
PHYSICAL REVIEW D VOLUM E 3, NUM B ER 10 15 MAY 1971

Bootstraps in Local Field Theory
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The problem of formulating a bootstrap in terms of vanishing renormalization constants is discussed. It
is pointed out that the equations Z=O need not determine masses and coupling constants, but might be
identities or else possess no solution. It is argued that this always occurs in theories in which particles are
treated as made up of arbitrarily many other particles, and this is illustrated in a soluble model. Finally,
various consequences of this idea are mentioned.

Of course, this result has no content until we define
more carefully what we mean by "bound state" or "ele-
mentary particle. "Once again, these terms have usually
been defined in terms of the model being used —an
elementary particle is a pole of the E function, or gives
a Kronecker 6 in the complex angular momentum plane
or corresponds to a field that occurs in the original
Lagrangian, while a bound state is a zero of D, or lies
on a Regge trajectory or does not occur in the
Lagrangian. Intuitively we expect that if A is elemen-

tary, then the theory exists for a range of values of M
and g, while if A is bound then M and g are determined

by the other masses and coupling constants in the
theory. It is precisely the equations expressing this
dependence that imply that the wave function renor-
malization of A vanishes. Furthermore, these equations
are exactly the equations that would be written down
in a "traditional" 1V/D approach to the bootstrap. 4

Jouvet's theorem raises the intriguing possibility
that we can make all the particles in the theory bound
states by requiring that all the renormalization con-
stants vanish. Such a theory would be a true bootstrap
in which no particle was more elementary than any
other, and in which all ratios of masses and coupling
constants would be determined. At this stage, we should
mention one technical point: Since we want the re-
normalized masses and couplings to be finite, the unre-
normalized masses and couplings will, in general, be
infinite. A straightforward field-theoretic calculation
usually gives the renormalization constants (which we

shall collectively call Z) in terms of these unrenormal-
ized quantities. It is tacitly understood that in carrying
out the above program we must first express these un-

renormalized quantities in terms of the renorrnalized

ones, treating the Z's as finite numbers, and then solve
for the Z's in terms of the renormalized quantities before
requiring that the Z's vanish. Only such a procedure
will give bootstrap equations for the observed physical
quantities.

It is worth pointing out that some result such as
Jouvet's theorem is almost necessary if the bootstrap
program is to provide a means of calculating the prop-
erties of the hadrons. If bound states and elementary
particles were really completely distinct objects, or if it

I. SURVEy

~)URING the last few years, evidence has slowly
bee accu ulating that local field the ry not o ly

may prove to be a useful framework for describing
hadron interactions, but may even exist. At the same
time the bootstrap idea, originally expressed in the
language of S-matrix theory, is sufficiently attractive
that one would like to see it incorporated into any 6eld
theory of strong interactions. Of course, what is meant
by a bootstrap is not completely defined, and to a cer-
tain extent each author defines it slightly diQerently,
depending on the approximation scheme he is using; and
it is also not clear whether held theory and S-matrix
theory are merely two ways of saying the same thing or
really give different descriptions of the world. Nonethe-
less, there is some general agreement that in the lan-
guage of local field theory we may formulate a boot-
strap model by requiring that all renormalization
constants vanish. ' Since the purpose of this paper is to
examine this statement critically, it is worthwhile being
rather more precise as to what exactly it implies.

The early work' in this held was largely devoted to
proving what we call Jouvet's theorem in various
models. To understand this theorem, let us consider an
elementary particle A of mass 3f which couples to two
other particles 8 and C through a three-point Vukawa
coupling of strength g. The theorem states that for
certain values of g and M all observable quantities in
the theory are the same as those in a theory in which 8
and C couple directly through a four-particle coupling,
and in which there exists a bound state A' of 8 and C of
mass M. Furthermore, the limit in which this occurs is
that which makes the wave-function renormalization
constant of particle A equal to zero. Loosely speaking,
an elementary particle with zero wave-function renor-
malization behaves like a bound state. '

* Supported in part by the U. S. Atomic Energy Commission.
' The first discussion of vanishing renormalization constants in

this context seems to be due to B. Jouvet, Nuovo Cimento 5, 1
(1957). The suggestion that this provides a basis for a bootstrap
in field theory was made by A. Salam, ibid. 25, 224 (1962).' The literature in this field is enormous. The early work can be
traced from the review article by K. Hayashi, M. Hirayama,
T. Muta, and T. Shirafuji, Forschr. Phys. 15, 625 (1967) or from
H. Osborne, Ann. Phys. (N. V.}4'7, 310 (1968).

