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The Fokker-Planck equation for Compton scattering in a plasma is developed without recourse to a non-
relativistic expansion. Using calculated energy exchange rates for scattering in a relativistic Maxwellian
plasma, an equation is obtained which is valid for electron temperatures up to 100 keV and photon energies
up to 1 MeV. Numerical comparisons are presented which show excellent agreement between Fokker-Planck
and Monte Carlo calculations. Results using the nonrelativistic Fokker-Planck, valid to only 20 keV, are also

presented to indicate the improvement made.

I. INTRODUCTION

N various astronomical events, such as supernova
explosions or the flare-up of thermal x-ray sources,
the analysis of time-varying phenomena in highly
ionized gases is of importance. In particular, for the
problem of nonequilibrium radiation transport in such
systems, Compton scattering with electrons may often
be the dominant mechanism for energy transfer. Since
the scattering integral for this process is extremely
complicated, one often uses a Fokker-Planck approxi-
mation. This consists of expanding the collision integral
in powers of the energy transfer through second order
and is a valid approximation as long as the energy
transfer per Compton scattering is small.

In the limit of low electron temperatures and photon
energies, this is not only a valid approximation but is
also very convenient, since the resulting equation may
be expressed in a simple analytic form.'=® This will be
called the nonrelativistic limit, though in reality it is
correct through second order in v/¢ and hv/mc®. On
the basis of an analysis of the energy exchange rate
between Maxwellian electrons and Planckian (black-
body) photons, the nonrelativistic approximation is
seen to break down (give errors greater than 109) for
electron temperatures greater than 20 keV or photon
temperatures greater than 2.5 keV.* The Fokker-
Planck approximation, however, is still valid beyond
these limits; the errors above result mainly from the
nonrelativistic development.

The present paper remedies this by deriving the
Fokker-Planck equation for an isotropic photon dis-
tribution without recourse to a nonrelativistic approxi-
mation.® It will be shown that only the average energy
exchange per unit time need be known. In the case of
arbitrary electron temperatures and photon energies,
this quantity must be evaluated numerically since the
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integrals are far too complicated to be done analyti-
cally. However, using the numerical results of Stone
and Nelson,® a fairly accurate fit to the energy exchange
may be made for electron temperatures less than 100
keV and photon energies less than 1 MeV. The re-
sulting Fokker-Planck equation using this fit assumes
practically the same simple form as the nonrelativistic
one.

To check the equation, a series of test problems for
the Compton cooling of hot electrons were solved
numerically and compared with Monte Carlo results.
For the cases where the initial photon distribution had
a temperature not too different from that of the
electrons, excellent agreement was obtained. As the
disparity in initial temperatures increased, the com-
parison became poorer, indicating a breakdown in the
Fokker-Planck approximation itself.

A few comparison problems are presented to show
the improvement made in calculating with the new
Fokker-Planck equation as compared with the non-
relativistic form.

II. FOKKER-PLANCK EXPANSION

For this development, the precise form of the scat-
tering integral need not be kndwn. Instead, it is suffi-
cient to consider the master equation for an isotropic
system,
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where k=/hv is the photon energy, #(k,{) is the photon
distribution function normalized to

0

dk k*n(kg)=N (=number/volume), (2)
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and S(k,k'; 6)/k? is the transition rate for scattering
from %k to %/, suitably averaged over a relativistic
Maxwellian distribution of temperature . The factors
(14-n) represent the induced scattering enhancement
due to the presence of photons in the final state.
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To make the Fokker-Planck expansion, assume that
n(k,t) is analytic and that S(k,k’; 6) is peaked about %
within |#’—k|/k<&1. Moreover, note that detailed
balance gives e*/6S(k'\k; 0)=e"'!8S(k,k’'; ). Then ex-
pand both the exponential and # (%’,t) about ¥’'=% to
convert Eq. (1) into

k, on(k,t
kza"(kﬁz«k'—k»{"( t)[1+n(k,t)3+fi—)}
ot /) ok
(k)
= [0+
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where

((F —k)m)= / i ak' (K —E)nS(k,E'; 6). )

As shown in the Appendix, consistent with the order
of the expansion of Eq. (1), the quantities ((&'—%))
and ((k'—Fk)?) are related by

(k' —k)?) N (' —k)%)
ok
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When inserted into Eq. (3), this gives
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It should be noted that Eq. (6) guarantees the two
physically important intrinsic properties of Eq. (1),
namely, conservation of photons and a Bose-Einstein
equilibrium.

The complete determination of the Fokker-Planck
equation rests now in calculating the coefficient a(%,6).
In the nonrelativistic limit, the integrations may be
carried out to givel™3

ang® = UTPek‘i/ mc (8)

with o7, p. and m the Thomson cross section and
electron density and mass, respectively. For regions
where this limit does not apply, one must perform a
very complicated multiple integration involving a
relativistic Maxwellian electron distribution, the Klein-
Nishina cross section, and various Lorentz transfor-
mations. This is clearly a numerical problem and has
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been done in various forms by several authors.®=® In
Sec. III, some of these results will be used to evaluate
a(k,0) for a region of temperature and energies beyond
which the nonrelativistic answer fails.

