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In the first two equations the first term comes from the
so-called seagull diagram which does not exist in the
“mixed” cases.

The result is

do w?
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which is the classical result.
An exactly similar calculation confirms the classical

result for 6=3%r.
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A solution is presented for the spectrum of high-energy electrons confined to a region where the main
energy-loss mechanism is Compton scattering in the extreme Klein-Nishina limit. The solution is valid in
the steady-state limit assuming the region under consideration is optically thin to the emitted photons.

I. INTRODUCTION

OR many astrophysical applications it is desirable
to be able to solve for the spectrum of high-energy
particles undergoing energy loss via certain physical
mechanisms. Blumenthal and Gould,! however, have
recently emphasized that when particles lose energy in
discrete amounts as opposed to continuously, then it is
appropriate to describe their distribution function by
an integrodifferential equation as opposed to the or-
dinary continuity equation in energy space. If #(v,)
is the number (or density) of particles with Lorentz
factor y=(1—8%)"12 between v and y+dy at time ¢,
then the distribution function satisfies an equation of
the form

an(y,t)

F) ¥
+ - Lintr) ) / Plyny)dy’
dy 1

- / By PG ) =a@). (1)

Here v represents the total energy loss? due to con-

* Present address: American Science and Engineering, 11 Carle-
ton Street, Cambridge, Mass. 02142.
1 G. R. Blumenthal and R. J. Gould, Rev. Mod. Phys. 42, 237

(1970).

tinuous processes where the energy change per collision

is small:
[v/v]|<K», 2

v being the collision frequency. The P(y,y")dy’ in Eq.
(1) represents the total probability per unit time that
a particle of energy vy will lose an amount of energy
between y—vy’ and y—+v’'—dy’ via all processes for
which condition (2) is not satisfied. Finally, the ¢(v,)
in Eq. (1) represents possible sources and sinks of
particles corresponding to creation or annihilation.

For many energy-loss mechanisms for high-energy
electrons of astrophysical interest, condition (2) is
amply satisfied, and the resulting continuity equation
can be readily solved.? However, this is no longer true
for electrons losing energy by either bremsstrahlung or
Compton scattering in the extreme Klein-Nishina (KN)
limit.! Indeed, for the latter process, the spectrum of
emitted photons e is strongly peaked near e=v.
These processes must then be included in the integral
terms in Eq. (1), thus making exact analytic solutions
much more difficult to obtain even if time dependence

2 Since this paper deals with high-energy electrons, all energies

are expressed in units of mc?.
% See, e.g., N. Kardashev, Astronom. Zh. 39, 393 (1962) [Soviet

Astron. AJ 6, 317 (1962)7].
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is ignored and steady-state conditions are assumed to
exist.

In this paper, a solution of Eq. (1) is presented for
high-energy electrons confined to a region where they
lose energy predominantly through Compton scattering
in the extreme KN limit. It is assumed that the region
is optically thin to the emitted photons so that pair
production in photon-photon collisions can be ignored
as an important source of high-energy electrons.t®
Since the rate of energy loss due to synchrotron radia-
tion is proportional to 4? while that due to bremsstrah-
lung is proportional to v, it follows that at sufficiently
high energies these processes can become more im-
portant than Compton scattering in the extreme KN
limit. However, if the density of the ambient gas and
the magnetic field are sufficiently small, these two proc-
esses need be considered only at energies higher than
those considered here, and they will therefore be ig-
nored. A detailed comparison of these energy-loss
mechanisms has been presented elsewhere.! In Sec. II
the general form of the solution is obtained, while
Sec. I1I contains some specific examples for the electron
injection spectrum and for the ambient photon
spectrum.

II. GENERAL SOLUTION IN THE
KLEIN-NISHINA LIMIT

When an electron with Lorentz factor v traverses an

isotropic field of ambient photons whose energy spec-
trum is given by NV (), then Compton scattering of these
photons off the electron produces a spectrum of high
energy photons and causes the electron to lose energy.
Furthermore, when the energy of an initial photon in
the electron’s rest frame

€ =ve(140 cosh) =~ve 3)

is much greater than 1, ye>>1, then the extreme KN
formulas become applicable. For the above situation
the number of photons produced from initial photons
within de per unit time per unit energy (e1) of the scat-
tered photon is given by

dNe  2mro%c N(e)de 1 (pg)?
dde . v e |:1 2 1+pq(1 _Q)] » @
where N (e) is the energy spectrum of ambient photons,
p=4vye, S)
g=e/p(y—e), (6)

and where the kinematical limits are set by the condition
that

0~ 1/4y*<¢<1. %)

4R. J. Gould and G. P. Schreder, Phys. Rev. 155, 1404 (1967).
(15 6S6.)Hayakawat, Progr. Theoret. Phys. Suppl. (Kyoto) 37, 594

966).

