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Particle Theory of the Lamb Shift without Divergences or Cutoffs*t
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Values of the Lamb shift for the transitions 1S-2P, 2S-2P, and 3S-3P in hydrogen are compared in a non-
relativistic particle theory with no divergences or cutoffs. The theory is based on the extension of quantum-
mechanical equations to the radiative case by arguing the necessity of time symmetry and the vanishing
of self-interaction effects in the absence of external forces. The characteristic radiation time constant e

=Le'/mc3 is used. When E=1, fairly good agreement for all three shifts is obtained. However, if J" is ad-
justed to obtain the value for the 2S-2P level, the other, correspondingly adjusted levels give good agreement
with the experimental values for 1S-2P and 3S-3P transitions. Vacuum polarization effects are included
(for comparison with Jaynes and Crisp's results); however, these effects are probably more legitimately
treated within a relativistic framework.

I. INTRODUCTION

'HE aim of this paper is to obtain radiative cor-
rections to the motion of a charge in an external

Geld. It follows an earlier paper in which semiquanti-
tative comparison was made; here the attempt is also
made within a field-free formalism. However, whereas
earlier we took a stochastic approach' in combination
with classical electrodynamic analogy, here a purely
quantum-mechanical treatment is sought. The principal
earlier premise, that the theory possesses a time-
symmetric basis, is retained in this paper.

It is not our intention to imply that any success in a
Lamb-shift calculation means that the field-theoretic
formulation of quantum electrodynamics has found a
divergence-free substitute. It merely augurs well for the
straightforward nonrelativistic theory given here; more
tests would obviously be needed, to say nothing of the
question of an appropriate relativistic generalization.

Recent reservations as to the adequacy of quantum
electrodynamics have been expressed in an interesting
paper by Crisp and Jaynes. ' Theirs is a semiclassical
treatment of radiative corrections, with the calculation
of the Lamb shift proceeding from considerations of
self-interaction of the classical atomic B.eld. While we
share the dissatisfaction of the authors of Ref. 4 with
traditional renormalization procedures, we feel that no
theory based on independent field degrees of freedom
can avoid the divergences (classical or quantum)
inherent in field theory.

For the calculations involving the Lamb shift we
include the self-interaction correction to terms of order

*Research supported in part by the National Science
Foundation.

f Part of this research was done while the author was Visiting
Associate Professor at the University of Rochester.' J. Krizan, Phys. Rev. 165, 1725 (1968).' E. Nelson, Phys. Rev. 150, 1079 {1966).' J. Krizan, Phys. Rev. D I, 2772 (1970).This paper argues for
a relativistic time-symmetric theory which gives rise to the usual
quantum-electrodynamic results; the treatment follows especially
from consideration of the limiting classical case. While results
which do not require renormalization follow from this particle
approach, the nonrelativistic theory in the paper here does not
require any cutoBs.

4 M. D. Crisp and E. T. Jaynes, Phys. Rev. 1'79, 1253 (1969);
185, 2046 {E) (1969).See reference to earlier work by Jaynes and
colleagues here.

Z4o, ', where n is the fine-structure constant. ' The com-
parisons for the cases given in Ref. 4 are made. Good
agreement is obtained with experimental values; in fact,
the agreement for the 1S-2P and 35-3P' transitions com-
pares favorably to that given by quantum electro-
dynamics. In spite of this, we would repeat that the
agreement may be fortuitous and the attempt is still to
be considered exploratory. Nevertheless the absence of
any renormalization or cutoff procedure makes it
worthwhile, we feel, to persist in trying to find a
different basis for the effects treated traditionally by
renormalized field theories.

where

Substituting

ihip/Bt= Hf,

H = —(h'/2m) V2+ V.

