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P=P'n+2, y=2Xn. (30)

The field equations are now somewhat more com-
plicated and will not be given here. It is found that the
static, spherically symmetric solution for empty space
has the form

count, the perihelion precession of Mercury about a
spherical sun would differ from that predicted by gen-
eral relativity, one can modify the present formalism to
get agreement with observation. In determining the
parameters P and y, let us require that, in the case of a
weak, static field with T» negligible, Eq. (13) be re-
placed by

(29)

with X constant (0(X(1).This, together with Eq. (12),
leads to the relations

(31)

where Eq. (29) has been taken into account in first
order.

Using this solution, one finds that the precession of
the perihelion of a planet now depends on ). If the
angular velocity of precession is denoted by re(X), so
that o& (1) is that given by general relativity, one obtains

6—= Lie (1)—re (X)]/re (1)= (7/12) (1—X) . (32)

For example, for X= 6/7, 6= is =0.083.
The value of A, also determines the deflection of light

by the sun; one now gets a value which is sr (1+X) times
that given by general relativity. On the other hand, as
one sees immediately from Eq. (31), the gravitational
red shift, which depends only on gpp is (in first order)
independent of X.
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The classical general-relativistic cross sections for the scattering of either an electromagnetic wave or a
gravitational wave by a scalar particle are calculated and found to agree with the results of the quantized
linearized Geld theory.

I. INTRODUCTION

~IIE quantum-mechanical cross section for the
scattering of light by light has recently been

shown to be equal to the classical cross section, in the
limit of large impact parameter. ' The quantum-
mechanical cross section for the scattering of light by a
boson was also shown to equal the classically calculated
cross section, in the limit of large impact parameter.
In this paper the classical calculation of the light-by-
boson scattering cross section is extended so as to apply
for all scattering angles. The result agrees exactly with
the quantum-mechanical result. ' The classical calcula-
tion of the scattering of a graviton by a boson is also
shown to agree with the quantum-mechanical result'
for all scattering angles.

This latter result has a bearing on Weber's analysis
of the mass quadrupole gravitational wave detector.

*Work performed under the auspices of the U. S. Atomic
Energy Commission (Report No. NYO-2262-TA-222).

1P. J. Westervelt and L. F. Karr, Nuovo Cimento 668, 129
(2970).

' B. S. DeWitt, Phys. Rev, 162, 1239 {1967).

Weber obtains a finite cross section of the order of X'

for an oscillator damped solely by radiation resistance. 3

Here X is the wavelength of the incident gravitational
radiation. The calculation presented in this paper shows
the cross section of a single point mass to be infinite,
a not too surprising result in view of the long-range
nature of the gravitational interaction. Thus in order
to obtain the total cross section, assuming Weber's cal-
culation to be valid insofar as the quadrupole contribu-
tion is concerned, Weber's cross section should be
augmented by the infinite one obtained herein. The
validity of Weber's quadrupole cross section is a topic
I will treat in a forthcoming paper.

In Sec. II the wave equation in Rat space for the
electromagnetic four-potential in the presence of a weak,
but otherwise arbitrary, gravitational perturbation is
derived. This equation is simplified for the case when
the gravitational perturbation is static and Newtonian.
An alternative derivation of this wave equation based

' J. Weber, General Relativity an/ C."rayztationgl 8'aves (Inter-
science, New York, 1961).
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on a suggestion by Landau and Lifshitz4 is given in

Appendix B.
The photon-boson cross section is obtained in Sec.

III. In Sec. IV the exact wave equation in Rat space is
obtained for the gravitational potential. This equation
is simplified so as to apply to gravitational wave prop-
agation in a static Newtonian background field. The
graviton-boson cross section is obtained in Sec. V.

All notation and symbols with the exception of the
gravitational constant, herein referred to as G, conform
with Landau and Lifshitz's The Classical Theory of
fields. 4 In particular Latin indices refer to four-space;
Greek indices refer to three-space with metric y &.

II. WAVE EQUATION FOR VECTOR POTENTIAL

1 $00 g2A
A= — ——,'VX(goXA).

c'
(7)

In this case Eq. (5) becomes

~ =Pg 9""(~ e
—~e )7k

+I &'"&'(~-, —~,-)7,.,

in which stands for the Oat-space d'Alembertian. No
further reference to this result occurs in this paper.

