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Since there seems to exist a preferred frame of reference in the universe, determined by the large-scale
distribution of matter, a theory of gravitation is considered which resembles the general theory of relativity
in being based on the equivalence principle, but is without the covariance principle. This theory leads to the
same results as general relativity in the three crucial tests. The formalism can be modified to take into
account the solar oblateness observed by Dicke and Goldenberg.

I. INTRODUCTION

HE Einstein general theory of relativity, ' based
on the covariance and equivalence principles, has

been very successful in describing gravitational phe-
nomena. It has also served as a basis for models of the
universe. The homogeneous isotropic expanding model,
based on general relativity, appears to provide a good
approximation to the observed large-scale properties of
the universe.

However, in the case of a homogeneous isotropic
universe one has a preferred frame of reference, that in
which the matter is at rest, which resembles the primary
inertial system, or absolute space, of Newton; and one
has the cosmic time given by a clock at rest in this ref-
erence frame, which resembles the absolute time of
Newton. If the universe is expanding, one can show'
that an observer in a closed, freely moving laboratory
can, in principle, detect his motion with respect to this
"absolute space" by means of mechanical or optical
experiments. This appears to be in contradiction to the
principle of covariance, which treats all coordinate sys-
tems on an equal footing and rejects the concepts of
absolute space and time.

This situation raises doubts concerning the validity
of the covariance principle of the general relativity
theory within the framework of the universe. The ques-
tion arises whether one can set up a theory of gravita-
tion which, like general relativity, is based on the equiv-
alence principle, but which however does not accept the
principle of covariance.

tational field is weak and slowly varying, the special
theory of relativity is valid.

On the basis of the above assumptions the line ele-
ment in the preferred coordinate system can be written
in the form

F= —8zTpp,

G= —8m-Tg, g,

(3)

(4)

where a Latin index takes on the values 1, 2, 3, and
where the left-hand members are functions of C, +, and
their first and second derivatives.

It will be assumed that the field equations are asso-
ciated with a variational principle. Given an integral J
over a four-dimensional region,

J= Zdv,

ds'= C'dt' —+'(dx'+dy'+ds') ) (1)
where C and 4 are functions of (t,g,y,s)= (g', g', gm, g)
(and can be regarded as scalars). They are to be deter-
mined by the energy-momentum density tensor T&" of
the matter and other (nongravitational) fields by means
of the field equations. It will be assumed that this tensor
satisfies the equation

T„".„=0, (2)

representing the energy-momentum relations and, in
the case of matter, the equations of motion. Since there
are two field variables, two field equations are needed,
and they are taken in the form

II. A POSSIBLE THEORY

One way of developing such a theory is to follow gen-
eral relativity in satisfying the equivalence principle by
assigning a Riemannian geometry to space-time, but to
require from the beginning that there exists a preferred
coordinate system, determined by the large-scale dis-
tribution of matter in the universe, in which the laws
of physics have their simplest form. With respect to
this coordinate system the following assumptions are
made: (a) The time direction is orthogonal to the three-
dimensional space; (b) the three-space is locally iso-
tropic; (c) in a region of space-time in which the gravi-

' A. Einstein, Ann. Physik 49, 769 (1916).'
¹ Rosen, Proc. Israel Acad. Sci. Humanities, No. 12 (1968);

Nuovo Cimento Letters j., 42 (1969).

where 2 is a function of C, +, and their erst derivatives,
let us write, for arbitrary variations 84 and 54 vanishing
on the boundary,

8I= LF8(C ') —Gb(C ')j(—g)»'dr. (6)

The metric tensor g„„and its determinant g in our co-
ordinate system are related to C and 0 in accordance
with Eq. (1).One readily finds that

I'= —(C'/2%') tel/hC, G= (1/2C )bI/8+. (7)

It follows from (3), (4), and (7) that Eq. (2) can be
written as a conservation law:
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with the gravitational energy-momentum density
given by

(M) f 82)
16 t. =(—g)-"'

I IC,.+I i+,.-~~." . (9)
&ac,„/

'
(ac,„)