(2 1)

(2 2)

(2.3)

into (2.1), where R and 5 are real functions, results in
the equations' (these are the WEBJ equations before
approximation) '

Zv= f+eu,
Bu//Bt= —(h/2m)V(V v) —V(v u);

here v, u are defined by

v—= (h/m) Vs,
u= (h/m) VR,

(2.4a)

(2.4b)

(2.5a)

(2.5b)

In Ref. 1, all terms were not considered in the semiquantitative
comparison of the theory (as was stated in the paper). The basic
time-symmetric motivation for the equations, although not the
stochastic derivation, remains here. The equations used there were
given in terms of e(u) rather than 8(—u), for S. A stochastic
derivation similar to that in Ref. 1 was recently given by L. de la
Pena-Auerbach and A. M. Cetto, Phys. Rev. D 3, 795 (1971).
These authors evaluated a term previously neglected in Ref. 1.
It was suggested in Ref. 1, following a sign error (noted in proof)
that this was a possible improvement.

6 Again here we have proceeded from the more familiar
.Schrodinger equation to the fundamental set. Clearly orie could
have also started with the set without recourse to the nonradiative
approximation in terms of the wave equation.

II. DERIVATION OF FUNDAMENTAL EQUATIONS

Suppose we accept the linear time-dependent
Schrodinger equation as a limiting, nonradiative
approximation:
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while

Above also

2—=d/Bt+ v V.
8—=u 7+(h/2m)V'.

(2.6a)

(2.6b)

(2.7)

Thus the nonrelativistic Schrodinger equation is
equivalent to the set of equations (2.4). The question
arises as to the extension of these when self-interaction
effects are considered.

To modify these equations when self-interaction is
considered, we are guided by the following require-
ments: (1) When there is no external force acting, we
require that the situation reduce to that of a free
particle with no self-interaction. (2) The additional
reaction force must be time symmetric.

The first requirement suggests that (2.4a) be gener-
alized to

2v —Gll =f+ «61(ZV —8ll), (2.8)

where the vanishing of the left-hand side when I=0 is
assured by the form of the reactive term, in which (R is
an operator which is to be specified; e is a coupling
which is a characteristic time parameter (the parameter
which naturally occurs in consideration of the self-
interaction of an electron is e'/mc'). The form of the
reactive term, particularly the dependence on the above
parameters, may also be inferred from the classical
analogy (a,s given elsewhere' ).

Thus when the particle is free, the real part R is
constant in (2.3), and (2.5b) leads to u=O, so that (2.8)
leads simply to Z(v)=0. The solution of this is, of
course, v= const which leads immediately to the wave
function /=A(t)e'~'* in (2.3), where k= (m/k)v. Fur-
ther, if we are dealing with an approximation in which
self-interaction is neglected (or, that a time scale of the
order of e is ignored), but f&0, then (2.8) reduces to
(2.4a), which in turn can be put into the time-dependent
form (2.1).

When v=0, or in the stationary limit, one gets
(for &=0):

The time-symmetric equation of motion is then

Z v —Ou =f+ e8' (2v —5ll) . (2.10)

where
(1 ~8")Zv—=f+ (1 ~8—')f„,

fa —=(Ii/—m) 7'v a

(2 12)

(2.13)

v a= 9/4m—)—f (~VIP)+(~%*IN*)
2E('VA—) ('O'/4*—)7') (214)

The latter-defined quantities are the quantum-me-
chanical force and potential. '

III. SELF-INTERACTION ENERGY

In investigating the notion of an electron in an ex-
ternal field in which self-interaction corrections are
interpreted as the Lamb shift, we are dealing with a
stationary system. This means that the calculations are
carried out for a time-independent, energy-conserving
system; equivalently v=0 in Eqs. (2.12) and (2.4b).
Thus (2.12) becomes

f+fgg
—cQtf gg

=0. (3.1)

