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Compton Fokker-Planck Equation for Hot Plasmas*

GILBERT CooPER

Lamrelce EaAatzon Laboratory, Umversity of California, Lk ermore, California
(Received 9 March 1970)

The Fokker-Planck equation for Compton scattering in a plasma is developed without recourse to a non-
relativistic expansion. Using calculated energy exchange rates for scattering in a relativistic Maxwellian
plasma, an equation is obtained which is valid for electron temperatures up to 100 keV and photon energies
up to 1 MeV. Numerical comparisons are presented which show excellent agreement between Fokker-Planck
and Monte Carlo calculations. Results using the nonrelativistic Fokker-Planck, valid to only 20 keV, are also
presented to indicate the improvement made.

I. INTRODUCTION

""N various astronomical events, such as supernova
~ - explosions or the Qare-up of thermal x-ray sources,
the analysis of time-varying phenomena in highly
ionized gases is of importance. In particular, for the
problem of nonequilibrium radiation transport in such
systems, Compton scattering with electrons may often
be the dominant mechanism for energy transfer. Since
the scattering integral for this process is extremely
complicated, one often uses a Fokker-Planck approxi-
mation. This consists of expanding the collision integral
in powers of the energy transfer through second order
and is a valid approximation as long as the energy
transfer per Compton scattering is small.

In the limit of low electron temperatures and photon
energies, this is not only a valid approximation but is
also very convenient, since the resulting equation may
be expressed in a simple analytic form. ' ' This will be
called the nonrelativistic limit, though in reality it is
correct through second order in v/c and kv/ntc'. On
the basis of an analysis of the energy exchange rate
between Maxwellian electrons and Planckian (black-
body) photons, the nonrelativistic approximation is
seen to break down (give errors greater than 10%) for
electron temperatures greater than 20 keV or photon
temperatures greater than 2.5 keV. ' The Fokker-
Planck approximation, however, is still valid beyond
these limits; the errors above result mainly from the
nonrelativistic development.

The present paper remedies this by deriving the
Fokker-Planck equation for an isotropic photon dis-
tribution without recourse to a nonrelativistic approxi-
mation. ' It mill be shomn that only the average energy
exchange per unit time need be known. In the case of
arbitrary electron temperatures and photon energies,
this quantity must be evaluated numerically since the

integrals are far too complicated to be done analyti-
cally. However, using the numerical results of Stone
and Nelson, ' a fairly accurate fit to the energy exchange
inay be made for electron temperatures less than 100
keV and photon energies less than 1 MeV. The re-
sulting Fokker-Planck equation using this fit assumes
practically the same simple form as the nonrelativistic
one.

To check the equation, a series of test problems for
the Compton cooling of hot electrons were solved
numerically and compared with Monte Carlo results.
For the cases where the initial photon distribution had
a temperature not too different from that of the
electrons, excellent agreement was obtained. As the
disparity in initial temperatures increased, the com-
parison became poorer, indicating a breakdown in the
Fokker-Planck approximation itself.

A few comparison problems are presented to show
the improvement made in calculating with the new
Fokker-Planck equation as compared with the non-
relativistic form.

II. FOKKER-PLANCK EXPANSION

Sm.

(kc)'
dk k'n(k, t) =1K (=number/volume), (2)

For this development, the precise form of the scat-
tering integral need not be known. Instead, it is suK-
cient to consider the master equation for an isotropic
system,

Bn(k, t)
k' = dk'(S(k', k;8)$1+n(k, t)]n(k', t)

—S(k,k'; 8)jl+n(k', t)]n(k, t)), (1)

where k =km is the photon energy, n(k, t) is the photon
distribution function normalized to

*%ork performed under the auspices of the U. S. Atomic
Energy Commission.' A. R. Fraser, Atomic Weapons Research Establishment
Report No. 0-82/65, 1965 (unpublished).

~ G. C. Pomraning, Los Alamos Report No. LA-4006 MS,
1968 (unpublished).' R. Weymann, Phys. Fluids 8, 2112 (1965).

P. Woodward, Phys. Res. D 1, 2731 (1970).' For an earlier development for low-temperature electrons see
B. E. Freeman, Systems, Science, and Software Report
3SIR-43, 1969 (unpublished).

and 5(k,k'; 8)/k' is the transition rate for scattering
from k to k', suitably averaged over a relativistic
Maxwellian distribution of temperature g. The factors
(1+n) represent the induced scattering enhancement
due to the presence of photons in the final state.

' S. Stone and R. G. Nelson, LRL Report No. UCRL-14918-T,
1966 (unpublished).
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where

1 Bn(k, t) 1 B'e(k, t)
+ ——,(3)

0 ()k 2 8k'

((k' —k)")=— dk'(k' —k) "S(k k' 8) . (4)

As shown in the Appendix, consistent with the order
of the expansion of Eq. (1), the quantities ((k' —k))
and ((k' —k)') are related by

B((k' —k)') ((k' —k)')
+2((k' —k)).

'lvVhen inserted into Eq. (3), this gives

Bn, (k,t)
k2

8 Be(k,t)
= —n(k, 8) n(k, t) I 1+I(k,&)]+8, (6)

gk

where

1 ((k' —k)') 1 B((k' —k)')

2 0 2 8k

It should be noted that Kq. (6) guarantees the two

physically important intrinsic properties of Kq. (1),
namely, conservation of photons and a Bose-Einstein
equilibrium.