8 F. C. Jones, Phys. Rev. 167, 1159 (1968).
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Equation (4) can be put into a more useful form by
noting that
dN .
Plvy)= ———. @®
did(y—v")

Thus, to lowest order in (ye)™1,

9

wro2c N(e)de/ 1 1 v
P(’Y}'yl) = / - >

v e \y dey'? o2

where P(y,y") is nonzero only within the kinematical
limit

dy'e>1. (10)
Of course, the total P(y,y’) is given by the integral of

Eq. (9) over e. Also, using Eq. (9), the average energy
loss can be calculated using the fact that

—= / &' (y=v)P(vy'), (11)
1/4e

N(e)de 11
—')?=7rro2c/ — <1n4'ye— —),
€ 6

in agreement with previous results.”

At this point, it should be mentioned that collisions
in the extreme KN limit, ye>>1, are also well above
threshold for energy losses due to pair production in
photon-electron collisions.® However, since the energy
loss is roughly proportional to the total cross section
times the average energy lost per collision, and since
Aygn~7 while Aypair~4/e, one finds when the high-
energy cross sections® are included,

to give

(12)

A'Ypaira'pa.ir
~ TP aakd,
AYRNOKN

Ypair

(13)

YN
where ¢ 1=137. Thus, pair production can be ignored
compared to KN losses. More rigorously, however, since
the momentum transfer well above threshold in pair
production has an effective maximum near mc, its
cross section can be well approximated by the cross
section for pair production in collisions with a proton.!®
Then the results for a high-energy nucleus traversing
an isotropic raidation field"! can be compared with the
energy loss given by Eq. (12). If this is done, one finds
that pair production becomes important only at energies
many orders of magnitude above threshold. This process
is therefore ignored here.

"The form of this energy-loss formula for collisions with a
blackbody spectrum of ambient photons is extensively discussed
by F. C. Jones, Phys. Rev. 137, B1306 (1965), and was later re-
derived in Ref. 1.

8 PA) Encrenaz and R. B. Partridge, Astrophys. Letters 3, 161
(1969).

9 J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley, Reading, Mass., 1955).

10 R. J. Gould, Phys. Rev. 185, 72 (1969).

11 G, R. Blumenthal, Phys. Rev. D 1, 1596 (1970).
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Now, the solution of Eq. (1) in the steady state with
P(v,y") given by Eq. (9) can be simplified by taking
P(v,y’) to be of the form

Py )=G)[ba(v)+a()b:(v) 1. (14)

Since the limits on the e integration of Eq. (9) depend
only on v/, it is clear that P(y,y’) can always be ex-
pressed in this form. Then defining

Biy)= / b (15)
1/4e
for j=1, 2, and letting
=G, (16)

the integral equation becomes an equation for f(y),

S IBAy)+a(y) Baly)]—=by) / dx f(x)

—ba(y) / dx a() f(®) =qly). (I7)
Now, defining !

0() = / dx o), (18)

one can integrate Eq. (17) to obtain

Bi) / dx f(6)+Bay) / dx () () =0().  (19)

If one now solves this equation for f,*dx a(x)f(x) and
substitutes this back into Eq. (17), one obtains a
first-order linear differential equation. The solution for
f(y) is then given by

d 0
=B+ #l(ﬂ/)e"‘(” / dx e*@B(x), (20)

dy v
where
q(v)+02(v)Q(v)/Ba(y)
Bly)= (21)
Bi(y)+a(y)Bs(y)
and
dﬂ-(’Y) bl(’)’) —62(7)31(7)/32(7) (22)
dy Bl(’Y)"‘a(’Y)Bz(’Y)

The boundary condition that f(y) go to zero as y —
has already been imposed to obtain this solution. Also,
because of the way that u(y) enters Eq. (20), it need
be determined only to within an additive constant
when Eq. (22) is integrated.

