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Lorentz-Invariant Localization for Elementary Systems. III. Zero-Mass Systems
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The present series of papers is devoted to the localization problem in relativistic quantum mechanics. The
consequences of imposing the condition that the descriptions of a localized state seen from two different
frames of reference should be physically consistent were investigated in Paper II. Only instantaneous local-
ization was studied. Considering elementary systems of nonzero mass and spin 0 and —„the following results
were found. (a) As regards the localization problem, one cannot avoid accepting at least one of the following
strong departures from the usual ideas: (i) Position has no meaning; (ii) it violates the physical equivalence
of inertial frames; (iii) it is the only quantum variable which cannot be represented by an operator; (iv) it
is non-Hermitian; (v) some unusual interaction effects do not disappear when the interaction is switched
o8. (b) If a component of position is to be precisely measurable as a point, then for spin 0 there is only one
possible position operator; for spin —, the operator is unique up to a parameter; in both cases the operators
are non-Hermitian with respect to the relativistically invariant scalar product, but in spite of this the
eigenvalues of all components are real. The components of position are compatible with each other for spin
0 and incompatible for spin —,. The commutation relations of position with linear momentum are the standard
ones. The velocity operator, which is Hermitian, has the expected form. Several authors have stated that
the localization problem can have a solution for mass greater than zero, but for the zero-mass case a solution
does not exist. In this paper the localization problem is studied for zero-mass elementary systems by only
imposing, as in Paper II, the above requirement of physical consistency. We consider systems with spin 0,
z, and 1. We prove that the consequences are essentially the same as those obtained for systems of mass
greater than zero. The parameter is no longer arbitrary.

I. INTRODUCTION

A. General

HE present series of papers studies the problem
of localizability of elementary systems in relativ-

istic quantum mechanics. In Paper I' Philips's results
are discussed. In Paper II' (hereafter called II) we
derived the general consequences of imposing Lorene
ireariarrce of localisaiio@, i.e., the physical consistency
of the description of the localization by observers in
different inertial frames, and applied them to nonzero-
mass systems of spin 0 and ~. The present paper is
directly related to II; the consequences of the Lorentz
invariance of localization are applied to the zero-mass
systems.

One of the basic axioms used in the classic paper by
Newton and Wigner' can be expressed as the require-
ment of physical consistency of the description of
localization by observers in frames related by a three-
dimensional rotation. However, in a relativistic theory
a similar requirement should be satisfied in all inertial
frames. The purpose of finding a solution which agrees
as well as possible with Lorentz invariance of localiza-
tion was developed in the papers of Wigner, Philips,
and this author. ' "

* Present address: IVIC, Secci6n Fisica, Apartado 1827,
Caracas, Venezuela.' J. C. Gallardo, A. J. Ki,lnay, and S. H. Risemberg, Phys. Rev.
158, 1484 (1967).' T. O. Philips, Phys. Rev. 136, B893 (1964).' A. J. Kalnay, Phys. Rev. D 1, 1092 (1970).

4T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949).

T. O. Philips, thesis, Princeton University, 1963 (unpublished);
T. O. Philips and E. P. Wigner, in Group Theory und Its A pplicu-
rios, edited by E. M. Loebl (Academic, New York, 1968).
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A set of axioms which expresses the Lorentz invar-
iance of localization for elementary systems in the
most general way was stated in II. We restricted
ourselves to systems for which the localization with
respect to the k axis has sense at a point' ' at a given
time. In order not to introduce avoidable hypotheses,
we neither used nor rejected standard assumptions.
Let us, for example, recalP that (a) Lorentsirrearirrnce of
localization can be achieved without imposing manifest
formal covariance (see II and the references therein);
(b) rrorr Hermitic-n operators can have a legitimate use
in quantum mechanics, ' "; and (c) the possibility
that components of the position do not commute
cannot be rejected in an absolute way (as for instance
in the case of the angular momentum), so it is not
necessary to impose the existence of three-localized
states' (i.e., simultaneous eigen states of the three
components of position); instead, it is suificient to
consider one-localized states' (i.e., eigenstates of only
one component).

Indeed, it was proved in II that (at least for mass m

greater than zero and spin s equal to 0 and —,') the

This means that the extended-type position (see Refs. 7—9) is
not considered in II or in the present paper, but that the limiting
case of that position (Ref. 10) is consistent with the results of,both
papers (cf. II).

