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Quasipotential Equation Corresponding to the Relativistic Eikonal Approximation

I. T. TQDQRov*
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A three-dimensional Lippmann-Schwinger-type equation for the elastic scattering amplitude and the
corresponding homogeneous Schrodinger equation for the two-particle bound states are studied. The poten-
tial is defined as an infinite power series in the coupling constant which its the perturbative expansion of the
on-energy-shell scattering amplitude. The approximate equation obtained by keeping only the lowest-order
term in the potential is local and has the following properties: (i) The scattering amplitude yields the rela-
tivistic eikonal approximation for large energies or small exchanged mass and momentum transfer; (ii) for
the Coulomb problem the approximate equation is exactly soluble and leads to a relativistic Balmer formula
including the 6ne-structure splitting.

I. INTRODUCTION

HE possibility of fitting the exact relativistic scat-
tering amplitude by an energy-dependent poten-

tial has been recognized for many years. ' A quasipo-
tential approach to the relativistic two-body problem
was developed in the work of Logunov and Tavkhel-
idze. ' It can be related to the old-fashioned off-energy-
shell perturbation theory in the same way as the
Bethe-Salpeter equation is related to the off-mass-shell
Feynman rules. 3 4

The choice of a quasipotential equation which fits the
on-shell scattering amplitude and satisfies some general
requirements listed in Sec. II is not unique. (There is
freedom both in the choice of the two-particle Green's
function and in the off-energy-shell extrapolation of the
scattering amplitude. ') This nonuniqueness is exploited
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in Sec. II to write down a new quasipotential equation
which appears to be simpler than those studied previ-
ously. As usual, for a given perturbation expansion of
the scattering amplitude the "potential" V is also
defined as an infinite power series in the coupling con-
stant g. Section III is devoted to considering the quasi-
potential equation with V replaced by its Born approxi-
mation. We show that the solution of this approximate
equation yields the relativistic eikonal approximation7 '
in the domain of its validity. In Secs. III and IV we also
obtain relativistic extensions of the Balmer formula in
two different cases: (a) massive scalar particles inter-
acting via a massless scalar boson; (b) electromagnetic
interaction of two scalar charged particles.

The relativistic Balmer formula so obtained includes
all recoil effects up to order o.4 as well as the one-struc-
ture splitting which appears in case (b). It does not
include radiative corrections (Lamb shift) which should
be expected to come from the next term in the expansion
of the potential. In contrast with the treatment of the
two-body problem in Refs. 9 and 10, our equation is
symmetric with respect to the two particles. "
II. RELATIVISTIC LIPPMANN-SCHWINGER AND

SCHRODINGER EQUATIONS

Consider the off-energy-shell elastic scattering ampli-
tude T„ for two particles of masses m1 and m2 and
initial (final) momenta qi and q2 (pi and y2). We work
in the c.m. frame in which

(2.1)

The masses of the two-particle bound states are de6ned
by the eigenvalues of the total energy m. On the energy-
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Phys. Rev. D 2, 805 (1970).

8 E. Brezin, C. Itzykson, and J. Zinn-Justin, Phys. Rev. D 1,
2349 (1970).

~A. O. Barut and A. Baiquni, Phys. Rev. 184, 1342 (/969);
Phys. Letters 30A, 352 (1969).

"C. Fronsdal and L.-E. Lundberg, Phys. Rev. D 1, 3247
(1970).
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shell we would have (iv) The off-energy-shell extrapolation of the scat-
tering amplitude is obtained from the Feynman per-

P' +P' ~' ~' P q ' ' turbation expansion by the substitution

where

4w'b'(w) =6 (w' mP m ')
=w' —2 (mP+m. ')w'+ (mi2 —m ')' (2.3)

The quasipotential equation is a linear integral
equation for T„(p,q) of the Lippmann-Schwinger type

1
pio, qio ~Ei= —(w'+mP —mg'),

2'l8

p
0

g2 ~E2 = (—w +m m—i )2'

(2.9)

T+V+ VGT—=T-(1,q)+ V-(p, q)

+ V (p,k)G„(k)T„(k,q)d'k 0=(.2.4)

This equation is assumed to satisfy the following general
properties.

(i) For a Hermitian potential (V=V"), Eq. (2.4)
implies the on-shell elastic unitarity condition for all
energies. Writing (formally) the solution of (2.4) as

T= — --V= —V
1+VG 1+GV

we obtain (for V= V*)

T—T*=T*(G G~) T. — (2 3)

Thus our first requirement fixes the discontinuity of the
Green's function G.