III. SOME EXAMPLES OF THE SOLUTION

Probably the simplest example of the solution Eq.
(20) occurs in the case that the initial photon spectrum
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is monoenergetic:
N(e)=Nb(e—e). (23)

This is not a bad approximation to a sharply peaked
distribution. Substituting this into Eq. (9) and inte-
grating yields to lowest order in (ye) 7«1

I 60'—%
wr) =2 1n< e =), (29)
4’)/60
and thus
a+200)/y Q) Indveo (2 Indyeo—3)
)= -
Indyeo—3 Y (Indyep—3%)3
3-21 o) [
- Z—*—————( 2Indyes) / dxi(fz. (25)
2 (ln4’y€0—~12‘)3 v x2
Then 7 (y) follows from Eq. (16):
n(y)= S _ elt) (26)

Gly)  wreelNy

The usual astrophysical application of this result is
the case of a power-law injection of electrons of the
form q(y)=Kvy~P. With this ¢(v), the steady-state
spectrum (25) becomes

Ky=? (P41

Indvyeo ——%_ P—1
(2 1n4‘yeo—3),' 1
(ndveo—3)* L2(P+1)

f)=

_ ln4'yeoj|} ‘ (27)
P—1

Note that to a first approximation (Iny= const), since
n(y) <vf(v), KN losses flatten the electron spectrum
index by 1. This fact could have been deduced, however,
simply by considering solutions of the continuity equa-
tion with vy given by expression (12). However, that the
solution is not a pure power law can be seen from Fig. 1,
where ¥”f(y)/K is plotted. From the figure it can be
seen that most of the deviation from a pure power law
occurs for the very small values of e, where this whole
procedure is least valid. As veo approaches 1, the scat-
tering approaches the Thomson limit where the spec-
trum is expected to be steeper by a power of 2. This
trend is evident in the figure.

In this connection, it is useful to discuss the need for
going through all of this procedure to obtain this solu-
tion of the integral equation. If f.(y) is the solution of
the ordinary continuity equation with v given by Eq.
(12), then f.(y) can be easily obtained, and a plot of
f(¥)/fe(y) for various values of P is shown in Fig. 2.
From the graphs it is clear that f.(y) is asymptotically
a good approximation to the exact solution only for
P=2 and v very large. Indeed for P=2,

T/ fel(y) =1 as Indye—co. (28)



3 SPECTRUM OF HIGH-ENERGY ELECTRONS:. ..
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I16. 1. Plot of the deviation from a pure power law of the
steady-state electron distribution v f(y)/K vs logisdyeo for elec-
trons undergoing Compton scattering in the extreme KN limit
with photons of energy . A power-law injection of electrons is
assumed with index (a) P=1.2, (b) P=2.0, (c) P=3.0, and
(d) P=4.0.

However, for different values of the index P, the differ-
ence is significant, thus justifying the recourse to the
more complicated procedure for obtaining f(y).

The solution just considered is valid only for a mono-
energetic spectrum of ambient photons. In general, for
any N (e), Eq. (9) can be put into the form of Eq. (14)
and therefore the solution [Eq. (20)] is valid. The only
problem then is in evaluating the functions b;(y),
Bj(y), and u(y). Even if these integrals cannot be
obtained in closed form, as is the case for a blackbody
spectrum, the problem is nevertheless reduced to nu-
merically calculating a few integrals as opposed to
solving an integral equation. It should be mentioned,
however, that if the KN limit is to hold for an arbitrary
distribution NV (e), then a relationship of the form ye*>>1
must be valid. Now, since the KN cross section o (€) < ¢
the collision rate is significantly greater for low-energy
photons. Thus, €* above should really be given by
(¢1)7'. The KN domain therefore is involved only if
N (e) increases no slower than e for small e.

As an example of this, one can take

N(e)=Ae8U(H—¢), (29)

where U(x) is the step function, and for the KN con-
dition to hold, ¥6>>1. This distribution can be regarded
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F16. 2. Plot of f(v)/f(v), the ratio of the exact energy spectrum
for electrons undergoing Compton scattering in the extreme KN
limit with photons of energy e to the solution obtained from a
continuity equation in energy space.

as a first approximation to a Planckian. Then, sub-
stituting this into Eq. (9), for

G(y)=mricd/y, (30)
the solution becomes
q)+20(v)/y = (1—21ndy0)
b (’Y) = Y
Indv0-+3 (In4y0+3)°
©  (Indx0-+3%)
X / dx—;———[q(x)—l—ZQ(x)/xﬂ. (31)

This solution is very similar to Eq. (27) for the §-
function distribution, and, in fact, they are identical if
6=¢€o/2.718. Thus, using a photon spectrum (or at
least this photon spectrum) whose width is of the same
order of magnitude as its average energy does not
significantly alter the final solution from that obtained
by assuming a monoenergetic initial photon distribution.
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