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Thomson Scattering in a Strong Magnetic Field
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The eGect of a strong magnetic 6eld on neutron stars or white dwarfs is calculated for Thomson

scattering in a fully ionized collisionless plasma. The photon mean free path can be greatly extended for

propagation nearly parallel or, for the extraordinary mode, nearly perpendicular to the field.

I. INTRODUCTION

N ORMOUSI Y strong magnetic Gelds seem to be
~ characteristic of collapsed stars. Exterior Gelds

of 10"G or even greater are required by models which

try to relate pulsar observations to rotating neutron
stars. ' The recent discovery of polarized light from

a white dwarf suggests a surface magnetic field in such

a star which is in excess of 10' G.' Such huge magnetic
fields can greatly affect the motion of electrons in the
outer parts of the star by tending to contain their
motion perpendicular to the magnetic Geld. The inter-

action of photons with electrons will be greatly altered
whenever the magnetic field is sufIiciently strong to
restrict the electron motion to orbits parallel to the
field. Cameron' has pointed out that the magnetic field

may possibly greatly reduce the opacity in such stars
so that they may cool much more rapidly than is indi-

cated by those calculations which ignore it. A second
effect which may be especially relevant in understand-

ing the observations in the magnetic white dwarfs is
a possible large temperature variation over the surface.

There are three main interactions which may limit
the mean free path of a photon in the outer parts of
a star.

* NAS-NRC Senior Postdoctoral Resident Research Associate.
f Research supported in part by the National Science

Foundation.
J. E. Gunn and J. P. Ostriker, Nature 221, 454 (1969).

2 J. C. Kemp, J. B. Smedlund, J. D. Landstreet, and J. R. P.
Angel, J. Appl. Phys. Letters 161, L77 (1970).' A. G. W. Cameron (private communication).
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(a) Photoelectric absorption. Here a suKciently
strong magnetic Geld increases the stability of atoms, 4

and alters both the important frequencies and the cross
section for photon absorption.

(b) Free-free transitions, i.e., inverse bremsstrah-

lung. ' The magnetic feld as well as the Coulomb Geld

can absorb electron momentum.

(c) Thomson scattering. ' If the electron moves sig-

nificantly only parallel to the magnetic field, photons
whose electric vector remains perpendicular to the field

even in the presence of rapid Faraday rotation will have
a greatly reduced scattering cross section and thus an

anomalously high mean free path.
In this paper we shall present only those cross sec-

tions relevant to the reduction of the Thomson scatter-
ing in a strong field. Roughly, the criterion for the mag-
netic field to substantially affect the canonical Thomson
cross section is that the photon (angular) frequency ~
be less than the electron cyclotron frequency az wher

AcurI=eAH/mc 10 'H (eV).

For V~10 2 G photons at temperatures below 10 'K
have a reduced Thomson cross section. For H 10' G,
"visible" light will be similarly affected. The greatest
reduction in cross section comes for photons directed
either parallel to the field, where despite Faradav rota-

4R. Cohen, J. Lodenquai, and M. Ruderman, Phys. Rev.
Letters 25, 467 (1970).' V. Canuto and H. Y. Chiu, Phys. Rev. D 2, 578 (1970).

' V. Canuto, J. Appl. Phys. Letters 160, L153 (1970).
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Fio. 1. Cross section, Eq. (21) vs 8 for different I'=coIf/co.

The curves are very insensitive to the specific values of e so long
as e&&i.

tion, the photon's rotating electric vector remains
perpendicular to the stellar H field or the extraordinary
mode of the plane polarized photon moving perpendicu-
lar to H with its E also perpendicular to H. This latter
mode does not have its polarization plane altered by the
magnetized plasma.

The description of an otherwise free charged particle,
confined by a magnetic field is exactly analogous to
that of bound states in a (two-dimensional) harmonic
oscillator potential. As in that case, the scattering cross
section is the same quantum mechanically and classic-
ally as long as Ace«mc2. In Sec. II we exhibit the
normal modes of electromagnetic waves in a (collision-
less) plasma with a magnetic field. Section III contains
the scattering cross section for these modes. The ex-
pected identity between classical and quantum mechani-
cal cross sections is shown in Appendix B.The applica-
tion of these results to calculations of stellar opacities
will be published elsewhere.