If we integrate this and take the expectation (denoted
by brackets), the average energy of the electron in the
external field may be obtained:

f dx f~ dx —e Qtf~ dx =const. 3.2

The second equation, (2.4b), is unchanged from the e=-0
case since it expresses conservation of probability, which
we assume to hold also for the more general situation.
Thus if we make the usual identification of p=f*P, Eq.
(2.4b) is transformed with the help of (2.5) into

imp/i7t+7 (pv)=0 (2.11)

Before proceeding to the calculation of radiative
effects we put (2.10) in a slightly diiferent form. We
write

Su+ f=0. (2.9)

This can be put into the form of the ordinary time-
independent Schrodinger equation, using (2.5), (2.4b),
and (2.3) Lin using (2.4b), it is seen that Bu/ilt=O when
v= 07.

The second requirement of time symmetry leads to
the following selection for the operator (R in (2.8). Time
symmetry is manifested by symmetry under time in-
version. Under this operation, v —+ —v and u~u
Lthis follows from the time symmetry of (2.1) under
t —+ /and complex conjugation—7. Therefore, we intro-
duce a time-symmetric operator Ot=—0(—u), where
8(u) is given by (2.6b).'

The choice of 8(—u) rather than e(u) for R perhaps has justi-
fication in a symmetry requirement for the fundamental set. Here

The expectation is taken, of course, with the probability
density p. The terms in (3.2) have a straightforward
physical explanation in that the first two represent the
work done against the external fieM and quantum-
mechanical forces, respectively, while the last is the self-
interaction work. . If the wave functions of the unper-
turbed problem are used (we denote this by the sub-
script on the brackets) where (2.7) is used, the first two
terms are merely equal to E/m. The last, ter—m gives

as in Ref. 1, the basis for the choice is that the operator be time
symmetric and the immediate 3usti6cation is the pragmatic one
that reasonable results follow.

8These terms have been used by D. Sohm and J. P. Vigier,
Phys. Rev. 96, 208 (1954},although we wish to stress that the
result here does follow from the usual quantum-mechanical
formalism.
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the self-energy correction as

E„if=—efi —u V V'2 V'yg dx
2m 0

a
I

—u V'+ P IV'V dx
2m i

(3.3)

2aoZ ' —«Z& ' t'«) '

(2a,)'m r 2a,i &2api

r(2apZ '. (4.5b)

For the corresponding 2P integration, we have from

In the preceding, use is made of (2.13) and (2.14).
From (2.14) it is seen that ps= —(h/2m) (Wog/P)
when v=O. With unperturbed wave functions then,
V'&ps ———VV/b

IV. CALCULATION OF LAMB SHIFT

(4.2)

and
eAZ'e' 2gpZ ' —r d——dr

r dr r22map

info p ~ lii (Zr/ap) —(rZ/2ap) +in (cos8)

The calculation is carried out for the 25-2P and
3S-3P transitions. Experimental data are available for
these, and Geld-theoretic quantum-electrodynamic cal-
culations have been made. The agreement for the 25-2P
shift is excellent, as is well known. For the other two
shifts it is not as good. Indeed, if the 25-2P discrepancy
were comparable to the others, it is probable that
confidence in the quantitative accuracy of the con-
ventional treatment would have long since eroded.

We write

where

and

E..if =~i+En,

6A

Ei=——— (Vine V)V'V dx
1n 0

(4 1)

(4 2)

(4.4)

Since all states except S states vanish at the origin, only
these contribute.

Turning to the evaluation of Eq, we must carry out
separate integrations for each state, unlike the calcula-
tion in (4.4). The 25 line integration is made first. From
(4.2) we get, since /=2[2 (Zr/ap)7e z"",—where A

is constant and ap is the Bohr radius:

AZ'ee' 4apZ ' rd t'1 )——
I
—Idr.

