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The perturbation series for the spin-flip amplitude, where two units of spin are exchanged, of the scattering
of two vector mesons through fermion-fermion—vector-meson coupling is studied in the limit of high ener-
gies. Similar to the case of elastic scattering (without spin flip) in quantum electrodynamics, there are, for
this spin-flip amplitude, terms in the perturbation series of the orders of magnitudes s, s Ins, s(Ins)?, s(Ins)?,
etc. For each #, the leading term in the coefficient of s(Ins)” is due to Feynman diagrams with »-+2 closed
fermion loops. These leading terms are found explicitly for the exactly forward direction, and are then
summed. Because these terms alternate in sign, at high energies this sum is smaller than any one of the lead-
ing terms in the series. This sum is studied in detail for the case where massless photons are exchanged, and is
found to have a simple factorization property. Some of the results are extended to the more general case of
exchanging massive neutral vector mesons. The high-energy behavior of this spin-flip amplitude is quali-
tatively different from that of the spin-nonflip amplitude studied previously.

1. INTRODUCTION

ECENTLY, we have studied the high-energy be-
havior of elastic scattering amplitudes in the
exactly forward direction in quantum electrodynamics.!
This was accomplished through the method of sum-
ming the leading terms from the one-tower diagrams.
Although the result, taken literally, violates the s-
channel unitarity,? a suitable interpretation in terms
of pionization® furnishes a number of predictions on
some of the fundamental questions in high-energy
physics.4
An important ingredient in this development, as
previously emphasized,® is the fact that the leading
terms, which are summed, are all positive. This fact is
related closely to the optical theorem, and thus its
validity has been shown only for the spin-nonflip ampli-
tudes in the forward direction. In general, for other
amplitudes, the leading terms may or may not be of
the same sign. It is the purpose of this paper to carry
out essentially the same considerations as those in Ref.
1 for the spin-flip amplitude in photon-photon scatter-
ing. As in Ref. 1, we shall restrict ourselves to the ex-
actly forward direction, but the “photon” may be
a massive neutral vector meson.
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1 Work supported in part by the National Science Foundation
under Grant No. GP-13775.
1 John S. Guggenheim Memorial Fellow.
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To the lowest nontrivial order, namely, the eighth
order, photon-photon scattering in the forward direc-
tion has been studied in detail.® To this order, it has
been found that there are, at high energies, two large
amplitudes of comparable magnitude. One of these two
is of course the spin-nonflip amplitude, while the other
one is the spin-flip amplitude involving the exchange
of two units of spin. It is this latter amplitude that we
study here to higher orders.

The motivation for carrying out the present study
is as follows. We have been trying to learn about the
high-energy behavior of hadronic scattering processes
from relativistic field theory in general and quantum
electrodynamics in particular. In this learning process,
two very different but equally important kinds of steps
are necessary: calculations and interpretations. Ex-
amples of the former are the initial ones on two-body
processes in lowest nontrivial orders” and that on
logarithmic factors,! while examples of the latter are
those on the impact picture® and limit of cross sections.*
At present we have a satisfactory understanding of two-
body elastic processes without the exchange of any
quantum number,* but the situation is much less clear
when quantum numbers are exchanged. In this paper,
we provide a calculation involving the exchange of spins.
It is possible for an amplitude involving the exchange of
spins to have similar high-energy behavior as the spin-
nonflip amplitude! already studied. An example of such

a case is provided by photon-photon scattering in scalar

6 H. Cheng and T. T. Wu, Phys. Rev. D 1, 3414 (1970).

7H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969);
Phys. Rev. 182, 1852 (1969) ; 182, 1868 (1969); 182, 1873 (1969) ;
182, 1899 (1969).

8 H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 670 (1969).
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electrodynamics. But it is also possible for a spin-flip
amplitude to have a different high-energy behavior.
The result of the present paper shows an example of
this high-energy behavior of the second type.

The calculation in this paper is somewhat compli-
cated. However, these two kinds of high-energy be-
havior can be understood as follows with very little
computation. In the analysis of the high-energy be-
havior of the spin-nonflip amplitude as given in Ref. 1,
a kernel Ko(qi,q.") plays a central role. Let 6 be the
angle between the two-dimensional vectors q, and q./,
then [see Eq. (6.1) of Ref. 1]

1 1
KU(QL,QL/)=QL2QL’2f dx/ ay
0 0

y [x(1—x)+y(1—y) ]—a(l —x)y(1—y)[5-+cos26 ]
o(1—2)qu+y(1—y)as2m? '

1.1)

Thus Ko(qu,q./) consists of two parts, a f-independent
part which is positive, and a cos2 part which is negative.
Since the high-energy behavior of the spin-nonflip
amplitude is controlled by the spectrum! of the opera-
tor with kernel

z 2 1 1
/ dx/ dy
24N 5 N2/ 0

2(1—x)+y(1—y)—Sx(1—2)y(1—y)
x(1—x)z+y(1 —y)z'+m?

that of the spin-flip amplitude must analogously be con-
trolled by the spectrum of

/ dx/ ay
2 2HN2 2 N2

RKi(z,2)=— ———
a(1—x)y(1—y)
#(1—2)a+y(1—y)d +m?

In (1.2) and (1.3), X is the mass of the exchanged vector
meson. Suppose we define an operator X; by

Ko(z,8") =

, (1.2)

1.3)

(Raf) (&) = / ). (14)

Then the spectrum of &; is (see Appendix A for details)
[—=3/128, 0]. (1.5)

Consequently, in order to get the desired high-energy
behavior of this spin-flip amplitude, we need to study
the i improper eigenfunctions of & near 0. The fact that
these lmproper eigenfunctions are rapidly oscillating
functions of 2 is the underlying reason why the high-
energy behavior for the spin-flip amplitude is different.
This rapid oscillation is also the source of mathematical

difficulties.
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These two types of high-energy behavior can also be
seen from the following slightly different point of view.
Both of the operators X, and X; are of non-Fredholm
type, as evidenced by their continuous spectra. If the
large-z behavior of these kernels are reduced, such asin
the Lee-Wick theory,® these kernels may then be of
Fredholm type. In this case the eigenvalues of these
kernels are discrete. While the high-energy behavior
of the spin-nonflip amplitude is then controlled by the
largest discrete eigenvalue of &, that of the spin-flip
amplitude is instead controlled by the accumulation
point of the eigenvalues of &;. Thus the high-energy
behavior of the second type is further removed from
that expected from a single Regge pole.!*

On the basis of this discussion, the high-energy be-
havior of the spin-flip amplitude in the exactly forward
direction is of the form

(1.6)

with possible further factors of the form (In In Ins),
etc., omitted. This is to be contrasted with the result of
Ref. 1 in the form

i(const)stt11e?r/32(In )2, .7

We shall be concerned mostly with the evaluation of
the exponent b. As we shall see below, the value of b
depends on mass ratios.

In Secs. 2 and 3, the problem is precisely formu-
lated. Because of the mathematical difficulties already
mentioned, we first treat in Secs. 4 and 5 the special
case A=0, i.e., the special case where photons are
exchanged. In this case, we are able to compute both
of the exponents b and ¢. The much more difficult case
of A>0 is then treated in Sec. 6, where we obtain the
exponent & but not the exponent c.

1(const)s(Ins)~*(In Ins)~,

2. SPIN-FLIP AMPLITUDE
Consider the scattering process
1+2—- 142,

where all four particles are vector mesons. If the par-
ticles 1 and 1/, and also 2 and 2/, are identical, then this
is an elastic scattering process; otherwise it is inelastic.
Let the masses of these vector mesons be, respectively,
Ml, Mz, Mll, a.nd Mg’.

As stated in the Introduction, we shall restrict our-
selves entirely to the exactly forward direction. For the
spin-flip amplitude of interest, two units of spin are ex-
changed. Thus, for example, the incoming vector
mesons 1 and 2 are both right-circularly polarized while
the outgoing vector mesons 1’ and 2’ are left-circularly
polarized. We are thus only interested in the transverse-
to-transverse impact factors. In the exactly forward
direction, these impact factors depend only on one vari-

¢T. D. Lee and G. C. Wick, Nucl. Phys. B9, 209 (1969).