(ii) Equation (2.4) is consistent with the perturba-
tion of T in quantum field theory. In particular, if G
is independent of the coupling constant g and T
=gT~ g'~ then V=+V~ g'~ with

is very close to the original Logunov-Tavkhelidze quasi-
potential equation. '

The simplification in Eq. (2.10) (consisting in replac-
ing a p-dependent factor in front of the integral term
in Ref. 2 by w ') allows us to find an exactly soluble
model for the relativistic Coulomb problem.

In order to get an idea of the content of Eq. (2.10), we
first compute the second iteration T(" with the Yukawa
potential

(2ir)'V=
4EiE2 p'+(p —q)'

(2.11)

For the on-shell amplitude T(') in the forward direction,
we obtain

(Note that on the energy shell Pi'=pi'=Ei, P~'=qP
=Eg.)

The equation thus obtained,

T-(p,q)+ V-(p, q)

2EgE2
+ V (p,k)(k' —b' —i0) '

XT„(k,q) d'b =0, (2.10)

(2.6) Tn&(p p)
g

(4ir) 'wg'(p'+4p') EiE2
V2= T2, V4= T—4+ T2GT2, . . . . —

1 1 p
ip+p —+ —arctan — . (2.12)

2 7f' jM

Ke see that not only the imaginary part of T('& is
exact (which is in fact an input) but that T& & also coin-
cides with the sum of the contributions of the box and
crossed-box Feynman diagrams (cf. Ref. 4) in the limits

P~ ~ or @~0.
Following Ref. 4, we can derive formally from Eq.

(2.4) the corresponding homogeneous equation for the
bound-state wave function @:4miEgE2

T (p,q) —T *(p,q) = T„*(p,k) T„(k,q)
G '(p)y(p)+ V„(p,k)y(k)d'k =0. (2.13)

Xb(k' —b')d'b (p'=q'=b') (2.7)

These basic requirements obviously do not fix Eq.
(2.4) uniquely. In particular, they are satisfied by any
of the four diBerent equations considered in Refs. 2—5.
Hence, we supplement them by the following
assumptions.

(iii) For spinless particles G„(k) is a linear function
of k (just as in the nonrelativistic Lippmann-
Schwinger equation) .

Requirements (i) and (iii) fix the Green's function
completely. For spinless particles the on-shell elastic
unitarity condition is given by'

and according to (i) and (iii)

E,E,
G (k) =2 (k' —b' —i0)—'. (2 g)

In analogy with the nonrelativistic Schrodinger equa-

We are not discussing here another three-dimensional ap-
proach to the two-body problem in which one particle is con-
sidered o8 its mass shell; see F, Gross, Phys. Rev. 186, 1448
(1969).
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tion, Eq. (2.13) can also be used (with appropriate
boundary conditions) to describe the scattering states.
The corresponding inhomogeneous equation which in-
corporates the boundary condition is

where n is dimensionless. The lowest-order approxima-
tion to the potential is given by (2.11), i.e., by the
Fourier transform of the Yukawa potential

&sp r

4 (P) =b(p —q) -G.(P) V.(p»)A(k)d'&, (2 14)
d'P (r = lr I).

2~2 p2+p2
(3.3)

where the subscript q indicates that re, = qq'+qg'

C
b (re) =q]. Setting

Substituting (2.8) and (2.11) in the Fourier transform
of the Schr6dinger equation (2.13) and taking (3.2) and
(33) into account we obtain

T,(p, q) = — V,(p,k)4, (k)d'k, (2.15)
m]m2 Q—V' b' 2 -e-~" p z —0

r
(3.4)

we reobtain the Lippmann-Schwinger equation (2.4)
for T„.

The quasipotential equation (2.10) can also be
written in a covariant form. To do this we set

Equation (3.4) differs from the nonrelativistic Schro-
dinger equation in a Yukawa potential only in the con-
stant kinematical factors

P= (P~+P—) = —(q~+q )
(a) reduced mass m~ ——

mlm2

mg+m2

m]m2

(3.5)

5R(P; p, q) =2EiE2T„(p,q),
E(P; p, q) =2E&E2V„(p,q).