2map 2apZ ' rdr kr'i—
This integrates directly to

2 hZoe' 4r 2apZ ' rZ ' rZ)—
— ln + +

(2ap) 'm r 2ao 2aoi

r) 2apZ ', (4.5a)

KA

E&=—— V'(V'V) dx (4.3)
m p

The term Eo in (4.3) has contributions from S states
alone. This is seen when the line integration is carried
out to yield V'V and subsequent expectation integration
yields, since V= V(r) = Ze'/r, —

4xeAZe'
I4-i(r) I'~(r)d'r

yields directly

(4.6)

and
Ei,2s =0 522EZ'n' Ry

Ep»= —0.0278EZ4n' Ry.

In the above we have put, following an earlier state-
ment, o=Ee'/me' wher'e K is given as an adjustable
constant of order unity. (Note that if an exact corre-
spondence of the coeAicient with that of the classical
Lorentz equation is made, K=—', .) The time rp=e'/me'
is the characteristic time required for light to traverse
the classical electron radius. As mentioned before, it is a
natural characteristic time to associate with electron
self-interaction (this may be seen particularly from the
analogy with classical electrodynamics).

The contribution from (4.4) is Eo os oE'Zn' Ry so
that the total shift is given by

Eos or =Ei,os+Eo, os —Ei,or = 1.05EZ'n' Ry
= 1347EZ4 MHz. (4.7)'

If one uses the vacuum-polarization result of Uehling, '
the above result is corrected to E2~ ~~ = 1321 Z'E MHz.
If one adjusts E to the hydrogen experimental value
corresponding to E2&» ——1058 MHz, then E=0.80
(with vacuum polarization) or E=0.78 (without
vacuum polarization). We will use these values (note the
closeness to E= o) in subsequent determinations of the
1S-2P and 3S-3P shifts.

In Appendix B, we show that E»&=4EZn'Ry,
while from (4.4), Eo, is =4ICZ'n' Ry. From the previous
result the 2P contribution is small and equal to
—0.0278EZ4n' Ry. The vacuum polarization corre-
sponding to the 25 state is —0.170Z'n'Ry. Thus for

E. A. Uehling, Phys. Rev. 48, 55 (1935).We include this here
only for comparison, as is done in Ref. 4, although a derivation is
not given in the present theory. A screening of the potential inter-
action might give this result within the present treatment. In any
event, the effect is seen to be negligible.

The corresponding expectation integrations are carried
out in Appendix A for the 25 and 2P states. The results
are
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TABLE I. Values of Lamb shift in hydrogen, with and without adjustable constant, and with and without vacuum polarization. The
value of X has been adjusted to 0.80 or 0.78 to give the correct 2S-2I' shift. The results are compared with experiment (references given
in Ref. 4) arid with quantum electrodynamic (QED) theory. If the 2S-2I' shift is taken as 1011.4 MHz (no vacuum polarization, anomal-
ous magnetic moment, or higher-order effects), then adjustment gives E=0.765 and the 1S-2E shift is 0.270 cm while the 3S-3I'
shift is 0.0075 cm '. Also, if E=-', (classical coeKcient), the respective values are 0.227 cm ', 898 MHz, and 0.0065 cm '. See Eq. (4.7)
for conversion from Ry to MHz; 1 Ry=109 678 cm '.

Ns-nI

1S-2I'
2S-2P
3S-3P

E=1
(no vac. pol. )

0.340 cm '
1347 MHz

0.0098 cm '

E=,1
{vac. pol. )

0.334 cm '
1321 MHz

0.0095 cm '

E=0.78
(vac. pol. )

0.276 cm '
1058 MHz

0.0076 cm '

E=0.80
(no vac. pol. )

0.277 cm 1

1058 MHz
0.0078 cm '

Expt

0.262&0.038 cm '
1057.77~0.10 MHz

0.0083—o.oo8+0'002 cm 1

QED

0.2726 cm '
1057.19 MHz

0.0105 cm '

E~,as=4Z4Kn'/27 Ry=0.00630E cm ' (4.9)

Ei &p ——0.0584Z'En' Ry =0.00248E cm ', (4.10)

Ei,3s =0.138EZ4n' Ry=0.00586E cm '. (4.11)