In the scattering of plane electromagnetic waves by
a static Newtonian gravitational field, we may impose
the following conditions on the potentials: alp=0' all
P'k except P' are zero; and P' is time independent. In
this case Eq. (5) becomes

Flm ~m, l ~ Em p

j. BA
E= ———and H =~XA,

c Bt

F" =0 (2)

These equations may be combined and rewritten with
the help of the metric tensor g;I, . respectively, and then introduced in place of the vector

(3) potential. Also lloo may be expressed in terms of the
Newtonian potential P:5(4 g)g "C'—-(3„,, 3, ,.)7—k=0,

Linearization is noiv achieved in terms of the Oat-space
metric og;k= (1, 1, 1, —1) and the weak-field gravita-
'tional potentials f'k. Thus Eq. (3) becomes

goo = —44/c2

Upon making these substitutions, Eq. (7) may be
written as follows:BI+la) '&"r'"(~- ~.--)7,

[(og lgkm+aogk+al) (g i g i )7 k (4) A = —(4m./c) j,

In the absence of real sources the electromagnetic Inasmuch as the right-hand side of this equation is

potential 3; and field tensor F'" satisfy the equat;ons of first order in po, the electric and magnetic fields may
be approximated by

(1)

in which g"=og"(1+—,'P) —P"
Next Eq. (4) is expanded in terms of the three dimen-

sional Rat-space curl, the vector potential A, for which

(A), =3, and 2 o the timelike component of A, ,

()A
tVX(1+-'f)VXA7 + ——(1+-,'P)

C Bt

=L(1+of) 'g'~o, e7o+Pg'4'",(~.,e ~e..)7.k

+L'g'&'"(~ e ~e )7o

+I'a'4"'(~ o, e
—-4e, o)7,.

+Pg'P'(&o, p ~e,o)7, o

+LY"4'(~-,e ~e, )7,k

+L'g™4"(8, ~oo, )7,k. (5)

This general equation simplifies considerably in two
cases of physical interest. First, in order to study the
scattering of plane electromagnetic waves by plane
gravitational waves, we may impose the following con-
ditions on the potentials:

gn goo bio p haik 0

4L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields, 2nd cd. %Addison-Wesley, Reading, Mass. , 1962).

in which j represents a virtual source distribution corre-

sponding to the following ficticious current density

~=VX — H —— E .

In complete analogy with the theory of electrodynamics

of continuous media, we may consider this ficticious

current density as constituting a vacuum polarization

for which y and m, the equivalent induced electric and

magnetic dipole moments per unit volume, respectively,
are given by

p = —Q/2s c')E and m = —($/2orc') H. (10)

This result is compatible with an electric and mag-

netic "permeability" o=p= (1—2it/c'), which ought

not be confused with the permeability defined by Lan-

dau and Lifshitz' in a related problem discussed in

Appendix B.
Finally, combining Eqs. (8)—(10) allows the wave

equation to be written:

4m 1 cjp)
CIA= ——VXm+ ——

~

~

c c all

f gee probleyg $, p. 296 of Ref. 4.
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III. SCATTERING OF A PLANE ELECTRO-
MAGNETIC WAVE BY A STATIC

GRAVITATIONAL FIELD

In applying Eq. (11) of the preceding section, p. andI are obtained from the known incident electric and
magnetic fields; The vector potential for the scattered
wave in the wave zone is given by the well known solu-
tion to Eq. (11),

A= — Lp+XmXn], dw,
Ec

in which dots correspond to time differentiation,
n=R/E, and R is the vector originating in the scatter-
ing region and terminating at the field point. The elec-
tric and magnetic fields of the scattered wave in the
radiation zone are

tric field E;„,:
E. E ~ikz—i(at

in which Eo is constant and real, Furthermore

p= —(y/2m. c')E;„,. (20)

With the help of Eqs. (19) and (20), Eq. (18) becomes

g 2 Re eikz —icot

(21)

The average Aux of energy (5,) of the incident wave is

(S,)=(c/4m)(E')=(c/Sm)EO'. (22)

The differential scattering cross section do. is given by
the ratio of the two preceding equations

E=(1/c)(AXn) Xn

H=(1/c) AXn,

respectively. If the incident plane wave propagates in
the s direction, Eq. (10) ensures the relation

in which

1 dI a)'(1+cos8)'
do= —= (F'),

(5,) dQ 2m'c'

P=Re
~

—e'"'-'"
(

de.
kc' ),.

(24)

This result is valid for arbitrary Newtonian potential
P. In case P arises from a single point mass m, the
expression

m=z)(y,
where z is a unit vector in the s direction.

