+S '(1—S)]
=r ~(v) (E13)

C(v) =v. sechv. f {Cr(v)+CS 'v. f sech7rf

X[P,—:(-")]'C.()}, (E»)P'~ --;(v) -I'(2i&') [I'(ii'+k)] '(2v)" '*

+ I'( —2it') [r(—if'+-')]-&(-'v)-"'-l (E14) where

We shall now study the asymptotic behavior of y(v) and (E10),
for large e. Since

from (C1), we have
C'~(v) =P'~—:(—v) (E18)

v (v)-(2v) "'«P(»i) [I'(if+i)] '(kv)"
4'2(v) =i ' cosh'vi dkV tanhvi' sechv. t'

X{1—CS 'v.it sechv. i [P;, ,(—vo)]'} . (E15)

Therefore, the orthonormal eigenfunctions are

Xp(v),
where

X=(f, tanhvt)'"{1+(CS 'vf sechvi)'

X[P'~--:(—vo)1'} '" (E16)

So far the development holds for all t. Ke shall now
concentrate on the limit of large t. For the purposes of
Sec. 6, we need the behavior of C(v) for —vp(v(1.
With reference to (E1.5), we write, on the basis of (E8)

X(coshvt —coshv. t') '

XP,, =;(—vp)P;, =;(—v)/P, ,=;(—vp). (E19)

It is an immediate consequence of (5.13) that, for large
t and ~vo~ (1,

Cq(v) (2v.t) 'I (1—v ) '~4exp[t(v. —cos 'v)] (E20)

The asymptotic behavior of C'&(v) is more complicated
for the following reason. The dominating contribution
to the integral of (E19) comes from the vicinity of t' =t



lnP C(v)]- —(cos-'v)t,

and that for —1(v(—
mp,

(E23)

In[PC(v)] —(v.—cos 'vp)t. (E24)

Remember that all arccosines have been taken to be
between 0 and v.. Equation (E23) is the result that we
need in Sec. 6.

when wg —vp, but from the vicinity of t'=0 when
—'vp, We therefore treat these two cases separately.

For 'v+ —
Spy

C p(v) v.-' (P[pr '(cos-'v+ cos-'vp) ]
(cos v+'cos vp)])C'y(v) y (E21)

where f(s) =I"(s)/I'(s) is the logarithmic derivative of
the gamma function.

For v( —vp,

Cp(v) (—v —vp) 'Cg( —vp). (E22)

Thus, for large t, Cq(v) and Cp(v) are comparable when
—vp(v(1, but Cp(v) is much larger than Cr(v) when
—1(v( —vp. In particular, it follows from (E16),
(E17), and (E20)—(E22) that for —vp(v(1,

Thus C(vp) is smaller by a factor S ' owing to the
above-mentioned cancellation. For this reason, we need
to estimate the order of magnitude of S.

A comparison of (E19) and (E9) shows that

K=1 C7rh se—ch7rt P, ~ ~( —vp)C'p(vp) ~ (E26)

When vp&0, (E21) applies and we get

n- —Cv-'(1 —vp')-'"Q (2v=' cos 'vp)

—P(1—2v ' cos 'vp)] exp[t(v. —2 cos 'vp)]. (E27)

Therefore, in this case vp&0,

in[We(vp)] —(7r —cos 'vp)t. (E28)

For vp(0, (E22) is valid but not accurate enough. We
need instead

Equation (E23) does not quite tell the whole story.
There is an exceptional point v =up where the C~ and 42
terms in (E17) cancel each other. More explicitly,

C (v,) =v S ' sechv t P, , ,*( =vp—)
=7rXr' sechvt Cg(vp) .

X)=1—Cv Ch't' tanhv t' P'„.=, (—vp)]'[sech7rt'+(cosh' t—coshprt') ']

=1+-,'Cvp ' —Cv- dh't' tanhv t'[P, (.=, (—vp)]'[coshprt —coshvt'] —'

-1+-:Cvo ' —C(1— ') '" '(K1—2 'cos '(—o)]—K2 ' o '(—)]) e pL —2t
' '(—o)] (E29)

Therefore, the magnitude of S depends on. whether or not C= —2vp. However, in either case, 1nS of (E16) is
of order 0(t). Therefore, for vp(0,

in[PC (vp)]
—icos ~&p

—(pr —cos 'vp)t for C=2vp.
(E30)

In either case, the right-hand side of (E30) is not larger than that of (E24). The important point here is that,
in all cases from (E28) and (E30), in[PC'(vp) ] is never much larger than in[PC (—vp)].