3 Some authors have found it useful to distinguish various types
of elementary or bound states depending on how rapidly certain
functions vanish at infinite energy. We shall not need these
tinctions in this work.

dis- 'B. W. Lee, K. T. Mahanthappa, I. Gerstein, and M. L.
Whippman, Ann. Phys. (N. Y.) 28, 466 (1964).
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was necessary to treat all particles on the same footing
at all stages of the calculation, the only way to treat
the bootstrap equations would be to write down their
complete solution as the first step in the calculation. In
such a scheme, even the number of states necessary to
label the rows and columns of the 5 matrix would not
be known until all the equations had been solved. It
appears that progress can be made only if we can dis-
cuss some intermediate world in which a certain number
of particles can be treated. as elementary (in the sense
that their properties are assumed, not calculated). The
properties of the other particles can then be found in
terms of the assumed properties of this initial set, and
hopefully there is some limit in which the original set
can be themselves treated as bound. Such a procedure
has, of course, been used or implied in all bootstrap
schemes to date; Jouvet's theorem provides a basis for
it by suggesting that there is a well-defined limit in
which an elementary particle is indistinguishable from
a bound state.

Unfortunately, though Jouvet's theorein is very
useful, it is not clear that it is true. Existing proofs of it
are of two types —proofs in very simple models such as
the Lee model' or the Zachariasen model, ' and demon-
sti Rtions that nothing obvious goes wI'ong 1n morc
realistic theories. 4 The most comprehensive proof of the
latter sort is that by Kaus and Zachariasen, ~ who show
that under very general conditions it is possible to write
equations for all the renormalization constants in the
thcoI'y Rnd tliRt 1f thcsc constaIlts vanish thc 1csultlng
equations imply that all the particles lie on Regge
trajectories. There is, however, one possible Raw in the
argument: though it is straightforward to write the
equations Z=o, it is not clear that these equations
possess solutions corresponding to real finite values of
the couplings and masses. Ke raise this possibility
(which is, of course, mentioned by Kans and Zacharia-
sen) because there exists a large dass of model field

theories in which Z=o is not an equation determining
masses Rnd coupllIlgs.

All known models with this property are static, and
thus not very realistic. They do, however, satisfy many
of the essential requirements of realistic theories —ana-

lyticity, unitarity, and crossing —though they do not
Reggeize. As an example, we discuss the simplest such
model —neutral scalar theory' —though similar be-
havior is known in the Ruijgrok —Van Hove model' and
the model of Freeman and Rubin. '0 Neutral scalar
theory considers an uncharged x, coupled to a single
static nucleon with a coupling strength g. A simple

' M. T. Vaughn, R. Aaron, and R. D, Amado, Phys. Rev. 124,
1258 (1961}.

6 M. L. Khippman and I. Gerstein, Phys. Rev. I34, B1128
(1964}.' P. Kaus and F. Zachariasen, Phys. Rev. 171, 1597 {1968).

g See, e.g. , D. Barton, Introduction to Advanced Field Theory
(Interscience, New York, 1963), p. 119.

9 Th. W. Ruijgrok and L, Van Hove, Phy'sica 22, 880 {1956).
'o D. Freeman and M. Rubin, Phys. Rev. D 1, 3386 {1970).

(The model is that of North. )

calculations gives for the wave-function renormalization
of the nucleon

where I is a kinematic integral over the cutoff function
and does not involve g. It is clear that Z=o cannot be
achieved with a real finite coupling constant. In fact,
Z=o only in the limit of a point source, when I goes to
infinity. In this case, however, Z vanishes identically,
independently of the coupling. The question that now

arises is whether this behavior is specific to these models,
or whether it occurs in more realistic theories.

To summarize, we can distinguish three classes of
theory:

(I) The equations Z =0 determine real, finite values for
all the couplings g and masses M in the theory.
(II) The equations Z=O are identities, true for all

values of g and 3f.
(III) The equations Z=O cannot be satisfied for s,ny
finite values of g and M.