Thus we have

Eas-3I =0.00977EZ' cm '. (4.12)

For comparison with experimental and quantum
electrodynamic theory calculations for hydrogen, see
Table I. From this table we see that even without the
use of the constant E, the values are in reasonably good

agreement (although consistently higher). Adjusting to
the 25-2P transition, however, brings the 15-2P and
35-3P values in rather striking agreement with experi-
mental values. In the 15-2P the value is within experi-
mental error and is very close to the theoretical quan-
tum-electrodynamic result. In the 35-3P transition, the
result matches experiment more closely than the
quantum-electrodynamic result (this is true even. if E
is unity).

It is quickly seen that the vacuum-polarization cor-
rection is not significant; thus for all purposes one can
avoid here the question of introducing it altogether.

V. CONCLUSIONS

The theory presented is potentially useful in de-
scribing effects attributed to self-interaction of a single
charged particle. In a certain sense the description as
"self-interaction" is a misnomer; this is so since the
model requires the vanishing of effect when the external
force is absent. On the other hand, one can view the
eRect as a distortion of the electron charge distribution
which is due to a finite-size effect (the interpretation of
the classical electron radius in the parameter e suggests
this). Thus if (in the traditional classical sense) the
charge is thought to possess a self-interaction due to

hydrogen

Erg 2i ——7.86EZ4u' Ry=0.334E cm '. (4.8)

When E =0.8, this is close to the experimental value of
0.262&0.038 cm '. The corresponding calculation for
the 35-3P transition in Appendix C gives the following
results:

finite size (recall the Lorentz classical electron) even in
the absence of forces, the effect here can be interpreted
as due to the chaege of that distribution due to an ex-
ternal force." It is also assumed, by analogy with the
classical result, that a limiting force could follow as the
radius of the charge is made vanishingly small.

One of the de.culties of the usual classical theory is
that self-interaction is not assumed to vanish in the
force-free case. This leads to the appearance of diffi-
culties characterized as "self-accelerated" solutions. "
Here, we construct the self-interaction problem in such
a way from the beginning that these effects do not
occur; thus we constructed Eq. (2.10) such that the
self-interaction term vanished when f=0.

The above interpretation, of course, deviates from the
detailed description of virtual photon emission and
absorption of an electron (whether isolated or not). The
divergences associated with the quantum electrodynamic
treatment of this problem are well known. What we
argue for is an approach which eliminates these in a
formalism which does not introduce independent field
quantities.

Recently' it was argued that a time-symmetric basis
could be used to construct a quantum electrodynamics
in which the particle variables are emphasized. It was
indicated there that it followed that many quantum
electrodynamic results could be obtained in a formalism
which is free even of mass renormalization. The essence
of classical electrodynamic ideas was exploited (as is
true to some extent in the present paper) to argue that
the usual classical limit with radiation damping can be
seen to emerge. However, in a typical Lamb-shift
calculation, as would follow even from this last ap-
proach, one would still be forced to contend with a
cutoff in order to get usual results.

Here there is no cutoff. Therein lies the incentive for
exploring these effects in the present formalism. The
agreement is reasonable, which may be surprising when
we consider that the only wave functions used in
calculating eRects are those associated with the two
levels concerned. Contrast this with the classic pertur-
bation theoretic result of Bethe" which introduces all

'0 This is overed as a plausible argument which follows from
classical analogy. However, we are open to other interpretations.

"See, e.g., I'. Rohrlich, Classical Charged I'articles (Addison-
Wesley, Reading, Mass. , 1965).

"H. A. Bethe, Phys. Rev. 72, 339 (1947}.
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states in virtual transitions. On the other hand, recent
two-level calculations have been given elsewhere4; more-
over it is really not apparent (at least to this author)
that the complete set of states is needed to calculate
effects dealing with two given levels.