The field equations depend on the choice of g. I.et
us take a simple form for it:
~= (-g)'"(.g ~p,./~, '+pc" c..~./~, '

y&g "C',„e,,/Ce), (10)

where a, P, and y are constants. To determine these
constants, one writes out the field equations (3) and (4)
and considers them for the case of a weak field char-
acterized by

C =1+/, 4'=1+/,
where p, tp, and their derivatives are small quantities,
and one takes the static case with TI,~ negligible com-

pared to Too ——p. If one now requires that

V'P= harp

as in Newtonian mechanics and

(12)

Rs ln gcncI'Rl relativity) onc gets

p=n+2, y=2n.

The field equations (3) and (4) now take the form

(14)

y, oo 4, kk = 4~(p+3p), — — {18)
' A. S. Eddington, The Marhensafical Theory of Eelg/ivi(y,

2nd ed. (Cambridge U. P., London, 1924), p. 101.

( +2)l C, oo/C--,'(C, .)'/C'+3C, o+, /C~ —~c, ./~'
+—'C', ke, k/+ —C'C', A', k/+ j+&[+,oo/++ —(+, 0) /+

—C%, /@'+-,'C%, 4, /0"j= —8 Too, (15)

u[—O'C', oo/C" —++,oo/C'++4'. o+, o/C"
—

o (+,o) /C' +C', kk/C'++kk/++4', A', k/@+
—H..+,./&"j+(3+-: )+'(C, )'/C'

—(1+,'n)C-kC, k/C,
' =8s Tkk. (16)—

The static, spherically symmetric solution for empty
space is found to be given in polar coordinates by the
expansions

C = 1—bio/r+-,'m'/r'+
4'= 1+m/r+-', (1+1/oo)moo/r'+

(17)

where use has been made of Eq. (13) for the erst-order
t,CI'IQS.

From Eq. (2) one can show that a test particle in a
gravitational 6eld will move along a geodesic. From the
solution (17) one then obtains& to the usual accuracy,
the same results as in general relativity for the preces-
sion of the perihelion of Mercury, the deflection of light

by the sun, and the gravitational red shift, for arbitrary
values of n (40).

In the case of a weak field, Eqs. (15) and (16) can be
coIDblncd t.o glvc

P, oo
—P, kk = 4orp+ 12' (1+2/~)P,

whcl c~ ln thc pl cscnt RpproxllTlatlon~

(19)

(@o@o()ov) 0

(@@5()kv) 0

(24)

(25)

Rlld Rlso lcRds to conservation of RngulRI' momentum~

(C +'"MJk"),„=0, (26)

(27)

With the constants P and y fixed by (14), one 6nds
that the gravitational energy density is given by

16oreoo= 2[(C,o)'/C"+C', kC, k/e'j+r (C, o/4+0, o/@)'
+~(C'/+') (4 k/C++ k/+) {C k/C++ k/+) (28)

For this to be positive definite, one must have e~&0.
From a theoretical standpoint one can choose 0. arbi-
trarily, and it is aesthetically attractive to take a simple
value as, for example, a= 2 (P=4, y=4). However, we
see from Eq. (19) that it should be possible, in principle,
to arrive empirically at the value of 0. by a study of
gravitational radiation.

III. SOLAR OBLATENESS

H the conclusions of Dicke and Goldenbcrg5 are valid,
that the sun is oblate and that, if this is taken into ac-

4 Cf. J. Weber, Phys. Rev. 117, 306 (1960).
'R. II. Dicke and H. M. Qoldenberg, Phys. Rev. Letters 18,

313 (1967).

p iT' k iTkk p T 0 700 (20)

The form of Eqs. (18) and (19) in empty space is in
agreement with our assumption (c). From their form
in the general case one sees that it is possible for a
material system to emit gravitational waves even if it
is spherically symmetric.

If one calculates the Riemann-Christoffel tensor in
the linear approximation, one obtains (among other
components)

~'o o=4, k
—t'k'V, oo.