7 A. J. Ki,lnay and B.P. Toledo, Nuovo Cimento 48, 997 (1967).
J. A. Gallardo, A. J. Ki,lnay, B. A. Stec, and B. P. Toledo,

Nuovo Cimento 48, 1008 (1967).
9M. Baldo and E. Recami, Nuovo Cimento Letters 2, 643

(1969).
'o J. A. Gallardo, A. J. Ki,lnay, B. A. Stec, and B. P. Toledo,

Nuovo Cimento 49, 393 (1967)."E. C. Kemble, The Fundumentu/ Principles of Quantum
3fechanics arith Elementary A pplications (Dover, New York, 1958);
W. E. Brittin, Am. J. Phys, 34, 957 (1966); see also Sec. 3.1 of
Ref. 7.
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Lorentz invariance of the localization denies (a') the
formal covariance, " (b') the Hermiticity of the position
operator, and (c') the compatibility of the components
of position for spin —,'.

Let X be the position three-rector and &p, q„be a orM

localized state,

X'y. y, = (a'+ib') p.p„, a—=a', f =—b', (1.1)

where a and 6 are real numbers and p stands for the
remaining degeneracy; in order to treat a more genera, l
case, we assume complex eigenvalues. ' ~ "3 As in II,
all one-locahzed states can be obtained from p g, by
the induced action of the I'oincare group, so it is
sufhcient to find poq, . Let A be a projection operator
into the subspaee of the allowed wave functions q,

(1.2)

It was shown in II that if one finds the three-vector
operators X, R, the functions q On„(p), and bq' related by

were found. in II for m&0 can also be used for m=0.
However, this is not so for the following reasons

(among others).

(1) In II, for the case of spin s=-,', nz was used

several times as a divisor.

(2) In II, for the cases s =0 and s = —',, the calculations
were simpli6ed several times by propositions of the

type

(pP+p2 +'I )'4(p)v ob (.p)
=0 (for all p) m 2 (p) =0 (for all p),

where A is an ordinary function. (Here, ordinary means

a function E3~C rather than an operator-valued
function. )

This is not so for m=o, because in this case we can
have, in principle,

o, (p) =»((p"+p ')'"),
where 8 is Dirac's delta function.

X~=A ijg+R" h. 1.3

The operator
bo'=b .

I."= ip'8—
(1.4b)

is a component of the orbital angular momentum
tensor I.I'", and

3II~"=I~"+S~" (1.5b)

is the total angular momentum tensor.

B. Plan

In Sec. II the notations, the convention, and some
auxiliary formulas are stated. In Sees. III, IV, and V
the Lorentz-invariant localization problems for the
scalar (and pseudoscalar) case, the neutrinos, and the
photon, . respectively, are solved. The results are
discussed in Sec. VI.

C. Remark on Procedure Used.

We find an essential identity between the results for
the previous paper (mass m)0) and the present one
(ra=0). This arouses the suspicion that perhaps the
way in which the consequences of Eqs. (1.3) and (1.4)

'~This means that the only position operator X~ which is
consistent with Lorentz invariance of localization is not the
space part of a four-vector operator. However, it was proved in
II that an associated four-, vector can exist {like Bunge's) which
plays a role in a manifestly covariant description of localization.
See M. Bunge, Nuovo Cimento 1, 977 {1955);M. Bunge and
A. J. Kilnay, Progr. Theoret. Phys. (Kyoto) 42, 1445 (1969).

~ A. Das, J. Math. Phys. 'F, 45 (1966); V, 52 (1966); 7, 6].
{1966);K. K. Shin, u'Z. V, 174 (&966),

o'&~os+(l. o3 p Ra+ip g„3)g&
—&~M& —0 (1 4a)

then the Lorentz-invariant localization problem is
solved. Here R is a three-vector which only depends
on p and on the matrices of the theory; P is a real
parameter; bq' is a function of X such that

D. Note on Time ComIIonent of Position

Ke shall complement here a study done in II on
the time component of position. Let us erst notice
that in II (as well as in the present paper), the only
departure from standard quantum-mechanical proced-
ures is the fact that Hermitian operators were neither
imposed nor rejected. In particular, time is a c number,
which is the usual assumption in quantum mechanics
(relativistic case included). " It follows that time is
compatible with any observable, so that the value of a
component of the position vector can be known at
any given time. This means that we assume instanta-
neous localization, and this hypothesis should be stated
explicitly.