10 H. Cheng and T. T. Wu (to be published).
1T, Regge, Nuovo Cimento 14, 951 (1959).
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able q. and are explicitly given by
1 1
9% (@) =3t/ of! / d“/ "
0 0

X{—8a(1—a)B(1—B)(q. £:)(qs &)

+ (e e)[q2(1 —=88(1—B) (3 —)?)

—B(A—B) (M 2+M{*) B{a(l—a)q.+m?
—B(1=B)[MPat+M (1 =)} (2.1)

for i=1, 2. Here ¢ denotes the polarization vector, f;
and f/ are the coupling constants of particles 7 and 7’ to
the fermion of mass m, and e is that of the exchanged
vector meson of mass \. So far as the spin-flip amplitude
is concerned, only the term proportional to (q.-e;)
X (q.- &) is relevant.

Similar to the treatment of Ref. 1, we follow the
procedure of summing the leading terms, i.e., the terms
with the highest power of Ins. We therefore study the
tower diagrams as shown in Fig. 1, where the number of
fermion loops is designated as #+2, withn=0,1,2, .. ..
For given 7, the leading contribution at high energies to
the scattering amplitude is

i)~ Ls(Ins)» (T, K" T*¥) (2.2)

[see Eq. (5.19) of Ref. 17]. For the exactly forward di-
rection, we have

Ji(qu) = (q:*+N?) 197 (qu) (2.3)
for i=1, 2, and the kernel & is given by, with (1.1),
%(0,91,q") =4e*(2m)~3(qu?+ M) (@ 2+~
XKo(quq:). (2.4)

The formula (2.2) gives all the amplitudes. To pick out
the spin-flip amplitude of interest, define, because of
(2.1) and (2.3),

1 1
JO(2)=—4 ? / da/ dBa(1—a)B(1—RB)
2+ Jo 0

X{a(l—a)z+m?
—BA=B[M fat+M*A—a) [} (2.5)

for i=1, 2. Because of (1.3) and (1.4), the spin-flip part
of (2.2) is®3

i(4m) e fufy fofd (n))s[2e4(2m)~4 Ins T
X T D537 T @), (2.6)

Because —&; is positive definite (see Appendix A) this
series alternates in sign, at least when M;=M, and
My =M. When these leading terms (2.6) are summed,
the total spin-flip amplitude in the exactly forward di-

12H, Cheng and T. T. Wu, Phys. Rev. D 1, 459 (1970).

B For & the operator is defined with respect to the integration
(2r)~2f'dq,, while for X, the operator is defined with respect to
JS'dz= fdq,% There is therefore a factor 4.
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where

F16. 1. Tower diagrams for the scattering
of two vector mesons.

rection is

is(Am) et fufd fafd' A,
A=(JO, exp(2A%y) T,

2.7
where
(2.8)
with

A=e*Qn)* Ins=7"%2Ins.

(2.9)

In (2.9), a is the fine-structure constant.
In this paper, we study in some detail the asymptotic
behavior of 4, as defined by (2.8), for large positive A.

3. EIGENFUNCTION EXPANSION

In order to study the asymptotic behavior of 4, we
expand J® and J® in terms of the continuous eigen-
functions! of &;. It is convenient to label these eigen-
functions not by the corresponding eigenvalue but by
the rate of oscillation for large values of z (see Sec.
4). We thus write in view of (1.3)

Kafi=—3u() [, (3.1)
or more explicitly
P 00 d , ( ,) z/
z+N2 Jo B L X
Lo 1—x)y(1—
% / s f oy x(1—x)y(1—y)
0 o x(l—x)z4+y(1—y)2' +m?
=u()fu(z). (3.2)

14 These “eigenfunctions’ are of course not square integrable.
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The labeling is such that u(?) is a decreasing function of
¢ for all positive ¢ and
lim u(¢) =0. 3.3)
t->0
(Note that this ¢ has nothing to do with momentum
transfer, which is very small or zero in this paper.)
If we normalize the eigenfunctions by?!?

/ @z 1) fol@) =8(i—1), (34)

then Ow
/ dt 1,(2)f:(F) =6(z—7"). (3.5)

This relation (3.5) follows, in a standard way, from
assuming completeness and

]0 ) 16| / ’ dt’fu(Z)fu(Z’)]

=/ at fu(2) / @ 1) fo)

=_/ Alfu(2)8(t—1") = fu(3).

With (3.5), the 4 of (2.8) can be recast in the form

A =/: dt e"‘(‘)“l:/ow dz J“)(z)ft(z):l
Xl:/: dz’J(”(z')f,(z’)]. (3.6)

In this form, the asymptotic behavior of 4 for large A
is determined by the behavior of

/w dzJD(z)f(z) (1=1,2) (3.7

for large ¢.
So far as the authors are aware, there is no general

method of determining asymptotically the solution of
an integral equation such as (3.2). For example, the
high modes of a drum are not known in general, and are
believed to depend critically on the shape of the drum.
Fortunately, for the present problem, a certain amount
of progress can be made in spite of this mathematical
difficulty. We shall begin with the quantum-electro-
dynamic case where all the vector mesons are massless.

4. QUANTUM ELECTRODYNAMICS
A. Reduction of Problem

We shall first study the physically interesting case of
quantum electrodynamics, where there is only one mass
m. More precisely, in this section we are concerned with

15 Since (3.2) is real, we have chosen f:(2) to be real.
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the special case where
M1=M1,=M2=M2/=>\=O
fi=f'=fo=f=e.
In particular, it follows from (2.5) and (3.2) that
J(5)=T V() =T (z)

(4.1)

‘and

(4.2)

1
=-—§-/ doa(l—a)[a(l—a)z+m2 ]t (4.3)
and '
® oot x(1—x)y(1—y)
az f(& d d
/o A )/; x/o yx(l—x).z-}—y(l-—y)z’—l—m2
=u() fi(2).

Moreover, in this case of quantum electrodynamics, the
total spin-flip amplitude (2.7) in the exactly forward
direction from the tower diagrams is

is(dr) e

A=/w dt e““““‘[/00 dz J(z)f,,(z):I . (4.6)

This formula for 4 can be greatly simplified by the
following observation. Let 2=01in (4.4); then the « inte-
gration can be carried out trivially, with the result that

(4.4)

4.5)
where

f & 1) / dy y(1 =) [y(1 =) +m T
' ' = () 1.(0).

If the dummy variables y of (4.7) and « of (4.3) are
identified, it is seen that (4.7) is simply

4.7)

/ ) = =S, (@8)

0

The left-hand side of (4.8) is just the integral required in
(4.6). Therefore, 4 is given by ’

A= / B OO ILAOT.  (@9)

0

At this stage, we can already get some preliminary
information about the high-energy behavior of the
spin-flip amplitude. Because of the analytic structure of
(4.4), u(?) is expected to be exponentially small for
t—oo. If the dependence of f,(0) on ¢ is neglected, then

a comparison of (4.9) with (1.6) shows that
b=2. (4.10)

In the remainder of this section, we make this more
precise and also find c.
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B. Discontinuity

Let
v=143z/m?
and
o =142 /m?; (4.11)
then

/w d’l)’f (vl)/l dx/ld (1_x2>(1 —y2)
L ) e (= ey
=4u(t) fu(v) (4.12)

for v>1, where

Juw)=V2mfi(z) (4.13)
satisfies
/ Fi@) fo@)dv=25(1—1) (4.14)
because of (3.4).
For v'>1, the kernel of (4.12)
/‘ ./ —1 Y (4.15)
0 (1 x2)v+(1 ¥V Fa?4y?

is an analytic function of the complex variable v except
for a branch cut from —w to —1 along the negative
real axis. Define D(v,2’) to be the discontinuity of this
kernel across the branch cut (except for a factor 2):

Do) = / & / dy(1—a?)(1—?)