III. COEFFICIENT EVALUATION

To evaluate a(%,0), the work of Stone and Nelson®
will be used. These authors present a calculation for
((k—F"))/k? for a series of electron temperatures up to
120 keV and photon energies up to 1 MeV. Using Eq.
(5) and fitting their results with the form

((k—F'))=a—00a/ok, 9

with @— 0 as £ — 0, one may make the unique identi-
fication @=a(k,0). The £— 0 condition is imposed
because «a(k,d) vanishes at k=0 and & is determined
only up to a constant times e*/?,

The fit to the calculation was aided by noting that
three limiting forms to ((k—%’)) are known. First, «
must reduce to the proper nonrelativistic limit. Second,
when =0 the problem reduces to scattering photons
off of electrons at rest and ((k—%’)) may be evaluated
exactly, though the expression is somewhat lengthy.%°
For photon energies up to 1 MeV, this result is repre-
sented very accurately by (% in keV)

a(k,0) =anr/(1+-9X10%k+4.2X 10~%2) ,  (10)

an expression which is also convenient for numerical
work. As k—0, a recent expansion of the energy
exchange by Woodward* indicates that through third
order in 6/mc?,

a(k9) = =axa[1+1(0)], (11)
(0)__5 ] +15 0 >2 . 0 i
/ —2mc2 8<mc2 (—;n—;> 12

This is the third limiting form.

Empirically it was found that Eq. (10) multiplied by
1+ f(6)/ (140.02%) gave an excellent fit to the Stone-
Nelson results. This satisfies the three limiting forms
since the fit fator 1/(14-0.02k) does not change Eq.
(11). The calculated results and fit are presented in
Fig. 1. Using this fit, the Fokker-Planck approximation
given by Eq. (6) with

a(k,0) =anr[1+f(6)/ (140.02k)]
XL(1+9X10-%+4.2X 102 (13)

should be applicable for electron temperatures up to
100 keV and photon energies to 1 MeV. Since numerical
calculations usually require photon energies up to
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Fic. 1. Exact temperature-averaged energy-exchange coefficient
of Stone and Nelson (circles) compared with the analytical fit
(solid lines) and nonrelativistic answer (dashed lines) for
various photon energies in keV.

about ten times the final equilibrium temperature of
the photon distribution, the given equation can handle
photon temperatures up to 100 keV. Of course, the
range of problems which may be solved with the given
Fokker-Planck equation is still limited by the fact that
in converting the scattering integral into this differ-
ential form, it was assumed that contributions from
terms in third- and higher-order derivatives of the
photon distribution were negligible. This means roughly
that the photon distribution cannot vary greatly over
energies of the order of the electron temperature.

IV. NUMERICAL COMPARISONS

The Fokker-Planck equations using the a’s given by
Eqgs. (8) and (13) were solved as initial value problems
using a finite difference scheme described in Ref. 11.
To ensure very accurate solutions, meshes of from 60
to 100 points were employed; in practical problems
where errors up to 19, may be tolerated, 20 to 30
points are usually sufficient. The time steps were chosen
fairly small between 1/200 and 1/500 of the equili-
bration time, in order to obtain precise temporal
development. All of the cases studied used initial

17, S. Chang and G. E. Cooper, J. Comp. Phys. 6, 1 (1970).
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photon distributions of the form
n(k)= (CeHtm—1)1, (14)

corresponding to a Bose-Einstein distribution with
temperature 0,.

Two types of problems were considered. First, for
initial electron temperatures varying from 10 to 100
keV, a Planckian distribution (C=1) with 6,=1 keV
was used. Second, for electrons from 50 to 100 keV,
values of 9, equal to one-half the electron temperature
were used. The latter cases used C=6,3, (6, in keV),
corresponding to approximately the same number of
photons as a 1-keV Planckian distribution. In all of
the problems, the electron density was taken as
6.025X 10 per cm?® so that the free-electron specific
heat (3p,) was about equal to the photon specific heat
(~3N). This choice was made so that the system was
dominated by neither radiation nor material.

As a comparison, the same problems were calculated
using a Monte Carlo code developed by E. G. Corman
at Lawrence Radiation Laboratory, Livermore. The
results from this sampling scheme agree with the exact
answers from the scattering integral, Eq. (1), except
for statistical fluctuations which are estimated at about
1%.