Simple models which provide examples of each class
are known, and it is interesting to see whether there is

some general feature of all such models which allows us
to say a priori to which class they belong. There is, in

fact, a very simple way to classify models in terms of
the number of particles that enter into intermediate
states. This classi6cation is best explained by examples.

In the I.ee model, for instance, there are three parti-
cles—V, E, and 0, with V~X+8 the only interaction.
The physical V is then a superposition of bare V's and
bare EO states. As the wave-function renormalization
of V tends to zero, V becomes a bound state of E and 0,
which we call a two-particle bound state. Bronzan's"
modihcation of the I.ee model includes a fourth particle
U and an interaction U~ V+8. A bound U would then
be a composite of V and 8, or of E and 20—we call this
a three-particle bound state. (In general, an I-particle
bound state is a superposition of states of m, e—1,
e—2, . . ., particles. )

In neutral scalar theory, however, the physical X is
a superposition of the bare 2V and any number of m's.

If E were composite, it would be a composite of an
infinite number of particles. %e call this infinitely com-

posite. "It turns out that of all soluble models that have
been studied, all those where a given particle would be
infinitely compositei3 belong to class II or III, while all

those for which it would be a composite of only a 6nite
number of states belong to class I.%e hypothesize that

"j.Bronzan, Phys. Rev. 139, 8751 (1965).
"There is another respect in which this theory differs from the

Lee model. Here if E were composite, it would be a composite of
itself plus ~ mesons —what B. Jouvet and J. Le Guillou call
"Oedipian" t Nuovo t"imento 49K, 677 (1967)j.This point is not
important here —for an infinitely composite model in which this
does not happen, see Sec. IL

"We say "would be" because in theories of class III the par-
ticle is not composite, What we mean more exactly is theories in
which the physical particle state is a superposition of bare states
containing arbitrarily large numbers of particles.
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this is true in general —that Z=O provides an equation
for g' and M only in the case of a particle which is not
'inanitely composite. Ke mention parenthetically that
we expect that only theories with some sort of cutoff
will belong to class III, and hence that in all realistic
local theories the renormalization constants will vanish
identically.

It is, of course, exceptionally difFicult to prove or dis-
prove this hypothesis. As a step towards understanding
it better, in Sec. II we discuss a simple model which
allows the finite and the infinite case to be compared
and in Sec. III we give some arguments that might
make it more plausible in general. This is not very satis-
factory, even if it is as rigorous a method of proof as
has been given for most results in this field. A proof or
counter example would be very valuable; our main
reason for writing this paper has been to provoke fur-
ther investigation of this point.

and is the only state with Q=B=O. To find the one-

particle state, we note that the exact state with 8=1
and Q=u is a superposition of the states containing r
mesons and the (u —r)'th nucleon. Using this fact, the
Schrodinger equation can be solved straightforwardly,
if tediously. The algebra can be simplified considerably
by a judicious choice of the bare masses m„, and since
none of our conclusions are changed by this, we choose

(6)

The one-particle eigenstates of IJ can then be written
in the simple form

G. SOLUBLE MODEL

As we explained in Sec. I, it is interesting to look at
a model in which a given particle can be a bound state
of u other particles (or less) and to study the behavior
of the various quantities as e tends to inhnity. Our
model is an extension of the Lee model closely related
to the models studied by Ruijgrok and Van Hove. '

We consider an infinite chain of static "nucleons"
E„(r= 1,2, . . .) and one boson 0, such that each nucleon
can emit a boson to become the next lowest member of
the chain, or can absorb one to become the next highest
member,

cV,pi ~ 1V„+8.

Specifically, our assumed Hamiltonian is

H = Q m„P„P,+ Q Oii, gg ai,
r=l k

where the wave-function renormalization constant Z„
of particle e is de6ned by this equation, and where J
is the operator

It is interesting to note that the choice (6) for the bare
masses makes all the renormalized masses equal.