Note that for all three calculations made the agree-
ment compares favorably with the usual results. Thus
the 3S-3E theoretical quantum-electrodynamic result
and the result here compare favorably; the same is true
for the j.S-2E' result. However, we would point out that
refinements of the model (including relativistic modi-
fication) should be made. Further refinement of the
calculations, as well as extension to other effects, would
follow from the time-dependent equations, (2.10) and
(2.11).

It has been pointed out that in view of the fact that
the calculation is nonrelativistic, the inclusion of
vacuum polarization (as in Table I) is not legitimate.
We can not really argue with this; it was included
mainly for comparison with the procedure in Ref. 4.
Also, the anomalous-magnetic-moment contribution to
the Lamb shift would presumably follow in a more
satisfactory„. treatment including spin and higher-order
effects. The latter (of order n4Z4 Ry) may be obtained
by an iterative procedure on (3.1). If E is adjusted to
the 2S-2P value calculated from quantum electro-
dynamics without inclusion of spin, vacuum polarization
or higher order effects, then one obtains values for the
1S-2E shift of 0.270 cm ' and 0.0075 cm ' for the 3S-3P
shift. Again we would repeat that a relativistic modi-
6cation is needed to deal most effectively with the above
corrections.

respectively. Vsing the form

e'*(2x+e+1)x"lnx dx

21/16 —157e '/16.

The other integration (A3) gives

53e '/16 —(7e '/4) (C+ln2),
when

(A5)

(A6)

gng —2 ]ng gg
1

1+-',+ ——C—ln2
2n+1

(A7)

is used. Above, C=O.SS.To (AS) and (A6) we must add

x'(1 —x)'e '* lnx dx. (AS)

This is evaluated in similar fashion to (A3) to give

—;,+-,' (C+ln2) .

To this we must add, from (4.5),

(A9)

(1—x)'e "dx=-,' (A10)

e2 Q ( )k-I +( )m

(@ P) (2k+1 2m+i

Kq. (A4) is evaluated as

ACKNOWLEDGMENT
(1—x) 'xe-'*dx =-', . (A11)

We wish to thank Professor Peter Thurnauer for his
comments on the manuscript.

APPENDIX A

The integrals following from (4.5) are of the form
(x—=Zr/2ao):

Adding up (AS), (A6), (A9), (A10), and (A11) gives a
value of 0.261. The contribution from E2,~e is 2ehe'Z'/
(2ao)'m=-,'En'Z4 Ry, where e=Ke'/me' has been used,
in the result which follows from (4.4). Combining this
with the above result, whose coeflicient is 8ehZ'e'/(2ao)'m
=2EZ4o.3 Ry, we get

(1—x)'Lln(x —1)—lnx+x '+x 'jx'e '*dx (A1) Ei,ge+E~, 2e = 1.022Z'n'E Ry . (A12)

and

The Eg gi calculation follows, and from (4.6) we take
the expectation to get

1 2eAZ4e' (2ap)' 1 (2ap)' 1

(1—x)'Pln(1 —x) —lnx+x 2+x ijx2e ' dx. (A2)
m 2ao ' 3Z' r' 2p 2Z' r' 2p

Defining z—=x—1 in (Ai) and z=i —x in (A2), we
obtain

2&hZ 8

(9 —e)
m(2ao)'

z'(8+1)'(1ns)e " 'dz (A3) = (—1/36) EZ4n' Ry = —0.0278Z'Xn' Ry. (A13)

z'(i —s) '(Inz) e'*-'dz
Thus the total shift is given by (4.7) when we subtract
(A13) from (A12). Note that the E22i correction is
small compared to the 2S terms, as is to be expected.
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The vacuum polarization given by Uehling' is

Epe = —Zoao/15pr Ry = —Z'ao (0.021) Ry.