X3(—(1 =)o+ (1 =30 +a2+?).

Note that we have changed the sign of v so that both v
and v’ are real and larger than 1.

In Appendix B, we explicitly carry out the integra-
tion over x and y for D(v,v’). The result is surprisingly
simple:

D(v,v’)=%E(v+1)(v’—1)T3’2{—(v—l)”z(v’—l)”z

(4.16)

X[3(v+v")+2]+[3(v2+v'2)+ 200’ —8 ]

—1)V/ / —1)1/2
xm@ D+ 1) }.(4N)

[v—2"| 12

In particular, D(v,2") has a logarithmic singularity at

v=1', and
Le+1)/(@—1)1"2D(v,") (4.18)

is symmetrical in » and ¢’. It is also easily verified from
(4.17) or (4.16) that

lim D(o,) =3[(0=1)@+1)* ]2 (4.19)

C. Asymptotic Solution of Integral Equation

We want to solve (4.12) approximately for small u(Z),
or by (3.3) for large . Instead of this complicated (4.12),

2381

consider first

/ W o) o) =ae(),  (4.20)

which has previously been used as an example in Ap-
pendix B of Ref. 1. Notice the similarity between
(4.12) and (4.20) in that the corresponding discontinuity
for the kernel of (4.20) is simply 8(»—2"). The solution
of (4.20) has been given by Mehler!¢ as'?

¢(v) = Piy(v) (4.21)

where P is the Legendre function of the first kind. Here

the eigenvalue g is related to ¢ by
g=m sechmt. (4.22)

This solution is studied in some detail in Appendix C.
In order to make use of solution (4.21), we compute
the integral

0 1 1
/ APy (V) / dx / dy
1 0 0

(1=2?)(1—»%)
(1 —a2)o+(1— 920/ +a2+4y?

This is carried out in Appendix D for large ¢, and the
result is given by (D21). In particular, from (D8) for
¢ large and v not close to 1, we have

(4.23)~3m% ! sechnt Pyy(v). (4.24)

A comparison of (4.24) with (4.12) shows that, for ¢
large,

(4.23)

w(@)~(16)"172%1 sechat,

or more simply

w(@)~3rilemt, (4.25)

We wish to emphasize that this relation (4.25) between
¢ and p is quite complicated. It is for this reason that,
as stated in Sec. 3, we do not label the eigenfunctions
by the eigenvalue u. If (4.25) is inverted to express ¢ in
terms of u, we get

1/ =t s
t=t(u)~ —(ln——. —In ln—>

4.26
m\ 8u 8u ( )

for small u. In this way, logarithms of logarithms appear.
_ It remains to give an approximate expression for
fi(v). Since??

itanhul/ P y(0)Piv—y(v)do=00—1t"), (4.27)
1

18 F. G. Mehler, Math. Ann. 18, 161 (1881).

17 A much more convenient reference is Bafeman M anuscript
Project, Higher Transcendenial Functions, edited by A. Erdélyi
(McGraw-Hill, New York, 1953), Vol. I, pp. 174-175.
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we have, for large ¢,
Fi)~012p; y(v). (4.28)

As seen from (D21) or (D20), (4.28) is not accurate
when v is close to 1. Nevertheless, for most purposes of
determining the high-energy behavior of the spin-flip
amplitude in quantum electrodynamics from the tower
diagrams of Fig. 1 in Sec. 4 D, (4.28) is accurate
enough. From (4.13) on the basis of (4.28), we get

finally

fi@~G) P m Py y(1+3m %) . (4.29)

D. High-Energy Behavior

We now have all the necessary information to get the
high-energy behavior of the spin-flip amplitude in
quantum electrodynamics. For 4 given by (4.9), we
use (4.26) and®®

Fu(0)~Z7=1(2) 2t (4.30)
on the basis of (D18), (D8), and (4.29). Therefore,

A~(8/9)1r‘2m"2/w tdt e+ OA () ]2

pudp e~#A[In (Frdu?)
—Inln(Griu1)—1]
~(8/9) 7 4m2A~?[In(§7*A)
—InIn(Ew3A)—2+v], (4.31)
where v=0.57722 is Euler’s constant. By (2.9) and

(4.5), the desired high-energy behavior for the spin-flip
amplitude in the exactly forward direction is'®

15(512/9)m2r3(Ins)~2[In(3ma? Ins)
—In In(}ma? Ins) —1477].

Finally, a comparison of (4.32) with (1.6) verifies
(4.10), which has been obtained very simply in Sec.
4 A. Equation (4.32) gives the more precise informa-
tion that

~(8/9)m~*m? /

(4.32)

b=2 and c¢=-1. (4.33)

In this case of quantum electrodynamics, there is only
one mass, namely, that of the fermion. For this reason,
both & and ¢ must be simple numbers. In Sec. 5 we still
keep A=0 but introduce the M’s. It is then seen that b

depends on mass ratios.

5. SCATTERING OF VECTOR MESONS

We next generalize the results of Sec. 4 to allow
M, My, M, and M, to be positive. The restriction
A=0 is still retained.

18 Tf the approximation (4.29) is used directly, the answer for
the high-energy behavior of the spin-flip amplitude changes by a
factor (§m)%. Such an over-all factor is in any case not of great
physical interest.

1 Note that the leading term of this result (4.32) is independent
of the coupling constant e. Compare, however, with (5.17).
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A. Elastic Scattering

Instead of dealing directly with the general case of
Sec. 5 B, we first consider the case where

M1=M1’ and M2=M2'. (51)
In this case, (4.3) is replaced by
1 1
JO(z)= —4/ da/ dBa(l1—a)B(1—p)
0 0
X[a(l —a)z+m?—B(1—L)M 2] (5.2)

for ¢=1, 2. Equation (4.4) is not changed, while, in-
stead of (4.5) and (4.6), the spin-flip amplitude is given
by (2.7) with 4 expressed by (3.6).

It is convenient to use the mass ratios

Ri=iM?/m?> and Ro=iM,2/m?.

In terms of these ratios, J@(2) takes the form, after
the change of variable (4.11),

(5.3)

1 1
J(i)(z)=—%m_2/ dx/ dy(1—a*)(1—y?)
0 0

XL =224 (1+22) -2 —y)R; L. (5.4)

If these J (2) are considered to be functions of the com-
plex variable v, then they are analytic except for a
branch cut from —o to —u,‘? along the real axis,

where
2990 =1—2R;. (5.5)

Note that 2,2 may be negative. However, the stability
of the vector mesons against decay into two fermions

requires that

Ri<1 and R:<1. (5.6)
Thus
5.7

In other words, the branch cuts along the real axis of
the v plane always stop below 1. Define D® to be the
discontinuity across the cuts (except for a factor
—rm?)

D(i)(v)=/ dx/ dy(1—x?)(1—y2)

X[ —(1—at)v+(1+2?) —2(1—y*)R:]
=D(1,00?)

by (4.16) and (5.5). Note that, since 9,?<1, (5.8) re-
quires an extension of the domain of definition for
D(v,v"). With this extension, the explicit result (4.17)
holds only for v2>1, i.e.,

D(vy') =Fs[(0+1)(1--") J*2{ (v— D121 —2/)!/?
X[3(v+)+ 2]—[3(v24v'?) 4200 — 8]
Xtan™'[(1=v)/(e=1) 1"} (5.9)

2oM>—1 and v®>—1.