We can now calculate Z„ immediately by requiring
that ~n) be normalized. This yields"

(gn —Ign —2' '
gm r)—

Z '=1+Q I",

where

where f„ is the destruction operator for 1V„, ai, the de-
struction operator for a 0 of momentum k, co~=k'+p',
and u(k) is a suitable cutoff function. All the quantities
appearing in this Hamiltonian are unrenormalized. Like
the Lee model, the model splits up into distinct sectors
labelled by the eigenvalues of the two conserved quanti-
ties—"baryon number" 8 defined by

(4)

and "charge" Q defined by

The exact vacuum ~0) is the same as the bare vacuum,

As explained in Sec. I, before discussing the limit
Z —+0 we must express the Z's in terms of the re-
normalized coupling constants. Following Lee," we
define the renormalized 1V„+8~Ã,+i coupling con-
stant (which we denote by y„) by"

'4 From the form of the Hamiltonian, it follows at once that
Z& ——1. In the following, equations like (9) are supposed to hold
for m=2, 3, . . .. Ke should also remind the reader that ZI is the
wave-function renormalization of particle 1. not a vertex
renormalization.' T. D. Lee, Phys. Rev. 95, 1329 (1954).

"Note that we define the renormalized coupling constant in
terms of the vertex function with both nucleons on the mass shell
but the meson off the mass shell. Some authors prefer to define
this quantity with the meson on the mass shell and one of the
nucleons off. (It is impossible to have all three particles on shell
in this static model. ) Our choice greatly simplifies the calculation
of the vertex renormalization and makes no difference to our final
conclusion. To avoid confusion, however, we should point out that
our formulas differ in detail from those of other workers for just
this reason.
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where j& is the meson current operator given by

g, =La„II;„»j

=Z g.4.V.+i. (12)

y, =gQ, ,'i'/Z, 'i'.

Comparing this with the usual definition

(13)

A straightforward calculation, using the states (7), gives

classification, the theory belongs to class III. There is
one other possibility: If the cutoff is such that the inte-
gral I does not converge, then we see from Eq. (9) that
Z„vanishes identically (for all rN1) and the theory
belongs to class II. Our original conjecture about the
classi6cation of theories being determined by whether
particles would be finitely or infinitely composite is thus
confirmed in this model. In Sec. III, we discuss why we
believe it is generally true.

III. DISCUSSIONZ 1~2Z ,1(2

V.=g.
"

Zi(r, r+1)
where Zi(r, r+1) is the vertex renormalization constant
for this vertex, we see that there is a Ward-like identity
in the model'

Zi(r, r+1) =Z„.

We can now express everything in terms of the re-
normalized constants. Using Eqs. (9) and (13) we find

n—1y 2. . .p 2

Z„=1—Q Z„„I".
1

These equations may be solved to give

2Pn 1&n—2 ''Vn —rZ„=1++ (—)" I", —
1

(17)

as shown in the Appendix.
After these algebraic preliminaries, we are finally in a

position to discuss the solution of the equations Z=O.
Somewhat remarkably, these equations possess the very
simple solution

IN&...»= (v'Z) I»b...+ ", (19)

where ~N), „»and ~N)b, «are one-particle states, or by
(18)y,'=r/I,

The idea that Z may vanish identically in realistic
local theories is a very old one. It seems to have been
first suggested by Landau et al."based on an analysis of
the high-energy behavior of quantum electrodynamics,
and was discussed again by Gell-Mann and Low" in a
similar context. The reasoning given by these authors
is persuasive, if not completely airtight, "though recent
work by Wilson22 does tend to support their arguments.

One of the few completely rigorous results in this field
is Haag's theorem" which is true under very general
conditions. This theorem implies that if we define wave-
function renormalization constants the way we did
above, as the overlap between the exact and the bare
one-particle states, then they are indeed identically
zero in the no-cutoff limit. At first sight, this would
seem to settle the whole question, but in fact renormali-
zation constants may also be defined in terms of inte-
grals over the spectral functions of the exact propaga-
tor." More precisely, we might define wave-function
renormalization either by

since if this is substituted into Eq. (17) the right-hand
side becomes the binomial expansion of (1—1)" '.

If we only wish to consider a finite number of nucleon
states, this result, is very satisfactory from the point of
view of the bootstrap hypothesis. All except the first of
these states can be made composite in the Z=O sense,
and the resulting equations determine all the free
couplings. It is straightforward to verify that the vari-
ous scattering amplitudes are well defined in this limit,
and are nontrivial. In these respects this model behaves
exactly like those discussed in Refs. 5 and 6, although
it is interesting to note that no particular problems arise
in trying to make composite states of particles which
are themselves composite. '

The picture is very different when we try to consider
the infinitely composite particle, however. " In this
case, the bootstrap equation (18) leads to an infinite
coupling constant, or, in the language of our previous

» In this connection, see P. Liossatos, Phys. Rev. 1'72, 1554
(1968).