If we include the vacuum polarization, then

Eoe op= (1.05Z'ICn' —0.021Z'En') Ry

APPENDIX 8
The 1S-2P transition is obtained immediately from

the result (A13) and the calculation of Ei, ie. Ep, &e

follows directly from (4.4) as Eo,»=HZ'uo Ry:

(6/81) 2 ln3. (C7)

The remaining logarithm integrands in (C3) become,
after using (CS),

L(6%10/K3)/81] exp( —3~v3) qo(q~ 2~3)o

first in (CS) is of the type given in (A7). The total
contribution from the first two terms of (CS) is

—96/243 —(6/81) L (2 jn3 —ln2) —2C]. (C6)

To evaluate the other ln terms in the manner of (A3)
and (A4), we make a transformation 1 =iox U. nder
thistransformationln( —9&3v3+x) =ln3+ln( —43&&3
+f) Th.e ln3 term integrates to

Thus

= (o&e'Z'/reap) (1/r'), e

=4''n' Ry.

Eie op = (8.00+0.028)EZ4u' Ry.

X(g+3+V3)' e o in' dg, (CS)

where q= f 3—&V—3, and

L'(6a10/v3)/81] exp( —3av3) &'((—1)'

The vacuum polarization estimate' is SZn —P/1 SirRy
= —0.170Z'no Ry. Thus neith this term we get (4.8) for
Ejs &z, for hydrogen. In general,

2v3
e('~&3'& ln d, C9

3aK3
Ey8 gg =8.03Z n —0.|70Z En Ry.

and

foe =Li/814(3m')](Z/ao)o~o(27 —18 (Zr/ao)

+2(Zr/ap)']e "~'". (C2)

where $=—1 /1(3—&43) It is. seen that (CS) is of the
form (A3) while (C9) is of the form (A4), except that
the order of the polynomial is higher in the integrand.

The wave functions used in the 35-3p calculation are (C8) becomes, when 35-function normalization is

included,
p p p, ——(v2/81+m. ) (Z/ap)' i'(6 —Zr/ap) 21.5/72 =0.299. (C10)

X (Zr/ap)e "" ' cose (C1)
The other form, (C9)', leads (after lengthy, but straight-
forward calculation) to

Again E& pe ——0.148Z'ICn' Ry, directly from (4.4), using
(C2).

The integral corresponding to (4.2) for the 3S state is

2oAZ'e' —lS+4y 1 dy

mja )' (27 —lpy+2y' 3 y'

where y=Zr/ap. The integral above leads to

—(6/81) lnLyo/(27 —18y+2y') ]
—(10/81v3) lnL( —9+2y —3v3)/( —9+2y+3V3)]

+8/27y+ 1/2y' (C3)

The last two terms in (C3) give

(8/27)(1/y) pe+ g'(1/y')oe = 17/9 (27) (C4)

If we set x—=2y, and observe that the logarithm in the
Grst term in (C3) may be written

2 lnx —ln2 —ln (—9+3v3+x) —ln (—9—3v3+x), (CS)

we have integrals of the type given previously in (A3)
and (A4) Lfor the latter two logarithms in (CS)]and the

—0.0768.

Adding up (C6), (C7), (C10), and (C11) gives

(C11)

L2ohZ4e'/m, (6ap)']( ——', (6ap/Zr)'+-, ' (6ap/Zr)'

+ (6gp/Zr)+1nL1 —(6ap/Zr)]), r) 6apZ

The first three t.ernis in (C13) give directly, upon taking

—96/243+ (6/81) ln2+ (12/81)C+0.299—0.0768
= —0.395+0.0514+0.0859+0.299—0.0768

= —0.0355. (C12)

When (C12) is added to (C4) the result leads to
+0.0345, which gives finally

Ei pe=k2ohe'Z4/im(2ao)o](SX0. 0345)
=0.138EZ4n' Ry. (4.11)

We finally compute the contribution of E&,» using
(C1). The integral corresponding to (4.2) for the 3E
state leads to

$2okZ'e'/m (6ao)']( —-', (6ap/rZ)" +o (6ap/Zr)-'