If p and f correspond to a plane wave travehng, say, in
the x' direction, then in general both R'ohio and E.'020 will
be different from zero. This means that gravitational
waves have both longitudinal and transverse compo-
nents; i.e., they can produce both longitudinal and
transverse motion in a suitable physical system. 4

I.et us go back to the gravitational energy-momentuIQ
density tensor given by Eq. (9). One finds that, with Z
given by Eq. (10), one can write

16 a„„=(2 /e&)e, „e,„+(2p/C')e, „e,„
+h/++)(4.+.+,+.+, .) , ( . g)—"'—&r.-. . (22)

which is symmetric. If T&" is also symmetric, and if one
defines

fjyv —Tpv+ gpv (23)

then Eq. (8) gives conservation laws for energy and
moIQcntum~
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P=P'n+2, y=2Xn. (30)

The field equations are now somewhat more com-
plicated and will not be given here. It is found that the
static, spherically symmetric solution for empty space
has the form

count, the perihelion precession of Mercury about a
spherical sun would differ from that predicted by gen-
eral relativity, one can modify the present formalism to
get agreement with observation. In determining the
parameters P and y, let us require that, in the case of a
weak, static field with T» negligible, Eq. (13) be re-
placed by

(29)

with X constant (0(X(1).This, together with Eq. (12),
leads to the relations

(31)

where Eq. (29) has been taken into account in first
order.

Using this solution, one finds that the precession of
the perihelion of a planet now depends on ). If the
angular velocity of precession is denoted by re(X), so
that o& (1) is that given by general relativity, one obtains

6—= Lie (1)—re (X)]/re (1)= (7/12) (1—X) . (32)

For example, for X= 6/7, 6= is =0.083.
The value of A, also determines the deflection of light

by the sun; one now gets a value which is sr (1+X) times
that given by general relativity. On the other hand, as
one sees immediately from Eq. (31), the gravitational
red shift, which depends only on gpp is (in first order)
independent of X.
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The classical general-relativistic cross sections for the scattering of either an electromagnetic wave or a
gravitational wave by a scalar particle are calculated and found to agree with the results of the quantized
linearized Geld theory.

I. INTRODUCTION

~IIE quantum-mechanical cross section for the
scattering of light by light has recently been

shown to be equal to the classical cross section, in the
limit of large impact parameter. ' The quantum-
mechanical cross section for the scattering of light by a
boson was also shown to equal the classically calculated
cross section, in the limit of large impact parameter.
In this paper the classical calculation of the light-by-
boson scattering cross section is extended so as to apply
for all scattering angles. The result agrees exactly with
the quantum-mechanical result. ' The classical calcula-
tion of the scattering of a graviton by a boson is also
shown to agree with the quantum-mechanical result'
for all scattering angles.

This latter result has a bearing on Weber's analysis
of the mass quadrupole gravitational wave detector.

*Work performed under the auspices of the U. S. Atomic
Energy Commission (Report No. NYO-2262-TA-222).

1P. J. Westervelt and L. F. Karr, Nuovo Cimento 668, 129
(2970).

' B. S. DeWitt, Phys. Rev, 162, 1239 {1967).

Weber obtains a finite cross section of the order of X'

for an oscillator damped solely by radiation resistance. 3

Here X is the wavelength of the incident gravitational
radiation. The calculation presented in this paper shows
the cross section of a single point mass to be infinite,
a not too surprising result in view of the long-range
nature of the gravitational interaction. Thus in order
to obtain the total cross section, assuming Weber's cal-
culation to be valid insofar as the quadrupole contribu-
tion is concerned, Weber's cross section should be
augmented by the infinite one obtained herein. The
validity of Weber's quadrupole cross section is a topic
I will treat in a forthcoming paper.

In Sec. II the wave equation in Rat space for the
electromagnetic four-potential in the presence of a weak,
but otherwise arbitrary, gravitational perturbation is
derived. This equation is simplified for the case when
the gravitational perturbation is static and Newtonian.
An alternative derivation of this wave equation based

' J. Weber, General Relativity an/ C."rayztationgl 8'aves (Inter-
science, New York, 1961).