The complete determination of the Fokker-Planck
equation rests now in calculating the coefiicient n(k, 8).
In the nonrelativistic limit, the integrations may be
carried out to give' '

aNa&~&=ay p,k4/mc

with 0~, p, and m the Thomson cross section and
electron density and mass, respectively. For regions
where this limit does not apply, one must perform a
very complicated multiple integration involving a
relativistic Maxwellian electron distribution, the Klein-
Nishina cross section, and various Lorentz transfor-
mations. This is clearly a numerical problem and has

To make the Fokker-Planck expansion, assume that
n(k, t) is analytic and that S(k,k'; 8) is peaked about k
within

~

k' —k
~
/k((1. Moreover, note that detailed

balance gives e~"S(k',k;8)=e~'eS(k, k';8). Then ex-

pand both the exponential and e(k', t) about k'=k to
convert Eq. (1) into

B~(k,t) n(k, t) Bri(k, ~)
k2 — ((k' —k)) [1+re(k,&)]+

Bt Bk

n(k, t)
+((k' —k)') t N(k, t)+1]
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been done in various forms by several authors. ' ' In
Sec. III, some of these results will be used to evaluate
n(k, 8) for a region of temperature and energies beyond
which the nonrelativistic answer fails.

III. COEFFICIENT EVALUATION

To evaluate n(k, 8), the work of Stone and Nelson'
will be used. These authors present a calculation for
((k —k'))/k' for a series of electron temperatures up to
120 keV and photon energies up to 1 MeV. Using Eq.
(5) and fitting their results with the form

((k k') )=—0. 8Bcx/B—k, (9)

with n —+ 0 as k ~ 0, one may make the unique identi-
fication n=n(k, 8). The k~0 condition is imposed
because n(k, 8) vanishes at k=0 and u is determined
only up to a constant times e~~e.

The fit to the calculation was aided by noting that
three limiting forms to ((k —k')) are known. First, n
must reduce to the proper nonrelativistic limit. Second,
when g=0 the problem reduces to scattering photons
off of electrons at rest and ((k —k')) may be evaluated
exactly, though the expression is somewhat lengthy. '
For photon energies' up to 1 MeV, this result is repre-
sented very accurately by (k in keV)

a. (k,0) =nNR/(1+9X10 'k+4 2X10 'k') (10)

an expression which is also convenient for numerical,
work. As k —&0, a recent expansion of the energy
exchange by Woodward' indicates that through third
order in 8/mc',

n(k, 8) ~ =nNaL1+ f(8)],
5 0 15 0 ' 0

f(9)=- +—
(
—)(1- ). (t2)

This is the third limiting form.
Empirically it was found that Eq. (10) multiplied by

1+f(8)/(1+0.02k) gave an excellent 6t to the Stone-
Xelson results. This satis6es the three limiting forms
since the fit fator 1/(1+0.02k) does not change Eq.
(11). The calculated results and fit are presented in
Fig. 1. Using this fit, the Fokker-Planck approximation
given by Eq. (6) with

&(k 8) &NRI 1+f(8)/(1+0.02k)]
XL(1+9X10 'k+4. 2X10 'k')] ' (13)

should be applicable for electron temperatures up to
100 keV and photon energies to 1 MeV. Since numerical
calculations usually require photon energies up to

7 A. Warham, Atomic Weapons Research Establishment
Report No. 033/68, 1968 (unpublished).

8L. Matteson, G. C. Pomraning, and H. L. Wilson, Gulf
General Atomic Report No. GA-9694, 1969 (unpublished).' E. G. Corman, Phys. Rev. D 1, 2734 (1970)."R.D. Evans, The Atomic Eucleus (McGraw-Hill, New York,
1955), p. 688.
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APPENDIX

10-2

To prove the relation between the first and second
moments of the energy transfer, Eq. (5), it will be
convenient to change variables from k and k' to k and
x=k' —k. Then

((k' —k)")= dx x"T(k,x; 8), (A1)

10

where T(k,x; 8) is the temperature-averaged transition
rate expressed in the new variables. Since it was as-
sumed (and is borne out by numerical calculations)
that S is peaked about k within ~k' —k ~/k&&1, T will
be peaked about x=0. This means that the lower limit
of integration may be taken as — with negligible
error.

The demonstration proceeds by noting that detailed
balance gives T(k,x; 0) =e *~'T( +xk, —x; 0), so that

((k' —k)) dx xT(k,x; 0)

dxxe *~'T(x+k, —x; 8)

10
100 200 300 400

g BT(k, —x;0)
d$$1 —— T k) —x) 0 s

0 Bk

Pho ton e nerg y —keV

Fzo. 5. Photon number spectra, normalized according to Eq. (2),
at time 4)& 10 ' sec for the case of electrons initially at 50 keV and
photons initially in a 25-keV Bose-Einstein distribution with
Q= (25)'. Monte Carlo results (&() and initial (T=O) and equi-
librium (T= ~) spectra are presented for comparison.

00

dxxT(k, —x;0)—— Chx'T(k, —x;8)
0

00

+— Cx*'T(k, —x; e)
Bk

spectrum attains its equilibrium value while the rela-
tivistic spectrum does not.

Spectra from the cases where the initial photon
distribution is a 1-keV Planckian while the electrons
are at temperatures in excess of 50 keV show disagree-
ment between all three calculations; this is, of course,
the set of problems where the Fokker-Planck approxi-
mation fails.
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The approximation that third- and higher-order mo-
ments of the energy exchange are negligible was made
above and is in line with the approximations used to
obtain the Fokker-Planck equation. From Eq. (A2)
follows the desired result:

8((k' —k)') 1
—((k' —k) ')+2((k' —k) ) .

Bk 0