Let us now discuss two possibilities of noninstanta-
neous locahzatlon.

(1) The erst is the use of general spacelike hyper-
surfaces on which the data that specify a state are
given. This generalization is not a departure from
standard quantum mechanics and gives a general frame
in which the localization problem can be discussed.
However, in this paper (as in II) we are only concerned
with Rat spacelike hyperplanes, because our basic
purpose is to deduce the form of the position operator.
We prove (cf. II and Secs. III—V of the present paper)
that in order to accomplish this it is sufhcient to con-
sider states localized in such hyperplanes. Moreover,
here (as in II) we restrict ourselves to the particular

'4 C. Mgller, Comm. Dublin Inst. Advan. Studies, Ser. A, 5,
1 (1949). See also %. Pauli, in Handblch der I'hysik, edited by
H, Geiger and K. Scheel (Springer, Berlin, 1933), Vol. XXIV:
1, p. 140. We acknowledge Professor W. Hanus for calling our
attention to Pauli's discussion of the problem. As reviewed by
Hanus (see Ref. 16), "objections against the use of the time
operator have been raised many years ago by Pauli who has shown
that it is impossible to introduce this. operator, at least without
some considerable modi6cations in the basic assumptions underly-
ing the formalism of quantum mechanics. "
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case of constant-time hyperplanes, again. because the
study of localization on them is sufficient in order to
obtain the position operator. (For a similar reason, in
II we only used transformations which leave the region
of localization invariant. General transformations will
be considered in a future paper; they do not overdeter-
mine the problem. ) Once localized states are well de-
fined on constant-time hyperplanes, they are also well
defined (through a Lorentz transformation) on arbi-
trary Hat spacelike surfaces.

(2) A second possibility of noninstantaneous local-
ization is to consider time as a q number. This is a
departure from standard mechanics. " We are not
concerned here (nor were we in II) with this possibility.
This is not because we prejudge that standard uses in
quantum mechanics will remain accepted in the future
without change, but because in the present paper (as
in II) we explore the results that can be deduced without
changing the quantum-mechanical representatives of
any of those physical variables that have widely
accepted ones (as four-momentum, angular momentum,
and'ime) Howe. ver, the possibility that widely accepted
rules are wrong must remain open.

Johnson'" proposed a very interesting reformulation
of quantum mechanics in which proper time (but not
ordinary time) is a c number. Several consequences of
Johnson's theory seem more natural than those of the
standard form'of quantum mechanics. His work offers
an interesting possibility. "'

Let us conclude by citing (without pretending to
completeness) another nice reformulation, constructed
by Hanus, " who obtains a manifestly covariant
Hamiltonian formalism of relativistic quantum mechan-
ics such that the timelike position component remains
a c number without altering the operator character
of the spatial components.

the form"

(l', ~) = Pp '-V'(P) V(P)d'P, (2.1)

where

p +(pkpk)1/2 (2.2)

Pp=E cosh8,

P'~2P'=P~&"'

po=E sinh8, (2.3b)

(2.3c)

and a function co„(x) which depends apparently on
two variables,

The decompos'ition
"2(x)=&.+0' (2.4a)

is such that

and

(up(x) =ra„+(x)+a)„(x),
",'(x) = 2L".,(x)~~.(—*)]

b), 2=(up+(X —8)+a)0 P —8)

co„+(x)= a"„+(—x) .

(2.4b)

(2.4c)

(2.4d)

B. Proyerties Related to Generators
of Poincare Grouy

The well-known commutation relations of p" and
3fI" imply that if X is a parameter, then

goiMoop0g —@Moo g COSh(y 8)
'oiMpppl' —AMpp *1

)

0oiMoop2g oiMoo *2—
)

'oiMpopo' iiMoo —g Sinh(g 8)

(2.5a)

As in II, we introduce the variables K=—p~, 8, and p
such that"

p"=—+L(p')'+(p')']"' «nh8= p'/pp, (23a)

II. CONVENTIONS) NOTATIONS, AND
AUXILIARY FORMULAS

and
&i) Mp3T03t, —i)'Mpa 703

7 (2.5b)

A. Conventions and Notations

We use A =c= 1 and the same conventions and
notations for vectors, metric in space-time, and tensor
indices as in II. The sum convention will only be used
for tensor and spinor indices. The dimension of a
magnitude A will be indicated by $A].