+ (6ap/Zr)+lnL(6ap/Zr) —1]), r(6apZ ' (C13)
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(C17)

Ei 3~= L0.0378+0.0206jEZ a Ry
=0.0584EZ4n' R'y=0.00248' cm '. (4 10)

the expectation, d,nd
I

L2~&Z4e'/~(2~ )'j(1/27)L( —8/9)+(4l3)+(6/9) j e—' (lnx) (x—1)4x'e'*dx =0.035.
=L5/9 (27)7Z4En' Ry =0.0206Z4En' Ry. (C14) 0

Defining x—= (Zr/6ao), the angular integration gives -', ~
while the r integrals are of the form encountered previ-
ously in the E&,» calculation:

e-' (Inx) (x+1)4x' e 'dx=0.00196,

(Inx) x'(1 —x) 'e—'*dx = —0.015,

(C15)
Taking into account (4.9)—(4.11),

As-3i'= LO 148+0.138—0.0584]EZ'a' Ry
=0.228EZ4o' Ry=0.00977EZ' cm '. (4.12)
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Nonrelativistic Quantum Mechanics for Particles with Arbitrary Syin*t'

WILLIAM J, HURLEY

Department of Physics and Astronomy, University of Rochester, Rochester, 37em Fork 1462'
and

Department of Physics, Syracuse Uni7'ersity, Syracuse, Env York 132J0$
(Received 13 January 1971)

Motivated by the dif6culties which persist in the construction of a consistent description of interacting
relativistic particles with spin greater than 1, we examine the analogous problem within the framework of
nonrelativistic quantum mechanics and find that all of the difFiculties vanish in the (Galilei-invariant) limit.
It is found that a unique, first-order, Galilei-covariant wave equation describing massive, spin-s particles
follows from general invariance assumptions and a minimality condition on the number of components of
the wave function. The minimal theory has 6s+1 components (2s+1 of which are independent) and admits
a consistent quantum-mechanical interpretation. An external electromagnetic field interaction is introduced
via the minimal-coupling replacement, and, in contrast with the relativistic case, a consistent theory emerges
for arbitrary spin. The Galilean spin-s particles so described are found to possess only an electric charge and
a magnetic dipole with a g factor of 1/s. The Galilei-invariant addition of arbitrary moment terms is also
described. The extension of the formalism to second-quantized spin-s fields is discussed, and it, is found that
in that case, too, the difBculties are peculiar to the relativistic case. Reasons for the simplicity of the Galilei
case are presented. Finally, for the sake of completeness, the first-order form of the Schrodinger theory is
presented, as well as examples of theories which violate the minimality condition.

I. INTRODUCTION

l~ESPITE more than thirty years of attention, there
is still no satisfactory description of interacting

relativistic particles with spin greater than 1. Moti-
vated by this classic problem, we ask whether the dif-
ficulties persist in the nonrelativistic limit, i.e., we seek
wave equations which describe particles with arbitrary
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spin, which are Galilei-covariant, and which consistently
admit the introduction of interactions. Thus we seek
the higher-spin wave equations of nonrelativistic
quaritum mechanics.

The symmetry group of nonrelativistic quantum
mechanics is the Galilei group defined by the trans-
formations of sps, ce and time, (b,a,v,R), such that

x'=Rx+vl+a, 3'=t+b,

where a (b) is a space (time) translation, R is a space ro-
tation matrix, and v is the relative velocity of the primed
and unprimed frames. The specific manner in which
quantum mechanics realizes this group became under-
stood only long after the wave equation was originally
introduced. ' likewise, the classification of the appro-
priate representations and their specific realization in

E. Inonii and E. P. Wigner, Nuovo Cimento 9, 705 (1952);
V. Bargmann, Ann. Math. 59, 1 (1954); M. Hamermesh, Ann.
Phys. (N. Y.) 9, 518 (1960).