(5.8)
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for v>1>v". When v<1 and 7' <1, the answer is much with v<1. When applied to (5.8), (5.11) gives (for
simpler: i=1,2)

D(v") =fen[(1+v)(1—2/) ]3/2 DO (5y®) =1r(1—0,®2) =12 =1x[ Ry(1 —R) T2, (5.12)
X[8—200' —3(2+v'®)]. (5.10)

. , We also need the asymptotic behavior of the Legendre

In particular, for v=7, function of the first kind. For ¢ large and fixed v be-

D(v,) =3 (1—22)~1/2 (5.11) tween —1 and 1, we have

Puy(0)=F (G —it, 3 +it; 1;3—0)

=5 EFDE+/)- - [P+E-DTG 10/ )

~ i @nn)=1( —30)" exp[ 2 tan— (n/0)+-n In(1422/n2) ]

~ (2rt)"'[(142)/(1—2) ]*/* exp(¢ cos™') _f exp{ — 3t 1(140)32(1 —v)~ Y2 [ n — (1 —v) V2(1 4-0)~ 112 ]2}

~ (2rt)=12(1 —v?) "4 exp(f cos™™v).  (5.13)

We now have all the necessary information to calculate the high-energy behavior of 4. Substituting (5.12) and
(5.13) in (3.6) and using (4.29) and (CS5), we get

A~ 2m?) / tdte—NM[ / dzJ<1><z>Pu_%<1+—;—m—2z>][ f dz'J<2>(z'>Pu_.n,.(1+%m~2z'>}
0 0 0

= —%m‘sz tdt(sech%rt)e‘“(‘)“{/ dv J(“[:Zm?(v—l)]])”_%(——v)} {/
0 C1

C1

~1r2m'2/ tdt e—“‘e‘”“)“[/ dv D(”(v)Pu_%(v):”:/ dv’D‘”(‘v’)P“_%(v'):l
0 201 00 (2)

” 1
dt e—zne—u(m[ / dv exp(t cos“v):l

0(1)

' T O[2mA (e —1) ]Pi,_g(—'v')}

~LAem=2D D (5, 0) D@ () @) (1 — 9, V2~ 1/4(1 _.,,0<2>2)—1/4f

0

1
><[ / ' exp(t cos-*v'>]~%m~2p<1><vo<l>)p ® (092 (1~ gD (L —0g@2) 114
(2)

0

X/ dt =22+ O expli(cos™lwo VD +cos @) ].  (5.14)
0

In this derivation, the contour C; of integration is the

v/- plane
one shown in Fig. 2. In this form (5.14), a comparison
with (1.6) already shows that
b=[2r—cos™ vV —cos~ 19y /7
=[27—cos™1(1—1M%/m?)
—cos~ (1 —3M/m?) )/ o —

=2[cos 1 (3 M1/m)—cos~ (3 Ms/m) /7. (5.15) -v
Thus this exponent depends on mass ratios. In terms of
this b, it follows from (4.26) and (5.14) that
A~ (Gm)*'m[Ri(1—R1)Ro(1—Ry) 714
X @r*A)~*[In(F=®A) ]*+*1'(b)
X{14+2—0b)[In In(37°A) /[nG=2A) ]} . (5.16) F16. 2, Two useful contours of integration.
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By (2.9) and (5.16), the desired high-energy behavior
of the spin-flip amplitude in the exactly forward direc-
tion for the scattering of vector mesons is, when (5.1)
is satisfied,
i(3m)*sm2et fufy fofs T(O)[R1(1—R1)Ry(1—Re) J~1/*

X (3ma? Ins)~*[In(}3ma? Ins) J2+?

X{14+(2—b)[In In(3ma? Ins)]/

[In(3re?Ins) ]}y, (5.17)

where b is given by (5.15). A comparison with (1.6) then
gives the further information

c=2-b. (5.18)
In the limit M;— 0 and M, — 0, we get from (5.15)
that & — 2. If (5.18) is used, we then get ¢— 0. This
limiting value O does not agree with the —1 of (4.33).
This is, however, not surprising for nonuniform asymp-
totic expansions.
B. Inelastic Scattering

In the more general case where (5.1) is not satisfied
but A is still 0, (5.2) must be replaced by

]<i>(z)=_4/ da/ dB a(l1—a)B(1—0)

X {a(1—a)z+m?

—BU—B)[M 2a+M2(1—a) T~ (5.19)
for i=1, 2. Equation (4.4) is still not changed, and the
desired spin-flip amplitude is still given by (2.7) with
(3.6).

With the change of variable (4.11), J®(z) takes the

form
JD(2)= —im—2/ dx/ dy(1—x2)(1—y?)
X{(1 =2+ (144 —(1—y?)

X[R:(142x)+R/(1—x) ]}, (5.20)
where
Rz=M,2/(4m2)
and
R/=M/2/(4m?). (5.21)

As in Sec. 5 A, let v be a complex variable. Then J®(z)
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is an analytic function of v except for a branch cut from
— oo to —2y® along the real axis, where

2@ =_1n<1ixn<1 (1—2?)Y{(1+«?)
o —[Ri1+2)+R/(1—0)T}. (5.22)

The computation of this minimum is straightforward,
but the result is somewhat complicated:

2@ =1[(1—R)V24+(1—R/)V2P—1. (5.23)
This minimum value occurs at
(1—R/))¥—(1—Ry)?}
(5.24)

X= N
(1—R{)H(1—R)!

As a generalization of (5.8), the discontinuity of
J@(z), i=1 or 2, across this cut is given by

1 1
D)=t [ s ay1-s)1-5")
-1 Jo
Xo{ — (1 =22+ (142 — (1—y%)
X[Ri(142)+R/(1—2)]}. (5.25)
Unlike (5.8), the right-hand side of (5.25) is not in any
simple way related to the D(v,1”) of (4.16). As we learned
in Sec. 5 A, the only important quantity is
DD (0y®) =x(1—R;) 4 (1—R/) 4
XL(A~R)UH (4R T
X[1—(1—R)V2(1—R/)VET12, (5.26)
Since (5.14) still holds for the present case, we get
immediately, as a generalization of (5.15), that

b=[2r—cos™ oy —cos 1oy @] /m
=2 1{sin13[(1— Ry) >+ (1—Ry) /2]
sin- (1~ R+ (1—RY) 17y
=27 Ysin 5[ (1 —1M2/m?) 24 (1 =1 M2 /m?) /%]
+sin~13[(1 —1 M2 /m?) /2
+=3iM/m) V], (5.27)
Moreover, (5.18) still holds. With this &, (5.17) is only
slightly modified so that the spin-flip amplitude in the
exactly forward direction for the scattering of vector
mesons is

iGm)om e fufy fof{ TO)L(1—R) (1= R) (1= Ro) (1= R JHL(1—Ro) oo (1 = Ry') V2] 2
X 1= (1= Ro) V2(1— Ry) 212 1= 30 (1= Ro) V2o (L= RY) V23 AL (1 —Ro) ok (1= Ry ) 2202
X[1—(1—Ry)2(1— Ry )VET12{1 —2[ (1 — Ry) /24 (1 — Ry) 22} 4 (3 ma? Ins)~*[In (3ma? Ins) -2

This is the desired result. In connection with factoriza-
tion, note the appearance of I'(b).

6. EXCHANGE OF MASSIVE
VECTOR MESONS

We now turn our attention to the case A\>0. Since
this case is much more complicated than the massless

X{1+@2—0b)[In In(}7a? Ins) /[In(ma?Ins) I} . (3.28)

one treated in Secs. 4 and 5, we shall concentrate en-
tirely on determining the exponent b.

The additional difficulty for this case A>0 is the fol-
lowing. Instead of (4.4), we must now solve the integral
equation (3.2) approximately for small u(?). Since (4.4)
has been analyzed on the basis of the solution to (4.20),
the corresponding simplified integral equation for A>0
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is

9—1 v —1
f B o) —— =gp(s),  (6.1)
V— J1 ’UI—YJ()‘Z)"—‘U,
where
vo=1—3N¥/m?. 6.2)

Unfortunately, unlike (4.20), (6.1) cannot be solved
exactly by the authors for a general value of v,. We
reluctantly reached this conclusion after months of un-
successful attempts.

Because of this difficulty, we are forced to use a fur-
ther simplified integral equation. One of the major differ-
ences between (6.1) and (4.20) is the presence in (6.1)
of poles at vy, with |v| <1. We therefore make up
another integral equation with this feature incorporated.
More precisely, we assume that some information about
the integral equation (3.2) can be obtained by studying

/ &' () (v4) 7 = Clo—v0) 71" —v0) "]
1

=he(), (6.3)

where C#0 is a fixed constant. Equation (6.3) is solved
in Appendix E.