In these variables

(2.17)

2p =pg —p2 —(mg' —m2')m„'(pg+pg),
(2.16)

2q =qy q2 (—my' —m2')w—g '(qy+q2),

~.=L(p~+P~)'j"', ~.=L(q~+q2)'j'"

and introduce the covariant amplitude BR and "poten-
tial" E:

b2

(b) binding energy 8 —+—.
2m

This observation allows us to write down the (exact
or approximate) solution of our quasipotential equation
whenever such a solution is available for the correspond-
ing nonrelativistic problem. In particular, Eq. (34)
yields the relativistic eikonal approximation. Indeed,
according to Ref. 8, the small-angle eikonal behavior
of the on-shell nonrelativistic amplitude TNR is given by

P p=P q=0, P'=w', P= P~ q= 2'»=(p, q) = p d'y expLt(p —q) y3
(2n.)'

and Eq. (2.10) assumes the form

BR(P; p,q)+K(P; p, q) X exp
2img

ufo(py) —1 . (3.6)

b(Pk)
&(P;p, te) 3II(P; k,q)d'k (2.18)

k'+b'+f0

(cf. Matveev et at.'). The homogeneous equation (2.13)
can also be written in a similar form.

III. RELATION OF QUASIPOTENTIAL EQUATION
TO NONRELATIVISTIC SCHRODINGER

EQUATION AND TO RELATIVISTIC
EIKONAL APPROXIMATION

We start with the model of two complex scalar 6elds
Pq and P2 of masses mq and m2 interacting via a neutral
scalar field q of mass p with the interaction Lagrangian

Li(~) =l:g~:A*(~)4~(~):+g2:A*(*)A(~):jv (*) (3 1)

In this model, the coupling constants g; have the dimen-
sion of mass and we set

The integration in y is performed in the two-plane
orthogonal to p+ q. The representation (3.6) is valid in
any one of the two limits:

@~0, t= —(p —q)' —+0 (3.7a)

2m~8=p' —+ CD (or w' —+ ~), t4, t Quite. (3.7b)

Using the substitution (3.5), we obtain from here the
relativsitic (on-shell) eikonal formula' '

l
in which ma is

replaced by ns and p by b(w) and the whole amplitude
is multiplied by w/E~E2$. It is a valid approximation
in any of the two limits (3.7).

For p=0, Eq. (3.4) corresponds to the Schrodinger
equation for a particle of mass m„ in a Coulomb poten-
tial and therefore is exactly soluble. The substitution
(3.5) in the nonrelativistic Balmer formula

gyg2= 16Ãmym20',
q (3 2) 8„= mgu'/2n'—



I. T. TODOROV

gives the following relativsitic formula:

w '=mr'+m '+2mimo(1 —e'/ri')'" (3 g)

This formula is a known consequence of the eikonal
approximation. "

IV. ELECTROMAGNETIC INTERACTION OF
SCALAR CHARGED PARTICLES

A. Modified Feshbach-Villars Formalism

In Sec. III we reduced (in a first approximation) the
relativistic two-body problem to the problem of a single
"reduced" particle of mass m„(3.5) in an external field.
The energy parameter of this fictitious particle is given
by

E=Pm~'+. b'(w)]'" = —(w' —mi' —mo') . (4.1)2'
The Klein-Gordon eigenvalue equation with a "mini-

mal" electromagnetic interaction should be

[(E eA —)'—(p eA)'—m„']—&„=0 (4.2)

In order to reconstruct the 4-potential A„ from pertur-
bation expansion of the scattering amplitude, we use a
modification of the Feshbach-Villars formalism, "which
enables us to write down a I.ippmann-Schwinger type
of equation for the scattering amplitude in this case.

It is convenient to linearize Eq. (4.2) in terms of the
following system of four first-order equations:

where

4= U%, Ho, = U(Hi+Ho) U ', (4.8)

U+(p) = L(pi'+mr)1 X(pi' —mi) ri]
4(mlpl m2p2 )

8[(p,'+mo)1+(po mo)rl]%'(p) (4.9)

Lp,'= (m,'+p')'I', i =1, 2]. Taking into account that
Ao and A are integral operators in momentum space,
we obtain

H@——pioro81+po"18ro+ Vo(p, q)d'g, (4.10)

where

V.(p, q) =L2Ee@o(p,q) —(P+q)e21(p, q) —"@'(p,q)]
X (16pi'po'qi'qo')'"(L(pi'+iti')1+ (pi' —ifi')ri]

8 + 8L(p '+v") I+(p '-V"). ]) (4.»)