The calculations were performed on CDC 6600 and
7600 computers. Running times for the Monte Carlo
code on the 7600 were from 3 to 5 min. This is to be
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Fic. 2. Time evolution of the electron temperature, initially 50
keV, for the case of photons initially in a 25-keV Bose-Einstein

distribution with C=(25)3. Monte Carlo results (X) are pre-
sented for the comparison.
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F1c. 3. Time evolution of the electron temperature, initially 100
keV, for the case of photon initially in a 50-keV Bose-Einstein
distribution with C=(50)%. Monte Carlo results (X) are pre-
sented for the comparison.

compared with a few hundredths of a minute for the
Fokker-Planck.

For the case of an initial Planckian distribution at 1
keV, and electron temperatures below 10 keV all three
codes gave essentially the same result for the average
photon energy versus time. This is to be expected since
these are energies in the nonrelativistic region and is
taken as a ‘“calibration” for the three codes.

The problems which initially had the photons in a
Bose-Einstein distribution at one-half the initial elec-
tron temperature showed excellent agreement between
Monte-Carlo calculations and the Fokker-Planck results
presented here. However, the nonrelativistic Fokker-
Planck results deviated significantly since the electron
temperatures of 50 to 100 keV were quite outside its
domain of validity. Figures 2 and 3 show the electron
temperatures as a function of time, calculated from the
energy gain of the photons using the free-electron
specific heat $p,. for initial values of 50 to 100 keV.

As an example of where all three calculations disagree,
Fig. 4 presents the results for a 1-keV Planckian dis-
tribution and a 50-keV electron distribution. This shows
the effects of truncating the Fokker-Planck series at
the second derivative since, during the early time
development, the variation of the photon distribution
in & is quite severe when compared to the electron
temperature. Obviously, one must carefully examine
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what source terms are present if the Fokker-Planck is
to be used; special attention must be applied to cases
which have narrow lines in the radiation spectrum
resulting from discrete line transitions in partially
ionized constituents. However, for temperatures of the
order presented here, low-Z gases may usually be taken
as fully ionized, in which case the only internal source
is bremsstrahlung which has a width of the same order
as the electron temperature.

Besides the energy transfer with the electrons, these
calculations also provide a time-dependent nonequi-
librium distribution function for the photons. This
aspect of the problem is relevant to some experimental
observations, especially in astrophysics. Comparisons
of the photon spectra from the three codes indicates
that the new Fokker-Planck and Monte Carlo results
are in essential agreement for the cases where the initial
photon temperature is one-half the electron tempera-
ture. The nonrelativistic Fokker-Planck spectra differ
significantly in the high-energy tail; this is because the
transition rate for high-energy photons is reduced in
the relativistic case because the Klein-Nishina cross
section is lower than the Thomson cross section. An
illustration of this effect is presented in Fig. 5, where
it is seen that above about 200 keV the nonrelativistic
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F16. 4. Time evolution of the electron temperature, initially 50
keV, for the case of photons initially in a 1-keV Planckian dis-
tribution (C=1). Monte Carlo results (X) are presented for
comparison.
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Fi16. 5. Photon number spectra, normalized according to Eq. (2),
at time 4X 1079 sec for the case of electrons initially at 50 keV and
photons initially in a 25-keV Bose-Einstein distribution with
C=(25)% Monte Carlo results (X) and initial (7'=0) and equi-
librium (7= =) spectra are presented for comparison.

spectrum attains its equilibrium value while the rela-
tivistic spectrum does not.

Spectra from the cases where the initial photon
distribution is a 1-keV Planckian while the electrons
are at temperatures in excess of 50 keV show disagree-
ment between all three calculations; this is, of course,
the set of problems where the Fokker-Planck approxi-
mation fails.
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APPENDIX

To prove the relation between the first and second
moments of the energy transfer, Eq. (5), it will be
convenient to change variables from % and %’ to & and
x=k'—k. Then

(' —k)m)=

dx 2T (k,x;0),

—k

(A1)

where T'(k,x; 6) is the temperature-averaged transition
rate expressed in the new variables. Since it was as-
sumed (and is borne out by numerical calculations)
that S is peaked about £ within |k'—k|/kK1, T will
be peaked about x=0. This means that the lower limit
of integration may be taken as — o with negligible

error.
The demonstration proceeds by noting that detailed

balance gives T'(kx;0)=e*/°T (x+k, —x;6), so that

((k’—k))z/ dx xT (k,x; 6)
=/ dx xe=*1°T (x+k, —x; 0)
0 X AT (k, —x;0)
%/ dx x(l— —)T(k, —x; 0)f———
o 0 ok
0 1 00
z/ dx xT (b, —x;0) — —/ dx 22T (k, —x;0)
—w 0J
a 0
+— / dx x*T (k, —ux; 6)
Ok J_o

1
=~ (=)= (@ =)
9
(=B (A2)
ok

The approximation that third- and higher-order mo-
ments of the energy exchange are negligible was made
above and is in line with the approximations used to
obtain the Fokker-Planck equation. From Eq. (A2)
follows the desired result: ,

(k' —k)*)
ok

1
25((k'—k)2>+2<(k'—k)>. (A3)