Numerous questions may be raised concerning
whether (6.3) is appropriate. We believe that the ex-
ponent b is sufficiently insensitive to the details of
fi«(2) so that this rough approximation is admissible,
but we do not have any confidence of extending the re-
sults to the exponent ¢. We mention here only one of
the simpler questions. Is it necessary to incorporate
another feature of (6.1), namely, the zeros at 1? This
question can be answered by considering the special
case vo=—1. Since

Le=1)/+D @' -1)/@ +1) J(e+0)
=(v42) =20 41)"1(v' 1), (6.4)

(6.1) can be solved exactly in terms of Legendre func-
tions of the first kind for this special value of v. The
zeros at —1 are present only if the coefficient of the
second term on the right-hand side of (6.4) is precisely
—2 as given there. From the explicit solution, we see
that the solution does not change qualitatively when
this coefficient is varied, except that ¢(1) =0 only for the
special value —2. Since the vanishing of f; at =0 does
not directly affect the exponent b, we conclude that the
zeros at 1 are unimportant for our limited purposes.
By (2.5) and (5.20), for the present case of A\>0,

TO@) = —tm2(0—1)(0—v)"" | dx f dy(1—a?)
—1 0

XA =y {1 —a)v+(1+22) —(1—»?)
X[Ri(1+x)+R/(1—x) ]}, (6.5)
\for i=1, 2, where v, is defined by (6.2) while R; and
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R/ are defined by (5.21). Considered as a function of
the complex variable », J¥(z) has a branch cut along
the real axis from — o to —uv,?, where v, is given by
(5.23). In addition, if vo>v,?, there is a pole at v=uv,.
From the procedure of Sec. 5 B, we need to know the
magnitudes of ®(vy) and ®(—v,?), where ® is defined
by (E10). These quantities are studied in detail in
Appendix E. In particular, from the last paragraph of
Appendix E, we know that ®(v,) is never important.
Therefore, from (E23) and (E24), we get

In[N®(—2®P) ]~ — [ —cos™! min(vo,2:?)]. (6.6)
Accordingly, the result (5.27) is only slightly modified to

b=7"27—cos™! min(vo,v,D)
—cos™ ! min(vp,2®) 7.

6.7)

Like (5.27), (6.7) can be written in terms of half-angles
as

b=27""{sin™! min[ (1—iN2/m?)'/2, (1 =1 M:2/m?)"/?
+3(1—1M1%/m?)'*]
+sin~! min[(1 —3\2/m?) /2, 1 (1 —1 M2/ m?)1/2
+3(1=1M2/m) 2]y . (6.8)

Since (6.8) contains (5.27) as a special case, it is the
general result for the exponent b&.

7. REMARKS

Since the mathematical manipulations involved in
this paper are quite heuristic, it is perhaps useful to give
our views on this procedure. It is clear that, compared
with the treatment of the spin-nonflip amplitude in
Ref. 1, the steps taken in the present paper raise many
more problems and hence are much less justified mathe-
matically. Let us list some of these problems.

(A) In Ref. 1, we sum a series where every term is of
the same.sign and hence no cancellation is possible.
Since the nth term is proportional to (Ins)” for large s,
the sum must necessarily increase faster than (Ins)” for
all # as s — 0.5 It is therefore reasonable that the sum
should behave like s raised to a power, and this be-
havior is verified in the explicit calculation. This is not
the case here, where terms of the series alternate in sign,
leading to extensive cancellation. Indeed, since the
exponent b is positive, the sum is actually smaller in
every case than any one of the terms in the series. For
this reason, the procedure followed here of summing the
leading terms is much less justified. However, we be-
lieve that this problem is not serious, at least compared
with the other difficulties to be given below.

(B) An essential step in the determination of the
high-energy behavior of the spin-flip amplitude is to
solve for the highly oscillatory eigenfunctions of an
integral equation. So far as the authors are aware, there
is no general procedure to obtain these eigenfunctions.
In the massless case A=0, this needed information is
obtained in Sec. 4 C by assuming a solution in the form
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of a Legendre function and verifying that this assumed
solution indeed satisfies the integral equation approxi-
mately over most of the range. This is true unfortunately
only over most of the range 1<v<o but not over all
the range, the error being large when v is close to 1. It
is therefore a legitimate problem to raise whether the
assumed solution is a good approximation to the desired
solution. We can only answer this by simple examples
where the kernel (v49')~! of (4.20) is perturbed by
a separable kernel. On the basis of these simple ex-
amples, the solution (4.29) is accurate enough for our
purposes.

This answer by example is less satisfactory than it
seems at first glance. With the detailed calculation of
Appendix D, we may ask whether [see in particular the
uniform asymptotic approximation (D21)]

FiD(z) = ()21 (v2—1)~14(cosh™) /2
X [Ei1(t cosh~v) — (¢ cosh~'v) " Ey(¢ cosh~%)], (7.1)

with z=2m?2(v—1) as always, is a better approximation
to fi(z) than (5.29). Clearly we should study the
integral

00 1 1
R
0 0 0

2(1—2)y(1—y)

. (1.2)
x(1—x)z+y(1—y)7' +m?

We have been unable to find any approximate relation
between (7.2) and (7.1), mostly because of some un-
pleasant properties of the Weber functions E; and E,.

(C) The situation is even worse for the case A>0 as
discussed in Sec. 6. While in Sec. 4 for A=0 we can
substitute the assumed solution into the integral equa-
tion (4.12) to verify that the integral equation is ap-
proximately satisfied over most of the range and to
identify the eigenvalue u(f), this cannot be carried out
for A>0. In particular, the generalization of (4.25) to
A>0 is not known. This implies that the approxima-
tions involved in Sec. 6 are significantly less accurate
than those of Sec. 4, and it is for this reason that it is
not possible to calculate the exponent ¢ for A>0 by the
procedure of Sec. 6. It is a most interesting mathemati-
cal problem to improve the most unsatisfactory pro-
cedure of Sec. 6 for A>0.

In spite of these difficulties, we believe firmly that
the results here on the exponents & and ¢ are correct.
The reason is that the exponent b is determined almost
entirely by the location of singularities in the complex
plane, and is hence very insensitive to the details of the
approximation. Moreover, since the approximation for
the massless case A=0 is far superior to that of the
massive case A>0, it is reasonable to expect that more
information can be extracted for A=0, namely, the value
of the next exponent c.

Another interesting question concerns some of the
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phenomena encountered in the analysis of the model
integral equation (6.3) as carried out in Appendix E.
As seen explicitly from (E27) and (E29), the asymptotic
behavior of the denominator © for large ¢ is quite differ-
ent for the two cases 9>0 and 2p<0. By (6.2), these
two cases are, respectively, AN<v2m and A>V2m. Does
this mean that the high-energy behavior is somehow
related to anomalous thresholds? Furthermore from
(E27), © has a zero near vy=2"1/2 because

Y21 cos™12-112) —y(1—2r—12-112) =0,

Is there anything unusual at this peculiar point vo=2-1/2
or A= (2—V2)/2p?

8. SUMMARY AND DISCUSSION

(A) All the results on b, one of exponents in the high-
energy behavior (1.6) of the spin-flip amplitude for the
forward scattering of two vector mesons, are contained
in (6.8), since (4.10) and (5.27) are special cases. Let

by =21 sin~Y{min[ (1 —I\¥/m®) /2, $(1 — 1 M2/m?)'/?
+ =143/ myi)
and

by =21 sin—{min[(1—I\Y/m2) /2, 1(1—1M2/m2)\/2
U1/, (8)

so that by is independent of the nature of the particles
2 and 2’ while b, is independent of the natures of 1 and
1". Then

b=b1+bs. (8.2)

(B) So far as the next exponent ¢ of (1.6) is con-
cerned, we have information only for the special case
A=0, i.e., the case where photons are exchanged. The
results are given in (4.23), (5.18), and (5.28). From
(5.18) and (5.28) we see that the sum of the exponents
b+c is actually simpler, and we summarize our results
on b+ in Table I. It is therefore useful to define2°

Cl:{%—bl if Mi=M,=0,
1—b; otherwise;
and
_ %—bg lf M2=M2’=0,
o= { 1—b; otherwise; (8:3)
then
c=c1+cs. (8.4)

20 As an example of the discontinuous asymptotic behavior,
consider "
I(a)=lim (’-‘)”" f 9 exp(— A sinh?).
AD® \T a

Explicit evaluation gives
0 for a>0,

I@)=1}

1 for a<0.