We shall only work in the p representation and in
the Heisenberg picture of the one-particle states. The
particular formalisms used for a fixed spin will be
shown in Secs. III—V. In all cases the scalar product will
be (as in II) the invariant one, which for spin s takes

"J.E. Johnson, Phys. Rev. l81, 1755 (1969). See also the
references quoted therein.'" Soke added in proof. See also, A. A. Broyles, Phys. Rev. D 1
979 (1970); University of Florida report (unpublished); D. M.
Rosenbaum, J. Math. Phys. 10, 1127 (1969).' W. Hanus, Instytut Fisyki Uniwersytetu Mikolaja Kopernika,
Torun, Poland, Report No. 109, 1970 (unpublished).

where TI'" is an arbitrary second-rank antisymmetric
four-tensor operator.

We shall also need

P,p ]=O, LA~"]A=o (2.6)

which express the relativistic invariance of the formal-
ism.

C. Lemma

I.et us call A.V(~)A, . . . , AV(„)h. a maximal set of
linearly independent three-vectors which are functions
of p and of the matrices of the theory. '

"V.Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
34, 211 (1948).

"Two symbols E and p& are introduced to represent the same
entity in order to make easier the comparison of the formulas for
m=0 with the corresponding ones for ye&0, because in the latter
case E&P~ (cf. II).

"All physical operators are of the form AOA (cf. II).
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n

R =A[K g(')(po) V(*)]A, (2.7a) (os+()t—8) =b),s= b= 0 . (3.10)

(1) Then the vector R [cf. Eq. (1.3)] is of the form Since i( and 8 are independent variables, one can show
that

where the g(;) are ordinary functions.
(2) Let us denote by o(, the numbers which satisfy

Equations (3.1), (3.8), and (1.3) imply

X~= z()I, . (3.11)

[g(,)(po)7= [ps] (2.7b)

Then a set of constants C; exists such that

From now on, the reasoning follows that in Sec. V
of II. The conclusions are the same, and thus we do
not state them here.

[C;]=1 for alii (2.7c)
and

g(;)(po)=C,po
' for alii . (2.7d)

IV. NEUTRINOS

A. Formalism Used
Proof. Part 1 is obvious. The proof of part 2 follows

from the fact that g(;) is to be constructed from the
ingredients of the theory. Since m=0 and X cannot
depend on dimensional constants (like a') which are
state dependent, a constant M, such that [M]= [ps],
and which could be used to construct R, cannot be
introduced. g

III. SCALAR AND PSEUDOSCALAR
ELEMENTARY SYSTEMS

In the formalism we use, the state vectors are
solutions of Weyl's equation,

ps io = m(r ' y (p ) m = &1 (4 1)

A= ,'(I+mpo '(r —y) .

The spin tensor S&" is such that

(4.2)

where the helicity m is fixed. "The projection operator is

For the scalar and pseudoscalar elementary systems
the wave function p(y) has one component; the
projector A. is the identity. Lemma (2.7) implies

R=Cpo 'y, [C]=1 (3.1)

By using Eqs. (1.4a), (2.4c), and (2.5) we derive

[L '+C tanh(X —8)+iK cosh() —8) (os+() —8)

+iK cosh P —8) (oo (X—8)]o)oo„=0, (3.2)

which, taking into account Eq. (2.4d), implies

[Lo'+iK cosh(X —8) (oo+(X—8)]o)oo„=0 (3.3)
and

We shall work in the standard representation of Pauli
matrices. Then h. is of the form

1 1+mp'(po) ' mph(po) 'e "
(44)

2 mpH(po) 'e*o 1 —mp'(po)
—'

B. Position Operator and Localized States

Equation (4.1) is not covariant under spatial reflec-
tions, so it is not a necessary requirement that X be a
pure vector; it can also have an axial-vector term.
From the Lemma (2.7) it follows then that

[C tanh0( —8)+iK cosh(X —8) (oo (&—8)]goo,=0. (3.4) ARA=ACpo 'yIA (4.5)

From Kq. (3.3) it follows that

[Los+iK(oo+(0)]oooo„= 0 (3.5)

because

A(rX yA=0 and A(rA=. mpo-'yA .