On the other hand, using the fact that /Hi, Ho] =0, we
obtain

(w+Hi+H2) (w+Hi H2) (w Hi+H2) (w Hi H2)
=4w'L(E —eA, )' —(p —eA)& —m.'], (4.7)

so that Eq. (4.2) is indeed a consequence of Eq. (4.3).
The different components of 0 are related to the

positive and negative energy states of the two particles.
This is clearly exhibited in the Feshbach-Villars repre-
sentation, which is obtained through the unitary
transformation

where

H)=myra1

(Hi+Ho —w)%' =0, (4.3) Here So(p, q) and 5(p, q) are the kernels of the integral
operators Ao ancl A and g'=go'

I.et p~~' (o., o'=&) be the normalized solutions of the
free part of the Hamiltonian (4.10):

1
+ L(p —eA) +2EeAo —e'Ao ]r81,

,218]

Hg=m21 r3
(4 4)

+—L(p —eA)'+2EeAo —e'Ao']18 r.
2m2

Here 1 is the 2)&2 unit matric, v;. are the Pauli matrices,
and

%21 0 %21 1

Then, we have the following inhomogeneous equation
for Co(p) incorporating the boundary condition for the
scattering problem:

1 1r=ro+iro=, (r'=0).—1 —1
' (4.5) ~.-'(p) =4-'~(p-q)

The "Hamiltonian" (4.4) is Hermitian with respect to
the scalar product defined by the metric tensor r3E3r&.
In other words,

(Hl +H2 )ro8ro ro8ro(H1+H2) ~ (4.6)

"C. Itzykson {private communication); see H. Crater, Phys.
Rev. D 2, 1060 (1970). The same energy eigenvalues were ob-
tained also from different equations in Refs. 9 and 10. Recently,
Lamb-shift corrections to these energy levels have been calculated
by C. Fronsdal and R. W. Huff, Phys. Rev. D 3, 933 (1971),where
a similar method is used.

"H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958).

V~(p, k) C,-'(k) d'k, (4.12)
+o—m

where Ho ——pi'ro81+Po'18r, Lcf. (2.14)].By analogy
with (2.15) the scattering amplitude is defined by

Z(p g,o, q &,«) = —@'i i V+(p k)C,""(k)d'k. (4.13)

/The physical scattering amplitude 2" (p, q) will be
identified with the matrix element between positive
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energy states T(y,++; q,++).j Introducing (4.13) we obtain
in (4.12) we obtain the following generalized I ippmann-
Schvringer equation:

e5(y, q) (y+g) = —n/4n'w, (4.19)

2 ~(y)o&o» 9&o'3&4)+V»(yio&o'2'! Ili&ao4)

+ V.,(y,o 1o 2., k,oo')G„,~"(k)

so that @re can define

n P+g
e~(y, a) = ——

4~'m (y+q)'
(4.20)

W'th th's h ', bo th {P,A} nd A l l o
tors in coordinate space:

V-(P, ; a, ) =e""V.(P,Z)e.:.,

G

err�'(k)

(4.15)
IIO —zv —2o

and vie have used the completeness relation

QtXIJ 3q! O'IT

In agreement with (2.7),

ImG ++(k) 2~=i b(k' —f ') .

B. Relativistic Balmer Formula Including the
Fine-Structure Splitting"

According to the general rules of Sec. II, the 4-poten-
tial A„will be determined from (4.14) and (4.11).
Starting vrith the electromagnetic interaction
Lagrangian

I..m =ie$:&1*(x)8„$1(r):—:$2~(x)8„$2(x):]A &(x)

+ 'L:4 *( 8 ( ):+:A*(*)A(*):j~"(*)~.( ) (416)

Up to second order in e, on the mass shell, vie have

(y+rl)'
~ (P,II) = 1+

2~' (y —II)' 4E&I'.,
= —V2(y, ++;II,++)

=et.&(P,II) (y+a) —2&@o(y,ci)l
2EgE2

Ol Q 1—e{P,A}(r) =2'—8(r), e'A'(r) =w'——.(4.21)
'M m' r'

Ke note that here the arbitrariness in the choice of
the off-shell potential is even greater than in the case of
a scalar potential (Sec. II), since it also depends on the
choice of the gauge.