The uniform asymptotic behavior of the integral for A large is of
course expressed in terms of an error function.

for a=0,
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(C) Decompositions of the forms (8.2) and (8.4) can
be extended even further. From (5.17) we note that at
least for the case A=0, the high-energy behavior of the
spin-flip amplitude in the exactly forward direction for
the scattering of vector mesons is given by

isl‘(b1+b2)A1A2, (85)
where
A= (Gm)* Pt fi fy [Ri(1—Ry) I/
X (3wa? Ins)~[In(3ma? Ins) -1 (8.6)

is independent of the nature of the particles 2 and 2/,
while

Aa=(im)emetfofs [Ra(1— Ra) T4

X (w02 Ins)~»2[In(3me? Ins) -2 (8.7)

is independent of the nature of 1 and 1’. Thus at very
high energies, the spin-flip amplitude factors in the
simplest possible manner except for an over-all constant
factor I'(b1+b2).2! This factorization is expected to be
quite general and not limited to this spin-flip amplitude.
In a different connection, this factorization was dis-
cussed some time ago.??

(D) We have often been asked the following ques-
tion: Granted that the leading singularity is a branch
cut, what are the other singularities in the complex
angular momentum plane? One reason for asking this
question is the hope that these other singularities are
of a simple nature, perhaps Regge poles. Since we are
able to calculate only the high-energy behavior of scat-
tering amplitudes, there is in general no way to answer
this question. The only possibility is to choose an ampli-
tude and a momentum transfer so that the leading
singularity does not contribute at all to the high-energy
behavior. This is precisely the case for the spin-flip
amplitude in the exactly forward direction, and in this
way we can get a glimpse of the other singularities.
What we see is another branch cut, perhaps even of
somewhat more complicated nature than that of the
leading singularity. This does not mean, however, that
the amplitudes for the exchange of other quantum
numbers are necessarily also complicated, and a great
deal more work is needed in this direction.

(E) On the basis of our limited knowledge in this
special case of the spin-flip amplitude, we attempt to
compare this high-energy behavior of the second type
with that found previously! for the spin-nonflip ampli-
tude (high-energy behavior of the first type). The follow-
ing qualitative differences come to mind immediately.

(i) The power dependence on s is a function of the
coupling constant for the first type, but is independent
of the coupling constant for the second type. For the

2 Since T'(b1+b2) =B (b1,b2)T (b1)T' (d2), where B is the beta
function, this over-all factor can alternatively be given as B (b1,b2)
while the factors I'(8;) and I'(bs) are included, respectively, in
A1 and Az.

e 22 The discussion on factorization was first presented by T. T.
Wu, Bull. Am. Phys. Soc. 14, 49(T) (1969).
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TABLE I. Values of the sum of the exponents b and ¢ for the

scattering process 142 —» 1’42’ due to the exchange of massless
photons.

M50 or

M1=2|r[1’=0 M{#O
My=My=0 1 3
M27#0 or Mo/ #0 3 2

examples, this s dependence is s'*11e*7/32 for the spin-
nonflip amplitude (1.7) but is simply s for the spin-flip
amplitude (8.5).

(ii) High-energy behavior of the second type is also
less sensitive to the large-momentum behavior of the
underlying theory. As discussed previously,!® if the
large-momentum contributions are suppressed, the high-
energy behavior of the first type changes from one ap-
propriate for a fixed branch cut to one for a moving
Regge pole. Similarly, with such a suppression, the
high-energy behavior of the second type changes, in
this example of the spin-flip amplitude, from one ap-
propriate for a fixed branch cut to one for a fixed essen-
tial singularity. But the high-energy behavior for these
two cases of a fixed branch cut and a fixed essential
singularity are essentially the same; the value of the
exponent b is in particular not changed.

(iii) The high-energy behavior of the second type
depends on the highly oscillatory components of the
impact factors. In the example of the spin-flip ampli-
tude, this is the reason why the exponent b is fairly
complicated and depends on mass ratios. The physical
meaning of this dependence is, however, not clear to the
authors.

There are many other differences, such as the appear-
ance of the (In Ins) factor in (1.6) but not in (1.7), and
the discontinuous behavior of the corresponding expo-
nent as given by (8.3). But these differences may or may
not be general in distinguishing the high-energy be-
haviors of these two types.

Although these differences (i)-(iii) are of a major
character, we believe that the difference is actually even
deeper. By suppressing the large-momentum contribu-
tions, the high-energy behavior of the first type bears
close resemblance to one expected from a Regge pole (to
the right of J=1).1° This is not at all the case for high-
energy behavior of the second type. Rather, the high-
energy behavior of the second type seems to be a
realization of the kind of behavior from essential
singularities.??
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APPENDIX A

In this Appendix we study in some detail the spec-
trum of the operator &; as defined by (1.4) and (1.3).
The expression (1.3) can be written in the form
Ri(z,2")

1 3z 4

2 24+A2 g N2

/ °° d e F()F(F'E), (A1)
0

F(z¢) =[ dx x(1 —x)ev(—=)2¢ (A2)

can be expressed in terms of the error function. There-
fore,

(f,%1f)
=/ dz/ dz' f*(2)Ka(2,8") f(2')

0 | pw 2
=—%/ dée—mzf/ dz i F(z£)f(z)| <0. (A3)
0 0 Z2-4N\?

Suppose that the equality sign holds in (A3), i.e.,

(f;%1f)=0. (A4)
Then
| droner=0 (43)
0
for all £>0, where
2
g(z)= 1(z). (A6)
z4N?
Therefore, as a consequence of (AS),
0 0 2
[ [ areoge |0
0 0

or

/ " ds ) / " ig(@) / s / dy (1 —2)y(1—3)

X[x(1—x)z+y(1—y) T=0. (A8)

Define £, k(£), and H(y) by
z=eéf, (A9)
g(a)=e*7n(¥), (A10)

and 3}
H(r)=/ eETh(E)dE. (A11)
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Then it follows from (A8) that

i (14472 sinhwr
/ dr |H(7)| ————— =0. (A12)
o 7(1472%) cosh?rr
Therefore,
H(y)=0
and hence
J(z)=0. (A13)

The solution f(3)=68(z) is excluded because it is not
square integrable. We have thus shown that (A4)
implies (A13). In other words, —&; is positive definite.

The treatment of &, as given in Sec. 6 of Ref. 1 can
be taken over step by step to &1, and the result is that
the spectrum of &; is given by (1.5).

APPENDIX B

In this Appendix, we briefly describe the derivation
of (4.17) from (4.16). In the xy plane, the argument of
the & function of (4.16) is zero on a hyperbola. The
shape of this hyperbola is somewhat different depend-
ing on whether v or ¢’ is larger.

Consider first the case v>v" and introduce a new
variable 6 by

x=[(v—7")/(v+1) ]2 coshb

and
y=[(v—v")/('—1)]"/2 sinhg, (B1)
then the range of this variable 6 is from O to
In{[(o—=1)'2+ (' =1)"?]/(v—2")"2}.  (B2)

With this variable 6, the integration is straightforward.
For the other case v<v’, we use instead of (B1)

x=[('—2)/(v+1)]"/2 sinhg

and
y=[("—v)/(@ —1)]"2 coshd. (B3)
The range of this 6 is from 0 to
In{[(—1)'24+@'=D)"2]/ (' —v)'?}. (B4)

APPENDIX C

In this Appendix, we study in some detail Mehler’s
integral equation (4.20).