K[cosh()(—8)(os+(l(—8)—ooo+(0)]&poo„=0 (3.6)
In the same way as for s= 0, but taking into account

Kq. (2.6), we derive

so that
(o,+()i 8) = +—((0oo)/c h(o)s8() . (3.7)

A[L '+C tanh(l( —8)+iK cosh P —8) (os+(l(—8)

+iK coshP. —8) ooo (X—8)]oooo„=0, (4.6)

Proof of E(I. (3.7). Assume the contrary; then (for
fixed (o+), o)»„can only be of the form (poo„=88(K).
Then from Eqs. (3.4), (3.1), and (1.3) it follows that
X'=i8s, so there are solutions of Kq. (1.1) (with ()s= 0)
different from epos„=88(K). +

Equation (3.4) implies

A[L"'+iK cosh/, —8) ooo+()~—8)]o)os„=0, (4.7)

A.[C tanh() —8)

+iK cosh()( —8) (oo
—

(X—8)7(ooo,=0, (4.8)

A[Los+ iK(oo+(0)]o)oo,=0, (4.9)

C=(oo (l(—8)=0, (3.8) KA[cosh()( —8)a»+(l( —8)—(os+(0)](poo„=0. (4.10)
substitution of which, with Kq. (3.7), into Eq. (2.4c)
shows that

b), s =

(os+�(0)/cosh

(X—8) .

"Equations (1.3) and (1.4) were derived in the frame of the
Sargmann-signer formalisn (cf. II), but they do not change

(3.9) their form when we translate them to this alternative formalism.
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The solution yok„=85(E) can be excluded by reason-

ing similar to that used in Sec. III. Then,
As in II, here we have

ga3p3
Pa Ov +00v~ (4 2o)

cok+P, —8) = a&k+(0)/cosh(li —8) . 4.11
and the partial eigendifferential

Again using a procedure like that in Sec. III, we

obtain
C=coe+P.—e) = bk'= b=0. (4.12)

It is such that

~~k ~m(ok+ [g ok]) (4.13)

Then Eq. (4.9) is the only one which remains to be
satisfied. In order to do so, we first introduce a vector

~ which will play the same role that the Ok component
of Hilgevoord and Wouthuysen's spin tensor ZI'" did
in II21,22 ~

&p.~o,'"=2C'"(p') —'[sin(-,'p'ba')](p. ~o„, (4.21)

where C' ' is a normalization constant.
The one-localized states should be non-normalizable

to unity, but one should have

(4.22)

because the spectrum of position is continuous. This
indeed happens provided that the f„s atisfy normaliza-
tion requirements.

From Eqs. (1.3), (4.5), and (4.13) it follows that

Z =$mo +pp (p o' —p o' ) (4.14) +k (p )
—i(l „k ~0k)g (4 23)

(with cyclic permutations of 1, 2, 3),
3

0
2 3 2

(notice the difference from the case m) 0), and

[""A.]A.=0.
Equation (4.9) can be written as

cvI +00v —2 61~ 'P00v ~
g ~03 (4.17)

The properties of the position operator and the
localized states are the same as those of the electron
(cf. II) but the parameter G takes the value zero.

(1) The position operator is non-Hermitian and
non-normal and can be considered as a limiting case of
the extended-type position. This does not exclude its
having a physical meaning. (Cf. Refs. 7—11.)

(2) The velocity is Hermitian and is as expected:

We look for the explicit form of the solutions +00„of
this equation. It is useful to write first the solutions q of

(dx/df) y= (p/po) p for all q =Ay . (4.24)

(3) There are no three-localized states: No p exists
sucll tllat

X~q =0, &=1, 2, 3.
One can check that they are

~'(p) =D(p)~'"(p),

where D is an arbitrary function and23

(( p"+p')~-'")
~"(p) =I

p o'yak

Incidentally, Eq. (4.14) shows that p; has only one
independent component, which is right because the
helicity m is fixed (cf., e.g. , Ref. 24).

The one-localized states y00„must be of the form
(4.18). Using this fact and the explicit representations
of the operators involved in Eq. (4.17), a straight-
forward calculation shows

V. PHOTON

A. Formalism Used

Let e(p) and h(p) be the electric and the magnetic
fields, respectively, in p representation. We use the
formalism" in which the wave function is

The proof of this statement can be given in the same
(4.1gb) way as the corresponding proof in II. To do so, one

notes that because of Eqs. (4.3) and (4.13), " is the
Ok part of a four-tensor.