II. ELECTROMAGNETIC MODES IN
MAGNETIZED PLASMA

In a collisionless plasma in a uniform magnetic Geld
we approximate the dielectric tensor by the canonical

I' = 1 ~„'/cu' fI—„'/~', —

0„'= (m/3I) Z'co„', Q~ ——(m/M)Z(urI .

and

with

and

u(1 —v) —(1—v)'

u —(1—v) —uv cos'8

u'"v(1 —v) cos8
C=

u —(1—v) —uv cos'8

u'~'= ~II/~ = eH/me~

(2)

v =(a '/(g'=4v. X e'/duo'

The two indices of refraction, n, are defined by'

Ke consider the propagation of a plane mono-
chromatic electromagnetic wave in a plasma with its
wave vector k along the s axis. I.et H be a uniform static
magnetic field making an angle 0 with s, and lying in the
ys plane. In the xy plane the electric Geld vector of the
two normal modes, E (n=1, 2) rotates on an ellipse.
The ratio of the components E„, and E,, in the waves
of both modes (neglecting absorption) isr

8„, /8, =iE=i C/(8 n'')—, —
where

2v(1 —v)
R

2(1—v) —u sin'8+( —) t
u' sin'8+4u(1 —v)' cos'8l'~'

The n =1 mode is conventionally designated the
"extraordinary wave"; the n, =2 mode is the "ordinary
wave. "

There is, generally, also an electric field in the s direc-
tion given by where

E,, =

=iL„(8)E,

—ig'j'v sinOE, , +zw cos8 sineE„,

u —(1—v) —uv cos'8

7 V. L. Ginzburg, The Propugulion of E/eclromugnetic Wuees
irl, Plusmus (Pergamon, New York, 1964).

iI..(8) =
iu"'v sin8+—iuv sin8 cos8E (8)

u —(1—v) —uv cos'8
~ (g)
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Eq. (6) for a radiated P-mode wave whose wave vector
is in the 8" direction. The unit vector Bp is the unit
electric 6eld vector of this same mode. Since the n mode
can scatter into both ordinary and extraordinary
modes, the sum over P includes the two possible scat-
tered waves. The angle bp" is the angle between the
scattered Poynting vector Sp" and the wave vector
k", and is given by

The component E,, is in phase with E„, and —',m out of
phase with E, . We note that for B parallel to k,
E'i(0) = —1 and IC2(0) =+1, i.e., the two waves are
circularly polarized with opposite helicities. When k is
perpendicular to II, E'i(2v. ) =0 and Eq(2v. ) = —oo, i.e.,

E..2=0 and E„,j ——0, giving linear polarization in the
xy plane.

In the following we assumed co)&0~. To calculate the
total cross section o(8) for each mode, we first resolve
the E vector into an elliptically polarized wave in the
plane perpendicular to H and a component E,- along H.
H de6nes the s' axis of a new Cartesian system obtained
by rotating the original system xy2' about x through an
angle 8. The new system x', y', s'=—xy's' will have the
plane xy' perpendicular to H. In terms of E„E„,E„
the components E, , E„,E, are given by

1 Bee'(8")
tan5p" = —,

2ne'(8") 88"
(17)

The differential cross section for scattering from 8 to 8"
is

dP. (g,e"))
(S.) do

do (8,8")
(18)

E, =E, ,

E„=E„cos8—E,.sin8,

E;=E„sin8+E. cos8.

(9) where the incident power flux (5„)is given by

(S ) =(c/Sv. ) Re(E*XH)
= (c/Sx)n (8)[E,'+E„'+E,'] cosbo, (19)

III. CROSS SECTION FOR THOMSON
SCATTERING IN MAGNETIZED

PLASMA

For nonrelativistic electrons subject to a time-varying
E(t) in a plasma imbedding a uniform II, the equation
of motion of the electrons is

mv= eE(t)+(1/c) evXH. (10)

In the x', y', s' coordinate system we define the electric
field components of the electromagnetic wave by

E(t)=(E oe +iE„oeo+iE, oe, )e '"' (11)

and the induced electron velocity by

v(t) = (v, 'e, +iv„'e„+iv, 'e, )e '"' (12.)