Since the Legendre function P,(») of the first kind
is related to the hypergeometric function F by

P()=F(—v,v+1;1;%—30). (C1)

P,(v) is an analytic function of the complex variable v
except for a branch cut from —w to —1 along the
negative real axis. Furthermore, if Q,(v) is the Legendre
function of the second kind, and v is positive and larger

24 See Eq. (3) on p. 122 of Ref. 17. Properties of the hyper-
geometric function are given in Chap. IT of Ref. 17.
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than 1, then

P,(—v+10) =¢™ P,(v) — (2/7) sinmv Q,(v) (C2)
and

P,(—v—1i0)=¢"*"P,(v) — (2/7) sinmv Q,(v) (C3)

(see p. 140 of Ref. 17). Thus in particular the discon-
tinuity across the branch cut from —w to —1is

P,(—v+10)— P,(—v—1i0) =24 sinmv P,(v). (C4)
In view of (4.21), let
v=it—1%.
Then
Py 3(v) =%i sechwt [ Py (—2-+10)
—Piy(—v—i0)]. (CS5)

Relation (C5) is useful in verifying that (4.21) is in-
deed a solution of (4.20). Let C; and C; be the two con-
tours of integration shown in Fig. 2; then

T(—it) ]
Poy(o) =a—12 [v+(v2—1)1/2]—u—%F<§~, L-it; 14it;
TG —ib)
T(it)
A+ 12 [v+(v2—1)1/2]“‘*F<%,%—it; 1—
T'(3+i1)
T'(—)
~ql2. [v+(v2_1)1/2]~it-%|j1 —_—
I'G—it)
T'(it)
g2 [v+(v2_1)1/2]u—%|:1_ -
I(+it)

Secondly, when v is close to 1,
Py y(0)~Jo(([ 20— 1) 7).

Combining these two results, we get (C7).

(C9)

APPENDIX D

In this Appendix, we evaluate (4.23) for large i. We
follow the procedure of verifying Mehler’s solution to
his'integral equation as given in Appendix C. By (CS5),
the integral (4.23) can be rewritten in the following
form:

1 1
(4.23)=—1% sechwt/ dv'Pu_%(—v’)/ dx/ dy
C1 0 0
(1—x%)(1—y%)

(1= 22+ (1 —y2)r/ +at+y?

1 1
= —1¢ sechmt / d‘v'Pit—§(_7)l)[ dx/ dy
—C1 0 0

(1—a*)(1—y?)
(1 =a2v4-(1 =920 +a2+9y? ’

D1)

it;
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/ dv' (v+0' )" Py (v')
1
= —1i sechrt / @' (v+v')" Py (=)
C1
=—31 sechwt/ @v'(v+o' )" P iy (=)
C2
=1 sechwt Py (v). (C6)

This procedure is also used in Appendix D.
So far ¢ is an arbitrary real number. We now concen-
trate on the case where ¢ is large. In this limit

Py 3(v)~ (v2—1)"4(cosh—1v) /2] (¢ cosh~19) (C7)
uniformly for all > 1. To derive (C7), we need to con-
sider two cases. First, assume that v is not close to 1.
Then [see Eq. (27) on p. 129 of Ref. 17]
'u—(v2——1)1/2>
v+ (22—1)1/2
1}—(7}2—-1)1/2>
o4 (v2—1)1/2

v—(p2—1) 121/
o)
v—(p2—1)12 1/

v+(v2+1>1/2]

~ Qm)m VAR = )T e o4 (P = 1) e o+ (02— 1) ]

(C8)

where —C1 is the negative of the contour Cy, around the
branch cut from — e to —1. Thus

1 1
(4.23) =11 sechwt / dv' Py 3 (v) / dx / dy
C1 0 0

(1=s)(1—y)
(1=a2)— Gy’ +arty?

=g sechmt / dv' Py y(V)D( v), (D2)
1

where D is the discontinuity defined by (4.16) and ex-
plicitly given by (4.17).
Because of (D2), let

P@)= / i dv' Py y(v)D( ). (D3)

We study this function P(v) in the limit of large ¢ for
two cases: (a) v not close to 1; and (b) v close to 1. It
seems necessary to treat these two cases separately.
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A. v Not Close to 1 D@ p)~2(—1)"2[3( —1)]?/2. (D4)

We remember from (4 17) that D(¥',») has a logarith- Therefore, the second contribution is negligible. For o'
mic singularity at v=1v". Thus, for # large and » not close  oge to o by (4.17)
to 1, there are two possible contributions to the P(v) as ’ ’

given by (D3): first from the vicinity of »'=v, and D p)~1(@2—1)"121n|v' —v| . (D5)
secondly from the vicinity of +'=1. But it follows from
(4.18) and (4.19) that, as v’ — 1, Accordingly, by (C8),
Po)~ —1(Q2x)- 1212 Re{ —“’/4/dv’[v’+(7)’2—1)]“(1)2—1)‘3/4 Injo—o| ¢ . (D6)
Let
v=coshé and o =cosh¢’. D7)
Then

Pv)~ —1(2r)- 1212 Rel: ﬂ"’“/d& it (»2—1)"1/4In| coshf —cosh#’ ]:,

~ __(2%.) 1/2;—1/2(7)2 1) 1/4 Re(e‘”’“/d& eitt’ lnIE ¢ ])

=—%1r(21r)_1/2t_3’2(v2 —_ 1)—1/4 Re(e—iw/46it5)
— L (2m) 124372 (32— 1)=1/4 Re{e— /o (22— 1) 12 ]~ dni- 1Py (). (D8)

This is the desired answer for » not close to 1, and of course larger than 1.

B. v Closeto 1

When v is close to 1, the contribution to P(v) as given by (D3) comes of course from the vicinity of ¥’ =1. Thus
the change of variable (D7) reduces to
v=1-41£ and o =1+43¢2. (D9)
In this case, from (4.17),

D@ )~ — 5848 In[(¢+8)/1 =1 ]}, (D10)
and thus, by (C9),

’

¢
P@)~3&s / z’dsfo(té)[ £ 43 (52+s'2)1n] ’J

- aad
—1 (g / s'dg'fo@')[—-(sz)s'+%<sm+z’2) In ] . (D1

|&—¢|

We proceed to evaluate this integral.
For £ — oo, the quantity in the square brackets on the right-hand side of (D11) is approx1mately 4(£)%/(3¢).

We therefore subtract this term first:

P)~3 315 / dg' To(# ) — (E)E2 — (&) +3(Er+EDE [ (84-£)/ | -] 1} (D12)

0

In writing down (D12), we have used

/ Jo(&)dE =1. (D13)
0
Next we use the integral representation

/2
Jo(¥) =21r‘1/ cos( cosg)de. (D14)
0
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Since cos¢ is non-negative in this range of integration, we have, with £=¢,

00 ) ) ) §+£/
/ dE’ cos(¥ cos¢)|:——55'2—%—53—}—%(52—{—5’2)5’ 1n—~——]
0

|E—¢|
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S B
—1 [ agewd] —gr-giriEreny ]
o |E—¢|
3
“tin [_agewey @y
§
3
— b [ a8 sin(e cost)¢ @+, (D15)
0

Because of the appearance of sin(¢' cosg), we try to
express P(v) in terms of the Struve functions H,(£),?
which are defined by

H, (&) =2r"12GE[T0+3) 1
X f " sin(¢ cos¢) (sing)?d¢. (D16)
0
In particular, for »=0,
H,(¢) =21r“1f7r/2 sin(¢ cosg)de. (D17)
0

Therefore, by (D12) and (D15),

E
P(v)~%r1‘%—%r%3 f dz’Ho(s')z'(é2+s'2)}
0

HE—r[HL() -5 Ho(D) 1}

This is the desired answer. It is somewhat more elegant
to express this in terms of the Weber function E,(£)
defined by

/2
E,(§)=2r"1 / dé sin(wp—E sing),  (D19)
0

(D18)

and the result is
P()~int 1 [E(8) — (&) Eq(8)],  (D20)

with £=[2(v—1)]/2 The result (D20), or equivalently
(D18), holds for ¢ large and v close to 1.