Notice, however, that in contrast with the m&0 case,

(4 1gc) there is no possibility for X to be one of the possible
quantum versions of Pryce's" definition (3) of the
classical center of mass (cf. II).

k oo, '(p)=f (p~A)(p'+mp') "'(po) "'~' (p), (419)

where f„ is an arbitrary function.

"The expressions will be written in a form which makes easier
the comparison with the corresponding expressions for the
electron (cf. II).

2' J. Hilgevoord and S. A. Wouthuysen, Nucl. Phys. 40, 1
(196').

'3 This wave function can be expressed in several forms which
are only apparently different.

'4 D. Korff, J. Math. Phys. 5, 869 (1964).

so that
—zmppv= pg v,

p y=O.

(5.2)

(5 3)

"M. H. L. Pryce, Proc. Roy. Soc. (London) 195A, 62 (1948).
"R. E. Marshak and E. C. G. Sudarshan, Introdlction to

Elementary Particle Physics (Interscience, New York, 1961).

y(p) =2—'~'[h(p) —ime(p)], m= &1 (5.1)

where m- is the helicity; the wave equation is
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The scalar product'~ '7 equals" value of m. This allows X to have an axial-vector term
again. Then it follows from the Lemma (2.7) that"

(4P) =2 (Po) '4'(p) P(P)d'P. (5.4) A.RA =ACpp 'pIA. , (5.8)

The projector is

~e(P) = 2L~' P'P—'(Po) ' ice—'2'P" (Po) ') (5 5)

which has the same form as Eq. (4.5). The calculations
are exactly the same as those done for the neutrino if
we replace e by 2S, so we give only the results:

We write the well-known spin matrices C=b), ' ——b =0 (5.9)

so that

as it should be.
(s p)e=~po~,

(S');;=—ie,,k,
5"'=e 5' 5'~=+i'~,

(5.6a)

(5.6b)

(5.7) P' ('harp'P'/P') ~

w'(p) =PIr
—' p' —(imp'p'/p')

Zat JI 0

(5.11)

moo. (p)=f.(P~A)w (p), (5 10)

where f„ is a function which is arbitrary up to normal-
ization requirements,

B. Position Oyerator and Localized States

Maxwell equations are covariant under reflections,
so the argument we used in Sec. III in order to show that
the neutrino's position can have an axial-vector term
does not apply. However, it was proved by Korff'4
that photon states with different helicities are in-
coherent, so that in Eq. (5.I) we must choose and fx the

where"
+k (p )

—1(1~k bf Ok)g

~~k 2~i(5'k+ P 5'kj)

(5.12)

(5.13)

has the representation

The normalization properties are as for the neutrino.
The position operator is

+2qiq2
—2 —(q )'+(q )'

g 2/3 —AV'gy

2 —(q~)'+ (q2)' q~qk+imqr
'

—2gygo —
fft] IIts+ MrIIt2

—
qyq3

—imq2 0
(5.14a)

The other components can be obtained from this by
cyclic permutations of 1, 2, 3; and

p k/pO (5.14b)

The properties of the localized states and the position
operator are the same as those of the neutrino.

VI. DISCUSSION

For discussions of the zero-mass case see Refs. 24,
25, and 29—31.Let us assume instantaneous localization
and quantum mechanics (see Sec. I D).

Using as the only basic assumption the consistency of
the description of localization from di/ferent inertial
frames, we have succeeded in showing that a solution of
the localization problem for m=0 exists, and that its
properties are essentially the same as those obtaAsed irI II
for m)0.

(1) There is no Hermitian position operator. This
implies, as in II, that it is almost' "certain that one of
the following statements is right:
"I.. Gross, J. Math. Phys. 5, 687 (1964).
"The electromagnetic field and the potential can both be used

as state vectors of the photon, but the form of the scalar product
changes when the fields are replaced by the poteritials (cf. Ref. 27).' R. Acharya and E. C. G. Sudarshan, J. Math. Phys. 1, 532
(1960).

'0 C. Fronsdal, Phys. Rev. 113, 1367 (1959)."G. Fleming, Phys. Rev. 139, 8963 (1965).

(a) Position has no meaning at the quantum
relativistic level. (But then, how does the macroscopic
localizability arise P)

(b) The description of localization in different
inertial frames is inconsistent.

(c) Position is the only observable which cannot
be represented by an operator.

(d) The position operator exists, but it is non-
Hermitian.