Then, from Eq. (9) it follows that

v. = [iea)/m(carr' —a)')](—E +u'"E ) (13)

v„=[iso/m(co~' co')]( E„+u"'E—), —(14)

v~i = (M/tpko) E~i .

where 8 is the angle between S and k and is given by

1 Bn '(8))
tan8. =—

2u '(8) 88
(20)

The resulting differential cross section is extremely com-
plicated and is given explicitly in Appendix A. For
applications in regimes characteristic of stellar atmo-
spheres, the two indices of refraction for the two
characteristic modes are usually approximately equal;
the angle b between the wave vector and the energy
Aux vanishes. This occurs when either N«1 or v« i.
In both cases the scattering cross section simpli6es
enormously. The total cross section for scattering then
becomes

o /org=[1+E '(8)+I. '(8)] '

X([1—u't'(X (8) cosH L(8) sin8)]—'(u —1) '
+[u'"—(X.(8) cos8—L (8) sin8)]'(u —1) '

+[X (8) sin8+L (8) cos8]'), (21)

with omah the usual Thomson cross section

The time-averaged power per unit solid angle in the 8"
direction radiated by the electron accelerated by the
incident wave moving at angle 8 is (n mode, n =1, 2)

dP (8,8") e'or'

Q i(v,* Ee)Eei'ue(8") cosbe".
gg/I Sic' p=&

alld
cr, (8)=oig[a)'/(co~ —co)'+-,' sin'8]

o g(8)—o rg[a)'/(a ~+co) '+-,'sin'8].

Near 8=~x,

o.ig ——(gv /3) (e'/mc') '
Near 8=0,

(22)

(23)

(24)

Here v is the velocity vector whose components are
given in Eqs. (12)—(14), when the incident electro-
magnetic wave has the components given in Kqs. (1)
and (7). The index ne(8") is the index of refraction of

o'i(8)—0'i'h[M /(co —cd') +cos 8],
o 2(8)—omah sin'8.

(25)

(26)

Results for various 8 and N in the limit e«1 are shown
in Fig. i.
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APPENDIX A: CLASSICAL CALCULATION
OF DIFFERENTIAL SCATTERING

CROSS SECTION

Let H be along the s' axis of a Cartesian coordinate
system x'yY (Fig. 2). Let the scattered wave vector
k" be along the s" axis of a new system x"y"s"=x'y"s".
H, k", and Sp", the Poynting vector of the scattered
wave, are all coplanar. The electric field vector of an
elliptical mode in the double-primed coordinate system
can be expressed in the primed system as

E;=E, cosy"+i(E„cosg"siny"
+E: ~ sing" sin y")=A+i B,—

E&~ = Ezii sl—lly +1(E&«cosg cosy" (A1)
+E, sing" cosy")

—=C+iD,
E, =i( E„~ sin—8"+E, ~ cosg") iF=

The unit vector Zp is given by

yf

X

FIG. 2. Geometry of the scattering mechanism.
For details see Appendix A.

E;e, +E„e„+E,e,.
Qp

(E.E+) &/2

(A+iB) e, +(C+iD) e„+iFe,

(E.E+)&/2

where

E E*=E,, 2+E„,2+E,, 2 =E,„2+E„„2+E,„2. (A3)

(A2) Now l(~-* Ep)Epl'=(1'. * Ep)(1'- Ep*). &»ng Eqs.
(12)—(15) and (A2), we get

(E E")1(v-* Ep)Epl'
= l~* I'(~'+B')+ I. I'(C'+D')+ I., I'F'+» ' (BC aD)—2. '—„aF. 2. '—.FD
= (e/m) ~[~2/(/e 2—M~)]2[(&2yB~)(E, u&/2E, )2+(u&/2E, E,)2(C2+D2)+~—4(~ 2 ~2) 2E,2F2

—2(B( —gD)(E, —u /2E, )(E,—u&/2E, )+2+FE,(E, u//2E, )~—2(~2 ~ a)

+2FDE, (E u'/ E;)cu —(/d2 (err')] (A—4).
The components E, E„,and E, can be written in terms of E„E„,and E, using Eq. (9). The resulting averaged
power scattered per unit solid angle dQ" using Eq. (1.6) is given by

dF.(0~0", y") c / co'
=r02—

I p ( }f/p(0") cosgp",
dQ" 8~ k(gFI2 ~2 p

(A5)

where ro ——e'/ c'mis the classical electron radius and

{ . }= ([E —u'"(E„cosg—E, sing)]'[cos'y" +(Ep(0") cos8" siny" +Lp(0") sing" siny")']
+[u"'E (E„cosg—E, s—ing)]'[sin'y"+(Xp(8") cosg" cosy"+Lp(8") sing" cosy")']
+co (a&rr' —a&')(E„sin8+E. cosg)'[Lp(0") cosg"—Xp(8") sing"]'+2[u"'(E„cosg E, sing) E—]-
&([u' /,2E—(E„cosg—E, sing)][siny"(Ep(8") cosg" siny" +Lp(8") sing" siny")
+cosy"(Kp(8") cosy" cosg" +Lp(8") sing" cosy")]+2&v '(sr/r' —/e2)(E„sing+E, cosg)