Combining Eqs. (12), (13), and (15) permits the
scattered electric field to be expressed entirely in terms
of the retarded. second time derivative of the induced
electric dipole moment density:

may be introduced into Eq. (24) to give

ygGc
—

%MAL c%i(z+IT-I'I)

F=Re ds' /.
c' r' ILnX(nXp)+nX(«p) j d'

E.c

—@some ' '
(26)Notice that there is no backscattering; i.e., Eq. (16)

shows that E=o when n= —z. This means that the
. characteristic wave impedance of the vacuum is un-

changed by the static gravitational field. 6

The scattered time-averaged intensity (dI) per unit
solid angle dQ is

co'sin'( —',8)

2m'G'x'
(p')=

&o4(1—cos8)'

Combining this result with Eq. (23), the scattering
cross section for electromagnetic waves scattered by the

(1/) gravitational field of a point mass is found to be

m'G2 1 cos8 2

do=
c' 1—cos8

(28)Combining Eqs. (16) and (1'/) along with the fact that
z.y=o and the definition cos8=z Q, it is easy to show
that

a value in exact agreement with the quantum-mechani-
cal result first correctly displayed by Westervelt and

(1g) Karr. '
dI 1 cos8 '

The integral in the above expression is the Born ap-

I proximation to R.utherford scattering, from which fact
$(n. p)(n+g) —(]+n.z)pj, ,dq. (16) it is easy to show' that

Ec

%ith no loss of generality the&incident wave may be
assumed plane polarized and characterized by the elec-

& This result is at variance edith the claim in a recent paper
I K. Nordtvedt, Jr., Phys. Rev. 186, 1352 (1969)g that back re-
Qection does occur for vector vraves in a static gravitational field.

7 M. Born, Atomic I'hysics, 5th ed. (Blackie, London, 1951).



2322 PETER J. O'ESTERVELT

IV. WAVE EQUATION FOR GRAVITATIONAL
POTENTIAL

density q
i given by

q
P= (3/27rG)yg P. (36)

The Landau-Lifshitz energy-momentum complex
0~'~ is well known to be given by

ik ( g) (Tik+ r ik)

= ("/16~G)[(—g)(a*'g™—g"S'")] l (»)
What is not so well appreciated is the fact that Eq. (29)
is entirely equivalent to the exact field equations of
general relativity. This feature may be clarified by in-
troducing the variables

lIiik Ogik
haik haik (g g)gik

with the requirement that 4'~ satisfies the de Donder
condition 4'~

q
——0. With these substitutions the exact

field equation now becomes'

~@4k (16~G/c4)G ik lIfil @km +@lmgik (30)

in which Q is the Oat-space d Alembertian. This elegant
result is exact and valid without limits on the "strength"
of +'~. For our purpose it suKces to consider weak fields
P'k in the absence of real sources, thus T'"=0. In this
case the wave equation becomes

haik (M—qrG/C4)rCik pil /km +lflmifik (31)

V. SCATTERING OF A PLANE GRAVITATIONAL
WAVE BY A STATIC GRAVITATIONAL FIELD

In applying Eq. (34) of the preceding section, r P is
obtained through Eq. (35) from the known incident
field components. The held components for the scattered
wave in the wave zone is given by the well-known so'u-
tion to Eq. (34):

4g
[r p],.do.

Rc'
(3'r)

(38)

We assume the incident wave is circularly polarized and
of the form

.eel. f.nP. ei(kz —cot)2inc = 0'y' inc

Assuming a time dependence of e '"' for the incident
wave P P;„, and referring to Eqs. (35) and (36) permits
the scattered field to be expressed in terms of the inci-
dent field

in which tl. '~ is the weak-field approximation of the
Landau-Lifshitz pseudotensor density

with

pap' = (8alopl 8a28p2)~Z(8al8p2+8a28pl)

(3o)

r '"=( '/16 G)[-'0
fmn, k Pk /my, i+pi gk , mn

+Ogik(1$ 1t, , m kp ppq, m+1/ pnme )] (32)

The incident wave traveling in the x'= s direction has
the components

inc = 4' inc = ~2l/i inc = ~&V' inc ~

The gravitational wave is characterized by having

P =P'=f =0. This wave is scattered by a static
field characterized by goo= —4'/c2. We thus will retain
on the right-hand side of the field equation only terms
bilinear in Po&,4,4;,i and f Pi„„,i. This enables us to
further simplify the field equation

The scattered intensity per unit solid angle is given
by the following expression, valid when if' =0:

dI cE
[(p.pn nP)2+2&.pg P 4lfi pg nPn"] —(40)

dQ 6'-6
P= (1/C2)POO j' aP (33) Calculating the time averages gives

This wave equation may also be written

P P= —(167iG/c4)r P, (34)

in which w I represents a virtual source distribution
corresponding to the following stress:

r.P= (1/4~G)y j'.P

((itaPnanP)') =[—'(nl'+n2')yni'n2']8(F2)

&20- 0')=42'(F'&,

(—4&,pg„nPn" &
= —4(1—n22)B(F'),

where n is the unit vector from the scatterer to the field
point, 8 =coo/qr222c4, and

This stress distribution can be thought of as a vacuum-
polarization equivalent to the quadrupole moment

gi (kz—nit)

C

dv.