Ke proceed noir to the determination of the energy
eigenvalues. First, @re observe that the 8-function term
in Eq. (4.21) contributes only to the s-wave values
w ~=o, while the second term (e'A') coming from the
vector potential is of order n'. To see the latter point,
it is sufficient to write down (4.21) in atomic units. "
Therefore, vie first consider the eigenvalue problem for
a pure Coulomb interaction (i.e., set eA =0); at the end
we introduce the correction coming from the e{P,A}
term treated as a perturbation.

The radial equation corresponding to a pure Coulomb
interaction has the form

2
+——+b'(to)

df r dr

n n' I(I+1)—
+22—+ R )(r) =0. (4.22)

r2

It differs from the nonrelativistic radial Schrodinger
equation by the 1cplaccIncnts

I —+ I eg, e) —I+ 21
——[l(+--,')—' n']'12; —(4.23)

my~ E, 2mgB~ b'(w). (4.24)

Substituting in the nonrelativistic Balmer formula, me
obtain the follovnng eigenvalues':

(Here we have introduced the fine-structure constant
n=e'/4m. ) By an appropriate choice of the gauge, we
can de6ne ego to be the Coulomb potential:

w.~i =181 +TSAR +2151tÃ2 1+
(n eE)'— (4.25)

A

e&o(y, a) =
2~' (y —II)'

Using, furthermore, the fact that

EW/E1L'2= 1+3'/E1Eg,
'4 The results of this subsection are obtained in collaboration

vrith V. Rizov. A more extensive survey of the quasipotential
approach to electromagnetic interactions is in preparation.

where eg ls given by (4.23).
The lowest nonvanishing contribution of the term

—e{P,A} (4.21) is of order n'. It is

(4.26)

» See, e.g., H. Bethe and K. Salpeter, QNaetlm 3Achulics of
One- awd Two-E/ectron Atones (Springer, Berlin, 1957).
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Lf„ir(r) are the nonrelativistic hydrogen wave func-
tions]. Thus, the complete expression for w i up to
order Q4 is16

SZgQ mgQ
W~t =5$i+tSo-

2n2

3 mQ

2l+1 8ii 8(mi+mo)rl

mg' Q4

+ —b&o+o(& ) (4 27)
fÃi+mo S

We observe that the eigenvalues (4.27) coincide with
those calculated from the more conventional Breit
equation"

ma
mi+mo+ p' —— 1 —3 p' —w„, P„(r(p)

2m+ 8m+ m] +/gal

2x' (p —q) ' 4mim,

p2+q2 p2 q2 2

X 1—2 + 4' (q)d'V (428)
(p-q)' (p-q)'—

t although our starting point —Eq. (4.2) with the poten-
tial (4.18) and (4.20)—seems, at first sight, to have
little in common with Eq. (4.28)j.The new calculation
is not only technically simpler; in contrast with the
Breit equation (4.28), which only makes sense in per-
turbation theory, the quasipotential equation (4.2) is a
bona /de equation. Furthermore, as explained in Sec.
II, it is readily adapted for the calculation of higher-
order corrections: One just has to take the next terms
in the potential from Eq. (2.6).

V. CONCLUDING REMARKS

We single out some properties of the approximate
quasipotential equations (3.4) and (4.2) (correspond-
ing to different quantum-field-theoretic Lagrangians)
which distinguish them favorably from the ladder ap-

"The appearance of the term (4.26) in Eq. (4.27) shows that
the conjecture made in Ref. 8, that (4.25) includes all recoil
eGects, is not correct.

proximation in the Bethe-Salpeter equation in the same
cases."
(a) For small momenta and weak coupling one can
write

w =1si+m2+8,

where the binding energy 8 is small as compared with
the rest masses. Then either of Eqs. (3.4) and (4.2) goes
into the corresponding nonrelativistic equation. In
particular, the relativistic effective mass m„(3.5) goes
into the nonrelativistic reduced mass nzg.

(b) If one of the masses (say, m&) tends to infinity, then
the quasipotential equation goes into the Klein-
Gordon equation for particle 1 in an external field. (We
note that w/mo —+ 1 for mo —+ ~.)
(c) In terms of Feynman diagrams, the quasipotential
equation sums up all crossed-ladder diagrams in any
one of the two limits (3.7) in which the relativistic
eikonal approximation is valid.

Properties (b) and (c) are actually related. It is just
the lack of the latter property in the ladder approxima-
tion of the Bethe-Salpeter equation which does not
allow the proper static limit to be obtained from it when
the proton mass goes to infinity. It may also be the
origin of the unwanted solutions in the Wick-Cutkosky
model "
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