)& [u'/'(E„cosg —E, sing) E,][Lp(0")cosg" —Ep(0") sin8"]co—sy"+2co '(a&qP co') (E„sing+—E, cosg)

&& [u'/'E, —(E„cosg—E, sing)][Ep(8") cos8" cosy"+L,p(0") sing" cosy"]
X[Lp(0") cosg"—Ep(8") sin8"]}[1+Ep'(8")+Lp'(8")] '. (A6)

The averaged incident Poynting vector (S ) is given by

(S.)= [en.(8)/8~)(E.'+E„'+E,') cosg. .

The differential scattering cross section is

(A7)

do (8~8", y") d& (g ~ g", y") ( co' ' 2 Gp(8 8" y)n i(p0) cosgp"

(S )( dB" i ' — ' a- [1+1''(8)+I.'[e)]@[8)cos5, , ,
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where Ge(0,0",pp") is the same as Eq. (A6) with the sub-
stitution E,—+ 1, P.„+E—(0), and E,~L (0). The
total cross section is obtained by integrating (da /dQ")
over dQ", i.e.,

do'~, p
0', p

= dQ (A9)

where dQ" =sin0"d0"diP = —sin0"d0"dq&", since

= g7l (P

where

2~P,»i2
I/pe eik I (82)

MQ

APPENDIX B ' THOMSON SCATTERING
IN MAGNETIC FIELD IN

QUANTUM THEORY

We exhibit here, for simple cases, the quantum
mechanical scattering cross section which, as it must, is
that for the classical calculation of this same case.

In the nonrelativistic limit the interaction Hamil-
tonian of an electron with the photon field A(x) is given
by

H=(e/ m) cppA+(e'/2m'c')A A

Here A(x) is the photon-field vector potential operator
which in a medium is'

Although the Compton scattering could, in principle,
be computed for any angle and energy, the 6nal form
is excessively complicated. We consider only two im-

portant cases: the propagation at 0=0 and 8= 2n-, where
0 is the angle between the propagation vector k and the
magnetic field axis. For these two directions only, does
the plasma wave have S and k parallel.

The differential cross section is

The symbols i, f, and I specify the initial, final, and
intermediate states, respectively. The quantum num-
bers characterizing an electron in a magnetic field are
the principal quantum n.umbers n (=0, 1, 2, . . .), the
orbital quantum numbers f (=0, 1, 2, . . .), and the
momentum in the s direction p, . The exact solution of
Schrodinger's equation in a magnetic feld gives the
following eigenvalues and eigenfunctions":

P/mc'= (P,/mc)'+(FI/H p) (n+ ,'+o), - (810)

do'
', rp'N-, (ip'/ip)

dQ
~(l ei ep&fl e*""'*Ii) D—P—l') (87)

The uncrossed and crossed matrix elements D and E
are qiven by

(f~~ e,e-" *~I)(I~n e,e"*~i)
D=cg (88)

I El—E;—Ao)

&fin e'e'" *II)&Iln e~e '"' *Ii)
(89)

Ez E;+kpi'—

pp =p —(e/c) A.xi, A. i ———,'r)&H. (85)

The quantities X;, and h. are the cofactors and determin-
ant of the Maxwell operator A;;,' where

H, = (m'cP/ek) =4.41)&10iP G o =&—'
(811)

f(r) =L '"e"*'"C (p ~)

A,i = (c'k'/pp') (k,k;—0,i) +p... (84) C'-. i(o, v ) = (2v)"'I. , (vo'-)
(2pr) "' (812)

where ~;; is the dielectric constant of the medium. In
conventional magneto-ionic theory, the polarization
vector e is given by [for details and notations, see
Ref. 9]

(H/H p) (1/lt. '), K„.= k/mc, l =n —s
I (x) = (n ts!)—"'x'"e—*"Q '(x)

and Q, '(x) are Laguerre polynomials, "
D(P —n' cos'0)

e = (1+ok)—iiP

SI' —Ae'

De' sin8 cos8

SI' —Ae'
Q '(x) =x 'e'(d'/dx')(x"e *).

Using the relations"

(814)

n= PD cos0/(5P An'—) . —(85)

' D. B. Melrose, Astrophys. Space Sci. 2, 171 (1968).
~V. Canuto, C. Chiuderi, and C. K. Chou, Astrophys. Space

Sci. '7, 407 (1970).