8This result appears in P. J. Westervelt, Brown University
Report No. NYO-2262-TA-218 (unpublished). In the event the

rie Dooiior eoliditioli is not satisfied, a more general expressI»
results t H. Hurwitz, Brown University Lecture Notes for Physics,
j.969, p. 210 (unpublished)g, which is

g+ik ($6~Gg 4)gjk +il +km

+@lm@ik @lm (Ogik @ik)

+2@lm lunik +@il l (0~km +km)
@il i+km +(Qu'il yil)@km l

Thus

((4~")'+4.8~'-4~.8~- ")
=2l(F2&[(ni+n2 ) ygn2']
=B(F2&(sin48+8 cos28)

= M(F2&[sin'( —'8)+cos'(-,'8)], (41)

where 0 is the angle between n and z.
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The average scattered intensity obtained by com-
bining Eqs. (40) and (41) is

bending of light. (b) Since Eq. (33) can be expressed a,s

~

~

dI Gl

Lsins(-', 0)+coss(sr0)](F') . (42)
dQ Sm'Gc

1 8'
lgsgaP Pue —0

82 8k~
(48)

The average flux of energy (ctss) in the incident wave is

(et03) (es/16~G) ((j, , 12)2+ r
(j, 11 $. 22)2)

= (te'c'/16trG) . (43)

The differential scattering cross section lo. is given by
the ratio of the two preceding equations:

dI 2o)4

L - (-:0)+.- (-:0)](F),
(ctss) da s'c4

in which F is given by Eq. (24). This result is valid for
arbitrary Newtonian potential p. In case p arises from
a single point mass m we may determine from Eq. (27)
that

(F')=m'G'tr'/2o&' sin'(-'0) .

Combining this result with Eq. (44), the scattering cross
section for gravitational waves scattered by the gravi-
tational field of a point mass is found to be

m'G'(sin'(re 0) +cos'(st 0)]
c4 sin'(-,'0)

(46)

8
V2A —— A=o,

lp 2 /f2
(47)

in which e =c(1+2$/cs). This value of s for the velocity
of light in a static gravitational field, leads to the correct
result for both the Shapiro radar time delay and the

a value in exact agreement with the quantum-mechani-
cal result '

It is clear from this result that the total cross section
is infinite, which comes as no surprise in view of the
long-range nature of the scattering potential.

In concluding this section let us speculate upon an
astrophysical implication of Eq. (46). Suppose the
scattering potential is the field of a neutron star. Our
result should be valid for gravitational wavelength one
order of magnitude larger than the star's radius, that
is for Pt.&100 km which corresponds to frequencies
below about 3 kHz. Thus it appears that a neutron star
is capable of focusing low-frequency gravitational waves
in both the forward direction as well as, although rather
weak. ly, in the backward direction. From the results of
Sec. III we can now also say that a neutron star is cap-
able of focusing low-frequency (less than 3 kHz) elec-
tromagnetic waves in the forward direction only.

Finally we list some corrollaries of this paper and of
a previous study. (a) In the short-wavelength limit
when X«gjl'g~ ', Eq. (7) becomes

with the velocity s being identical with that in Eq. (47),
it follows that a gravitational wave will suffer the same
deflection and time delay as does an electromagnetic
wave. (c) Since the pseudotensor for a graviton V's has
the same form as the energy-momentum tensor for a
photon T's, we can use Eq. (31), the equation of motion
for a graviton

L(V'—g)1"],.=0,
and the techniques of Ref. 1 to demonstrate that the
graviton-photon and the graviton-graviton scattering
cross sections for large impact parameter will be the
same as the photon-photon cross section. These results
are consonant with the fact that surfaces of constant
phase for both electromagnetic and gravitational waves
are perpendicular to null geodesics.

APPENDIX A: GRAVITATIONAL ENERGY FLUX

We give here a simple derivation of Eq. (40). In the
weak-field limit the energy Aux in a plane gravitational
wave propagating along the x' axis can be expressed as
follows'.

cP= (c'/64m. G) LP+4(ass' —tl'„Pss)]. (A1)

This result can be generalized so as to determine the
Aux in a wave propagating in an arbitrary direction
characterized by the unit vector m . To do this it
suffices to construct from the components of the tensor
P's and the vector ts, a scalar quadratic in the P's,
which for m~

——1, m2 ——e3——0 reduces to the expression in
the square bracket in Eq. (A1). This scalar times I
yields the desired result'

ct'~= (c'/64+G) (P 2tsstsqe'»e —"&"Pp f )ts~. (A2)

Note in passing that a great simplification occurs in the
event that f p is proportional to e sp, where s is an

P. J. Westervelt, Zh. Eksperim. i Teor. Fiz. Pis'ma v Redak-
tsiyu 4, 333 (1966) /Soviet Phys. JETP Letters 4, 225 {1966)].