'SThat is, the limit r —+ of Eq. (18}.

p(s')ds' (20)

where p is the spectral function for the one-particle
Green's function. If Z de6ned by (19) is nonzero, and
the integral in (20) converges, we'can prove that these
definitions are equivalent —that is, that Z =Z. If Z is
zero, however, or if the integral diverges, the equivalence
has not been shown. Haag's theorem implies that Z
vanishes in a realistic theory, but it is still possible for
Z' to be well defined and to vanish only for specific
values of masses and couplings. In models such as neu-
tral scalar theory for which Haag's theorem is true in the

'9 L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl.
Akad. Nauk SSSR95, 497 (1954);95, 773 (1954);95, 1177 (1954);
96, 261 (1954). See also L. D. Landau, in Eiels Bohr end
the Development of Physics, edited by W. Pauli (Pergamon,
London, 1955), p. 52.

'0 M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954)."M. Astaud and B. Jouvet, Nuovo Cimento 63A, 5 (1969).» K. ilson, Phys. Rev. D 2, 1438 (1970).
3 R. Haag, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.

29, No. 12 (1955).
2' H. Lehmann, Nuovo pimento ll, 342 (1954).
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infinite-cutoff limit, this does not happen and Z and
Z' are equal both for finite and for infinite cutoff.
whether this happens in general is not known; one is
tempted to say, however, that Haag's theorem suggests
that it wouM not be too surprising if our conjecture were
true.

Finally, this may be an appropriate place to mention
a famous problem' with bootstrap systems. There is one
Z for each particle, and one for each primitive coupling
in the theory, so that the number of equations Z=O is
the same as the number of masses and couplings. If none
of the equations is an identity, then we have enough
equations to determine all the masses andcouphngs.
On dimensional grounds, however, we only expect to be
able to predict ra6os of masses, and hence we have one
equation too many. On the other hand, a true bootstrap
theory should treat all the particles on the same footing,
and it is difficult to see why one of these equations
should be an identity while the rest are not."An elegant
escape from this problem would be for a/l the equations
to be identities, as we postulated.

None of these arguments is very convincing by itself,
and the question is still very much open. If we throw
caution to the winds, however, and assume our hypothe-
sis is true, it is interesting to ask what the consequences
are. In other words, let us assume for the moment that
all the Z s do vanish identically in a realistic theory,
and ask what this implies.

As we see it, there are three possibilities. The first,
and least interesting, is that there exists some other
bootstrap condition in local 6eld theories which is
equivalent to Z=0 in the simple models where Jouvet's
theorem is true, but which is different from it in general.
This is certainly possible, though if there is such a con-
dition no one knows what it is.

A second and much more intriguing possibility is that
the equations Z=o are really equivalent to the boot-
strap equations an 5-matrix theorist would write down,
and that they are identities. In other words, schemes
like the E/D equations or the strip approximation
impose conditions on the theory only because they are
6nite particle equations, and as more and more particles
are included in intermediate states these "equations"

become identities. From this point of view, the boot-
strap hypothesis would be true, but also trivial, and
would not constrain the theory in any way.

Finally there is the possibility that the bootstrap is
nontrivial in 5-matrix theory, but trivial in held
theory —in other words, that these two theories are
really fundamentally different ways of describing
hadron physics and are not ultimately equivalent. In
many ways, this would be the most interesting possi-
bility of all.

Of course, all of this is highly conjectural and our
purpose in writing this paper was frankly heuristic, but
we believe that even if our hypothesis is wrong, the
question of in6nitely composite particles deserves a
great deal more study.
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APPENDIX

We wish to verify the solution of Eq. (16). Clearly
Zq ——1, and we assume that (17) holds for n= 1, 2, . . . , .

X—1. Then (16) gives

N—i 'YN -i .7N—

Putting r+s=p in the last term, this double sum
becomes

'5 It is, of course, possible that none of the equations is an
identity by itself, but that they are not all independent. We woukl
like to believe, however, that we will get the same bootstrap con-
ditions no matter which subset of the particles we initially regard
as elementary. It is hard to see how this could happen if we always
had exactly one equation too many.

where the last line follows from the binomial theorem.
Putting this back into (A1), the desired result follows

by induction.