For longitudinal and transverse propagation, we have

0=0: e(o)=2 'i'[l, i,0], e(x)=2 'i'[ —1, i, 0],
0=-,'~: e(o) = [0,0,ij, e(x) = [0,1,0], (86)

where 0 and x stand for ordinary and extraordinary
waves.

(7r.+ipr„)
~
n, l)
=me[2(n+1)H/H ]'i'~ n+1, 1+1), (815)

(pr —zpr„)
~
n, l) =mc(2nH/H, )'i'~ n —1, / —1),

The matrix elements M can be easily evaluated.
The various forms listed below depend on whether

the initial and final waves are ordinary (left-handed,

"V. Canuto and H. Y. Chiu, Phys. Rev. 1/3, 1210 (1968);
1'73, 1220 (1968); 1'73, 1229 (1968); V. Canuto, H. Y. Chiu,
and I . Fassio-Canuto, Astrophys. Space Sci. 3, 258 (1969)."A. A. Sokolov and I. M. Ternov, Synchrotron RaCiation
{Akademie-Verlag, Berlin, 1968).
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lh) or extraordinary (right-handed, rh):

(lh, lh):

(816)

(lh, rh):
1 1

iV=io~L(m+1)(++2) j'i' +
MIr —CO COlr+(d

=0 since co'=co+2~Jr. (819)

(rh, rh):

M =5„" 1—co~
MH+(d M~+6)

(817)

In the first two equations the first term comes from the
so-called seagull diagram which does not exist in the
"mixed" cases.

The result is

(rh, lh):

1 1
M =(arrLn(N —1)]"'

~ —~Jr ~ +~a
=0 since co' =a&+ (e—e')&a~ =co —2co~,

=r2
7

(MAM~)
(820)

which is the classical result.
An exactly similar calculation confirms the classical

(81g) result for 8=-',~.
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Spectrum of High-Energy Electrons Undergoing Klein-¹shina Losses

Gzomoz R. BLUMENTHAL~

Department of Physics, Un&, ersity of California, San Diego, La Jolla, California 9Z037

(Received 23 December 1970)

A solution is presented for the spectrum of high-energy electrons confined to a region vrhere the main
energy-loss mechanism is Compton scattering in the extreme Klein-Nishina limit. The solution is valid in
the steady-state limit assuming the region under consideration is optically thin to the emitted photons.

I. INTRODUCTION

�

~OR many astrophysical applications it is desirable
to be able to solve for the spectrum of high-energy

particles undergoing energy loss via certain physical
mechanisms. Blumenthal and Gould, ' however, have
recently emphasized that when particles lose energy in
discrete amounts as opposed to continuously, then it is
appropriate to describe their distribution function by
an integrodifferential equation as opposed to the or-
dinary continuity equation in energy space. If e(p, t)
is the number (or density) of particles with Lorentz
factor y= (1—P') '" between y and y jdy at time t,
then the distribution function satisfies an equation of
the form

dy'n(y', t)P(y', y) =q(y) . (1)

Here p represents the total energy loss' due to con-

* Present address: American Science and Engineering, 11 Carle-
ton Street, Cambridge, Mass. 02142.

G. R. Blumenthal and R. J. Gould, Rev. Mod. Phys. 42, 237
(1970).

tinuous processes where the energy change per collision
is small:

(2)

i being the collision frequency. The P(p,y')d&' in Eq.
(1) represents the total probability per unit time that
a particle of energy p will lose an amount of energy
between y —y' and y —y' —dy' via all processes for
which condition (2) is not satisfied. Finally, the q(y, i)
in Eq. (1) represents possible sources and sinks of
particles corresponding to creation or annihilation.

For many energy-loss mechanisms for high-energy
electrons of astrophysical interest, condition (2) is

amply satisfied, and the resulting continuity equation
can be readily solved. ' However, this is no longer true
for electrons losing energy by either bremsstrahlung or
Compton scattering in the extreme Klein-Nishina (KN)
limit. ' Indeed, for the latter process, the spectrum of
emitted photons e& is strongly peaked near e&=p.
These processes must then be included in the integral
terms in Eq. (1), thus making exact analytic solutions
much more dificult to obtain even if time dependence

' Since this paper deals edith high-energy electrons, all energies
are expressed in units of wc~.

' See, e.g., N. Kardashev, Astronom. Zh. 39, 393 (1962) t Soviet
Astron. AJ 6, 317 (1962)g.