M It is illuminating to think of gravitational waves as being
strains, in an otherwise Qat space, giving rise to a three-space with
metric y p. The strains, of course, are generated by the retarded
stress z p of the source. In this context, the energy Qux of a wave
traveling in, say, the x' direction, may be expressed in terms of the
fractional change in cross-sectional area of an element of surface
normal to x1, i.e.,

(d$1—d$1 )/dsj = 8$1/d$1

Here ds1* refers to strained space, ds1 to Qat space; thus

d$1 /d$1 ($'22+33 +23+23)

In the limit of sma]1 strain,

5$1/ds 1 = SP 2 Q'23/23 $22/33) ~

Combining this result with Kq. (A1), considering a simple har-
monic time dependence, and performing a time average, the flux
of energy becomes

ct"= (—-', 71.c'/GA, ') ((bs1)/ds1).
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arbitrary vector. In this case

ct'= (c'/64~G)P'tk . (A3)

dI C E.—=cto tp.R'= tI g "Pnktkp)'+2&kptt"P
dQ 64m.G —4jPkg"tkpmpj,
in agreement with Eq. (40).

APPENDIX B: MAXWELL EQUATIONS IN
THREE-DIMENSIONAL FORM

In this appendix the solution is given to a problem
posed by Landau and Lifshitz, namely, writing the
Maxwell equations, in a constant gravitational field,
in three-dimensional form. "Their solution suffers from
an incorrect identification of the three-dimensional
vectors with the four-dimensional tensors as well as
containing minor errors in the "constitutive" equations.
Here we shall simply state the results, since once they
are known their verification" is straightforward though
slightly tedious.

The three-dimensional fields E, H, D, and B are
defined in terms of F;~, the electromagnetic field tensor,
as follows:

F. =F p, II =*Fp, E»= (Q—gpp)F',

& =(V'—goo) *F",
in which *J,I, denotes the dual to the tensor Ii;I,. We
define a vector g such that g =g' .

In this appendix all vector operations are carried out
in a three-dimensional space with metric y p.

The relations F'~=g'~g~'J
~ and *Fv=g™g~'*Il

can be represented in the form of a pair of vector

"This is problem 3 appearing on p. 296 in Ref. 4.
"P. J. Westervelt, Brown University Report No. NYO-2262-

TA-218 (unpublished).

By expressing the e t' in terms of 5 t', an expression
equivalent to Eq. (A2) results:

ct = (c'/64orG)LQkPkkkmp)P+2&kpgkP

4j —kpj "'tkpn, +pl'„(2p'pnknp pk—)]n . (A4)

We now obtain the scattered intensity per unit solid
angle cto n R' for the case in which ttPp=0:

equations

D= (v' —gpp)L( —g")E+BXg+(g.E)gj,
(B2)

(v' —gpp)[( —g")H+gXD+(g H)g].

Only in the weak-field limit when these equations
become

D = E/(v' —gpo)+HX g

&=H/(Q —goo)+g X E
(83)

do we agree with Landau and Lifshitz.
The potential A; satisfies the usual equation

and
(I/V' —g) L(V'—g)F"3.k =o

F;k,l+Fkl, ~+Fl, , k = o
(86)

can be represented by the vector equations

V D=o, V' B=O,

18D 18B
&XH=- —, vXE= ——

C 8$ C R

(B7)

These results are in exact agreement with Landau and
Lifshitz.

It, is possible to combine Kqs. (BS) and (87) to obtain
for A a wave equation in curved space with metric y &.

By transforming all curved-space vector operators to
Oat-space operators, and letting Ao ——0, we obtain an
alternate derivation of Eq. (7) in Sec. II

Finally, a comment on the observation that the differ-
ence from unity of the equivalent electric and magnetic
permeability in a static gravitational field found by
Landau and Lifshitz is one-half the value obtained by
us in Sec. II. This apparent discrepancy is purely arti-
ficial and stems from the fact that their definition is
based on an arbitrary constitutive equation.

which may be represented by the two vector equations

E= —V'A
p
—(1/c) A,

(BS)
B=VyA,

in which A—=2 .
The Maxwell equations