(2) One should try to look for the consequences of
some of these surprising possibilities. It.is possible that
the hypothesis (a) is the right one, but then it is
diS.cult to understand the standard evidence of
approximate localization as well as the macroscopic
and the quantum nonrela, tivistic localizability (cf., e.g. ,
Ref. 31). Possibility (b) may also be the right one,
but this would imply a departure from relativity
theory because a relativistic self-consistency require-
ment cannot be violated in a relativistic theory. We
consider cases (c) and (d) to be of interest.

It was suggested by Werle33 that if case (c) is the right
one then an equal footing of space and time which

"The word "almost" allows for the possibility of nonzero
effects of the interaction in the limit in which the interaction is
switched off. This possibility exists but, if it were realized, position
would again be an exceptional member of the set of physical
observables (cf. Sec. VII of II)."J.Aerie (private communication).
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quantum mechanics destroyed would be reestablished,
because in (relativistic or nonreiativistic) quantum
mechanics the time is a c number, while the three-
dimensional space coordinates are q numbers (cf. Ref.
14). The first step in a study of case (c) should be to
explain Heisenberg's uncertainty relation without the
position operator.

Wc have considered in the present paper possibility
(d) for m=0, as we did in II for tn) 0. The legitimacy
of a non-Hermitian position operator is discussed in
several of the references. The strongest indication that
(d) may be right seems to be that, by the use of a
relativistic self-consistency requirement only, we can
deduce in case (d) a position operator that is unique.

W1th 1'cspcct to CRsc (d) fol 15=0, wc 111akc thc
following remarks.

(i) We had no need of Axiom 6 of II.
(ii) The eigenvalues of X~ are real in spite of the

non-Hermiticity of the operator (cf. Secs. III—V of
this paper and Refs. 22 and. 24 of II).

(ill) Tile colllpollcll'ts of posltloll Rl'c compatible
with each other for spin 0 and incompatible for spin ~~

Rnd 1.
(lv) Thc collllllllta'tloll relations of posltloll Rnd thc

linear momentum are the expected ones (cf. II).
(v) The velocity operator is Hermitian and has the

expected form.
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The conventionally nonrenormalizable theory of massive neutral pseudovector mesons interacting with
nucleons is treated in the Stuckelberg formalism using some recently developed nonlinear techniques. The
theory is split into two parts: a renormalizable interaction of mesons with nucleons, which can be treated
by standard methods, and an exponential interaction of pseudoscalar mesons with nucleons, which is dealt
with using nonlinear methods. It is shown that all the infinities of the theory may be eliminated by adding
suitable counterterms. Thus the complete theory becomes renormalizable. Similar considerations also apply
if a parity-violating term is introduced in the original pseudovector interaction.

I. INTRODUCTION

"'N this paper we consider the renormalizability of
- - massive neutral pseudovector-meson theory coupled
to a nonconserned nucleon current. It is well known that
such a theory ls riot lcnormRllzRblc ln thc convcntlonRl
sense, since a formal power-series expansion of any
transition amplitude in terms of the coupling constant
leads to an expression in which every higher-order term
becomes increasingly more singular. The apparent
unrenormalizable character of the theory stems from
the fact that the meson propagator is (g„.—k„k./ll')
X(k' —p, ') ', rather than, say, (g,„—k„k„/k')(k' —y') '
as for the photon propagator in quantum electro-
dynamics (QED), which theory is known to be re-
normalizablc. The degree of divergence for such a
theory using the well-known power-counting arguments
is given by

D= 4 ,'E~ 2E~+E, ———
where E~ is the number of external nucleon lines, E~ is

the number of external pseudovector-meson lines, and
X is the order of perturbation expansion. From this
expression two interesting points emerge: (a) The
degree of divergence associated with any given primi-
tively divergent graph increases with the order of
perturbatlon expansion ln the couplmg constant, and
(b) all graphs are primitively divergent for suf5ciently
high orders of perturbation theory.

However, such power-countmg arguments could be
misleading. For instance, the above expression for the
degree of divergence applies also to the theory of a
massive vector meson coupled to a comsereed nucleon
current. Thus, on power-counting arguments alone, one
would expect this theory to be unrenormalizable when
a perturbation expansion in the coupling constant is
carried out. But it is well known that for such a theory
the k„k„/ll' term in the meson propagator may be
treated in a nonperturbative manner and only con-
tributes to wave-function renormalizations. The rest of
the theory is then renormalizable and may be treated