It is possible to combine the two results (D8) and
(D20) in the following form which holds for ¢ large and
all v:

P(v)~ixt1(v2—1)"14(cosh~1v)1/2
X[E1(t cosh~'v) — (¢ cosh™'9)"1Es(¢ cosh™) ].

Note the similarity between (D21) and (C7).

(D21)

% For properties of the Struve function H and the Weber func-
tion E, see pp. 3540 of Vol. II of Ref. 17.

APPENDIX E

In this Appendix, we solve (6.3) exactly and then
study its asymptotic properties for small 4. This can be
accomplished by using the transformation pair!é.17

()=t tanhw?’ f Piy_y(v) o(v)dv (E1)
and '

olt) = / Povs@) ()it (E2)

From (C6), we know that
/ dv' (v —v0) Py (v') =7 sechwt! Piy—y(—vo)  (E3)
1

because v9< 1. Therefore, after transformation, (6.3) is
(m sechwt’ — ) 3(t)

=CIxt tanhnt’ sechrt’ Py_y(—v0), (E4)

where

I=f dv o(v)(v—vg)~1

=7 / dt' a(t') sechat’ Piy_y(—o). (E5)
0

Given g, define ¢ by (4.22). Then the solution of (E4) is,
with suitable normalization,

a(t") =8’ —t)+CI{ tanhnt’ coshmt

X (coshmt—coshat’)1P;y_y(—vo).  (E6)
The substitution of (E6) into (ES) gives
I=m sechwt Piy_y(—v0)
+CIr coshmt f dt't’ tanhwt’ sechwt’
0
X (coshmrt —coshat')"I[Piy—_3(—20) 12, (ET)

where the last integral should be interpreted as a prin-



2392

cipal-value integral at ' =¢. Solving (E7) for I and sub-
stituting into (E6), we get

a(t")=6(t'—1)+CD'xt’ tanhwt’ (coshwt—coshart’)~!

X Pir-y(—v0) Piv—y(—vo) , (ER)
where
D =1—Cr coshw! / dat't’ tanhmrt’ sechrt’
0
X (coshmi—coshnt’) "L P—3(—2v0) 2. (E9)

Equation (E8), with (E2), gives the desired answers.
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In order to verify that this is indeed a solution of the
integral equation (6.3), we make use of (C5) once more.
Define

@(w)=/‘°° dt' a(¢)[w sechwrt’ Pyy_y(—0)] (E10)

for complex v. Then the discontinuity of ®(v) across the
branch cut from 1 to « along the positive real axis is

B(94i0) — B(v—i0) =2mi o (v) . (E11)
This function ®(v) also has the following property:

b(—v) —fep(v) =/ dt' (") (w sechwt’ — sechwt) Piyr—3(v)
0

=CD 72 sechwt Py (—vo) / dt't’ tanhwt’ sechwt’ Piy_3(—v0)Piv—3(v)
0

=CD'r sechart Py (—vo) (v —20)71,

(E12)

where, in the last step, we have used the Mehler formula for integrating the product of Legendre functions over

their order.16:'7 We therefore have

/ dv' (v )[(v+2v") "1 —C(v—20) "1 (v —20)"1]

1

= (27ri)_‘/ A B)[(v49" )1 —C(v—vo) (v —20) 1]

=®(—v) —C(v—20)"® ()

=[ae(®)+CD ™ sechmt Py (—v0) (v —20) 1] —C(v—20) "' sechw! Py (—20)[1+ D11 —D)]

=ae(v).

We shall now study the asymptotic behavior of ¢(v)
for large v. Since

Piuy(6)~T@it) [0 GE +5) T2 Gha)

+I(=2i) [T (=il +5) TG~ (E14)
from (C1), we have
¢(v)~(20)7"/2 ReT i) [T (il+3) I (50)*
X{1—CO it sechmt [Piy(—v9) 17}, (E15)
Therefore, the orthonormal eigenfunctions are
Ne(v),
where
N = (¢ tanha)12{14-(CD 't sechwt)?
X[Piy(—v0) ]} 712, (E16)

So far the development holds for all £. We shall now
concentrate on the limit of large £. For the purposes of
Sec. 6, we need the behavior of ®(v) for —v<v<1.
With reference to (15), we write, on the basis of (E8)

(E13)
and (E10),
&(v) =7 sechrt {P1(v) +C Dt sechnt
X[Piry(—20) P®2(v)}, (E17)
where
®1(v) =Piry(—0) (E18)
and
®y(v) =471 cosh?rt / dt't’ tanhmt’ sechw?’
0
X (coshwrt—coshzt’) ™!
XPiv_3(—20)Piv—y(—0)/Piy(—v0). (E19)

It is an immediate consequence of (5.13) that, for large
¢t and || <1,

&, (v) ~ (2mt)~12(1—22) "Vt exp[ t(r —cos™l) . (E20)

The asymptotic behavior of ®,(v) is more complicated
for the following reason. The dominating contribution
to the integral of (E19) comes from the vicinity of ¢ =1
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when 9> —1,, but from the vicinity of #=0 when
< —vo. We therefore treat these two cases separately.
For v> —a,,

By (v) ~ Y[ 7~ (cos v+ cos ) ]
—y[1—7"1 (cos‘lv—l—cos“vo)v]} ®1(v), (E21)

where ¥(2) =T"(2)/T'(3) is the logarithmic derivative of
the gamma function.
For v< —v,,

By(v) ~ (—v—20) 1P (—2p) . (E22)

Thus, for large ¢, ®:(v) and ®5(v) are comparable when
—12,<v<1, but ®,(v) is much larger than ®;(v) when
—1<9< —9y. In particular, it follows from (E16),
(E17), and (E20)-(E22) that for —v,<2<1,

In[N®(2) ]~ — (cos™ )i, (E23)
and that for —1<v< —1,,
In[N®(v) ]~ — (r—cos™1vp)t. (E24)

Remember that all arccosines have been taken to be
between 0 and 7. Equation (E23) is the result that we
need in Sec. 6.
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Equation (E23) does not quite tell the whole story.
There is an exceptional point =17, where the &, and ®,
terms in (E17) cancel each other. More explicitly,

@(1)0) =7D"1 sechnt Pit—%(—_vo)

=D~ sechrt ®1(vo) . (E25)

Thus ®(zp) is smaller by a factor D! owing to the
above-mentioned cancellation. For this reason, we need
to estimate the order of magnitude of D.

A comparison of (E19) and (E9) shows that

D=1—Crt sechwt Py3(—v0)P2(v0).  (E26)
When 2,>0, (E21) applies and we get
D~ —Cr~ (1 —ve?)~ 12 (27! cos o)
— (1 =271 cos™1vy) ] exp[{(mr—2 cos™vg) ]. (E27)
Therefore, in this case o> 0,
In[N®(vo) ]~ — (wr—cos™ ). (E28)

For 1,<0, (E22) is valid but not accurate enough. We
need instead

D=1-Cr / dt't’ tanhwt’ [ Piy_y(—v0) JP[sechrt’ + (coshat— coshat’ )]
0

=1+3Coe1—Cr / dt't’ tanhwt'[ P31 (—vo) J?[ coshmt—coshms’ 11
0

~14+3Co 1 —C (1 —ve2) V2 Yy[1 — 27~ cos™!(—vo) ]—y[ 2271 cos™(—vo) ]} exp[ —2¢ sin~'(—vo)].

(E29)

Therefore, the magnitude of © depends on whether or not C=—2v, However, in either case, InNV of (E16) is

of order o(¢). Therefore, for v9<0,
hl[Nq)(‘Uo) :l"\’

—1 cos 1y

for C5= —2v,
(E30)

—(r—coslvg)¢t  for C=2v,.

In either case, the right-hand side of (E30) is not larger than that of (E24). The important point here is that,
in all cases from (E28) and (E30), In[N®(»,) ] is never much larger than In[N®(—uvy) ].



